Table of Contents

Article 1 Principle of Interfacecccocovevieii i 3
Chapter 1 Brief Introduction of Computer and ISA Interfacec.cccccvveennennnee. 4

1.1 PC XT/AT brief introductionccceoueeriiiiiienieeiienieeieeneeeee e 4

1.2 PC XT/AT 1/O address and memory configurationccccevveeeuveeenneen. 5

1.3 Brief introduction of PC XT/AT interrupt concept........ccccveeeveeenreeennnen. 9

1.4 Brief introduction of chips like 8255/8254........ccoovveeiieieiiiieeeieeene, 13

1.5 ISA interface brief introductionc.ceeeeeriiiiieniiienieneeeeeeee e, 15

1.6 Summary of computer 1N reCeNt YEArSeeevuveercreeerreeerireeerveeenereeennns 19

1.7 Recent COMPULET STIUCTUIE ...ooevvveeeeiiiieeeeiiieeeeeiieeeeeeiieeeeeieeeeeeiiaee e 21

1.8 Brief introduction of related interface...........ccooeeeviiiiiininieniiieeee, 26

1.9 Operation rules applied to computer bits........ccceeevveercieinciieiiieeeeieeee 30
EXOTCISES: .ttt ettt 33

Chapter 2 PCILINtETTaCe.ccccuiieeiiieeiieeciie ettt e e ens 34

2.1 PCI (Peripheral Component Interconnect) brief introduction 34

2.2 PCI connector and Pifl........c.eeeeveeerieeenieeeiieeeiiee e ereeesveeeeveeeevee e 37

2.3 PCI interface pin definition..........cccueeevvieeiiieeciieeieeee e 42

2.4 PCT INSTIUCHIONS. ..ceutteeiteeiie ettt ettt ettt et e st e s ebe e 46

2.5 Configuration address port and configuration transaction..................... 47

2.6 Configuration CaChe.........cocuvveviiieciieeieeeee e 54

2.7 Read tranSmISSIONcc..eeueeeieeiieeieeite et e siteete ettt etee e e b saeeebeeeaees 60

2.8 WILE trANSTET ..ceeeiiieiiieiee e 65
EXETCISES vttt ettt et e 70

Article 2 PCI-10/LAB hardware description..........c.cccocevevivevieiierinnnn, 72
Chapter 3 PCI-IO/LAB hardwWareccveeeiiieeiieeiiieeieeeeeeeee e 73

3.1 PCI-TO hardWare.........cooueeiiieiiieieeeeie e 73

3.2 PCI-LAB hardwarec.cooieiiieiieiiieeeeee e 86

Chapter 4 Brief introduction of related chipsccccvevviieeiiieniiieceee e 91

4.1 PLX9050/9052 ChIP ...veeiieiieiieieeieieee et 91

4.2 Serial RRPROM.......ccooiiiiiiiieeeeeee e 96

4.3 8254 timing/counting Chipceeeeveeeeieeeiiie e eevee e 103

Article 3 PCI interface experiment software hardware basic setting
... 114
Chapter 5 PCI_LAB/IO software setting and descriptionccccceeeeveeeneen. 115

5.1 PCI experiment board hardware building...........ccccceeveeviiiencieennennne 115

5.2 PCI-IO drive program SEttNGccccueeervreerieeeieieeeieeeeereeeeveeesveeenens 117

5.3 10 address of PCI-1IO interface carduueeeeeeeeeeeeieeeeeeeeeeeeeeeeeeene 123

5.4 Configuration CaChe.........ccueeviiiieiiiieciie e 127

5.5 Use PCI-IO in Debug mode...........cooouieeniiieiiieeieeeieeee e 129

5.6 MASM assembly language Settingcceeevveeeeeieeeiiieeniieeeieeeevee e 130

5.7 Visual C/C++ standard original Setting..........c.cccecveeeeveercieencieeenreeenne, 131

5.8 Visual C/C++ 6.0 initial environment setting STEP by STEP............. 136
Chapter 6 Program language description..........ccccueeevveeerieeeieieeeiieeeieeeevee e 153
6.1 Debug mode INStIUCHIONSccvvveevieeciie e 153

6.2 MASM deSCTIPLION.uviieiiieeiieeciieeeieeeetee e e eeteeeieeeereeeereeeseaeeenes 154

6.3 MASM INSTIUCTION ..ttt e 155

6.4 PCI-10in C/C++ program language instructions..........ccccveeeveeernveennne. 157

6.5 10 definition port of LEAP PCI-IO/LABcc.cooviiieiieieeeeeee 162

6.6 Visual C/C++ simple program compiling descriptionc.......... 165
Article 4 Basic PCI-LAB experiment examples........c.ccccooevvvvernennen, 167
Chapter 7 Simple I/O eXPerimentcccuveerieeerieeerieeereeeeeeeeieeeeveeeeveeenenens 168
7.1 Seven-segment display experiment (DEBUG Mode)......................... 170

7.2 Seven-segment display experiment (MASM)........cceevvevcveencieeenieeenne, 174

7.3 Seven-segment display experiment (VC/CH+) c...oeevvieevcieeeiieeeieenee, 178

7.4 Drive multi-sets seven-segment LED display experiment (MASM):.180
7.5 Drive multi-sets seven-segment LED display experiment (VC/C++).185

7-6 Buzzer experiment (Debug Mode & MASM).......cooevvevciveeeieeenieenee, 186
7.7 Buzzer experiment (VC/CH+) it 189
7.8 Pushbutton switches input experiment (Debug Mode & MASM)....... 190
7.9 Pushbutton switch input experiment (VC/CH+) ...oooevvevcrveeecieeeeieenee, 196
Chapter 8 Motor and resistance heater...........cceevveeeriieeiiieeieeeie e, 198
8.1 DC motor experiment (Debug Mode & MASM)c.covcvvveevieecnieenne 199
8.2 DC motor experiment (VC/CH) ..oooiieeciiieieecieeeee e 202
8.3 Step motor experiment (Debug Mode)ccceeveviiriiieniieeeiiecieeee 203
8.4 Step motor experiment (MASM)cccoevcviiiviieeeieeeee e 205
8.5 Step motor experiment (VC/CH+) couvivviiiieieecieeeeeecee e 210
8.6 Resistance heater eXperiment..........cccveeecuieeeirieerieieeriieeeiee e esvee e 211
8.7 Temperature sensor and DC motor upstream signalc.ccue....... 215
Chapter 9 Dot matrix, keyboard and LCD.........cccceevvieeiiiecciieeieecee e, 217
9.1 Dot matrix output experiment (Debug Mode & MASM).................... 217
9.2 Dot matrix output experiment (VC/CH+) ..ooovievviiieiiieeieeeiee e, 226
9.3 4 X 4 Keyboard input experiment (Debug Mode & MASM).............. 231
L2 T L) B TSRS 243
9.6 LCD(IMASM)...utiiiieiieteie ettt ettt sttt ae e 251

9.7 LCD (VC/CHH) oo eeseeeseeseeeesseeesesseeesseeesesseessseeseeseonns 257

9.8 8254 timer and COUNLETcciuuiiiiiiiiieiiesieeee e 262

Article 5 Advanced combined languages and C/C++ program
language SAMPIES......ccviieieiecee e 265
Chapter 10 Digital/analog CONVETteTc.eevcvieerieeeiiieeiee e 266
Chapter 11 Analog/digital CONVEITET.cceeeviieeriieeiie et 269
Chapter 12 Project and IO-Port setting programcccceeeevveercreeencieeesveeennen. 272

Article 1 Principle of Interface

With the rapid development of computer technology, peripheral equipment and
interface technology has also developed very quickly. The ISA interface of the
so-called computer interface technology PC XT/AT, have not been manufactured
since 2000. Computer motherboards with ISA interface are also no longer seen on the
market, while PCI have already became a main interface for internal transmission of
computer. Although computer host machine still have new types, the slow speed
interface and AGP graphic interface, its main structure is unable to break away from
PCI interface. In the future, speedier interface technologies will be developed based
on this interface technology.

The so-called PCI interface has existed in computer system for more than ten
years, however, people are still mostly familiar with the interface technology of ISA,
which have been put into use for over 20 years and are appreciably different from PCI
interface in bandwidth, frequency, related circuit design and research. This article will
describe current computer structure and the principle of ISA interface, including a
brief introduction of PC XT/AT and ISA, related I/O address configuration,
interruption methods, introduction of ISA interface-related chips and their principles
of operating. However, for in-depth discussion of the ISA interface, please refer to
books associated with designs and applications of PC XT/AT and ISA interface first,
and then proceed to discuss the PCI interface.

The chips mentioned in this book are all embodied in the chip specifications
folder in the disk attached to this book, which can be used by the reader for references.
This book mainly focuses on principles and practices of PCI interface, describes the
basic principle of ISA interface in brief only for the reader to know the evolution of
computer interface, thus to understand the related principle of PCI interface.
Meanwhile, for practice and experiments of related ISA, please refer to interface

books published in the market.

Chapter 1 Brief Introduction of Computer and ISA Interface

The development of ISA interface begins with PC XT/AT, so far, it has gone
through decades of development and evolution. In the past, interface textbook
practices were based on this. However, in recent years, due to the rapid development
of semi-conductor and computer technology, the IAS interface is no longer the
mainstream, and is gradually replaced by a more speedy computer interface. In spite
of this, interface-related basic knowledge is still limited to ISA interface, far lagging
behind current interface technology. This chapter describes the basic principle of the
ISA interface, which can provide a basis and comparison for PCI interface and move

ahead to build the conception of interface.

1.1 PC XT/AT brief introduction

The personal computer or the so-called PC, which is the standard for personal
computer established by IBM in the 1980s, belongs to an open system framework;
and based on this standard, many manufacturers produced compatible personal
computers, which greatly increased its popularity. Basic PC system uses INTEL X86
series CPU as operating core, initially it should work with X87 series floating-point
unit to enhance its operating ability; after 80486 series, floating-point units are
already included in the CPU, making its unnecessary to improve operating ability via
selection. Several 8 bit extension slots are provided on PC XT motherboard for the
use of related extension cards; however, in addition to several 8 bits extension slots on
PC AT motherboard, another segment of the 8 bits extension slot is added, increasing
the data bus to the standard of 16 bits. The above-mentioned extension slots are
commonly known as ISA bus, after which, more compatible 32 bits buses have
emerged, and finally, the PCI bus has became the mainstream.

Figure 1-1-1 shows the basic PC system block diagram, in which internal
exchange power supply provides electricity demands for the motherboard, on which
are placed the microprocessor (CPU), memory (RAM/ROM), keyboard and speaker
interface, counter, interruption controller and dynamic access memory (DMA)
controller, via the extension slots, a few more interface cards, functions such display
and serial communication can be added.

‘ Cache memory I CPU ‘ Main memory I
Processor bus
Peripheral Bus control
System bus
Slow Additional

Figure 1-1-1 Basic PC system block diagram

1.2 PC XT/AT 1/0O address and memory configuration

PC XT/AT data input and output are achieved by defining output and input ports.
The address scope of CPU is 00000H~0FFFFH, between which there are 65536
output/input ports available for use. However, PC XT/AT system only uses 1024 ports
between 0000H~03FFH. Moreover, these 1024 ports are divided into two parts, with
A9/SA9 address line as the dividing line: when A9/SA9 is low, 512 ports between
address 0000H~01FFH can be used, these ports are provided for the system
motherboard to use; and when A9/SA9 is high, 512 ports between address
0200H~03FFH can be used, these ports are provided for related interface cards to use.
Table 1-3-1 shows the I/O address configuration of PC XT/AT.

The maximum memory that can be addressed for PC XT is 1MB, while the
maximum memory that can be addressed for PC AT is 16 MB, there is little difference
between the two parts: 00000H~FFFFFH, the part that exceeds 1 MB is extended
memory, which is the basis of today’s computer memory. Table 1-2-2 shows the basic

memory configuration diagram.

Table 1-2-1 I/O address configuration

PC XT

Address used (hexadecimal) Description

0000H~000FH 8237A DMA

0020H~0021H 8259A interrupt controller
0040H~0043H 8253 timer

0060H~0063H 8255A peripheral interface controller
0080H~0083H DMA page controller
00AOH~00BFH NMI mask bit

00COH~01FFH Reserved

0200H Reserved

0201H Pc game control interface card

0202H~0277H
0278H~027FH
0280H~02F7H
02F8H~02FFH
0300H~031FH
0320H~033FH
0338H~0377H
0378H~037FH
0380H~03AFH
03BOH~03BFH
03COH~03CFH
03DOH~03DFH
03EOH~03EFH
03FOH~03F7H
03F8H~03FFH

Reserved

The second print port interface card
Reserved

The second serial port interface card
Reserved

PC XT hard drive

Reserved

Print port interface card

Reserved

Single color and print port interface card
Reserved

Color graphics interface card
Reserved

5 1/4 inch drive interface card

Serial port interface card

PC AT

Address used (hexadecimal)

Description

0000H~001FH
0020H~003FH
0040H~005FH
0060H~006FH
0070H~007FH
0080H~009FH
00AOH~00BFH
00COH~00DFH
00FOH

O0OF1H
00F8H~00FFH
01FOH~01F8H
0200H~0207H
0278H~027FH
02F8H~02FFH
0300H~031FH
0360H~036FH
0378H~037FH
0380H~038FH

03A0H~03AFH

03BOH~03BFH

03COH~03CFH

03DOH~03DFH

03EOH~03E7H
03F8H~03FFH

DMA controller 1 (8237A-5)

Interrupt controller 1 (8259A,main)

Timer 8254

8042 keyboard controller

Real-time clock and NMI mask register

DMA page register (74LS612)

Interrupt controller 2 (8259A)

DMA controller 2 (8237A-5)

Clear mathematics auxiliary processor

Reset mathematics auxiliary processor

Mathematics auxiliary processor

Hard drive control card

Computer game control game

Parallel printer control card2

Serial transmission control card 2

Prototyping card,

Reserved

Parallel printer control card 1

SDLC, binary synchronous
communication 2

SDLC, binary synchronous
communication 1

Single color display interface card and
printer control

Enhanced color drawing control care

Color drawing control card

Drive control card

Serial transmission control card 1

Table 1-2-2 Memory configurations

PC XT

Address Function Description
(hexadecimal)

0000~3FFF 128~256K system version, RAM |System basic memory

40000~9FFFF

Memory extension card plugged

into system intension slot

Intension memory

A0000~AFFFF

Reserved

B0000~B3FFF

Single color image display

B4000~B7FFF

Reserved

B8000~BBFFF

Color / graphic image displayed
(only 16K is used)

BC000~BFFFF

Reserved

Use of interface cards
compatible with PC / XT

C0000~C7FFF

Reserved

C8000~CBFFF

Hard disk drive interface card

CCOOO~EFFFF

Reserved

Extension and control of
192K ROM

FOOOO~F3FFF

Reserved

F4000~F5FFF

Empty sockets left on the system
board

F6000~FDFFF

BASIC interpreter

FEOOO~FFFFF

BIOS

PC AT

Address Function Description
(hexadecimal)
000000H~07FFFFH |System board memory 512KB Memory on the
motherboard is 512 KB in total
080000H~09FFFFH [Memory extension board Extend memory to 640K
0A0000H~O0BFFFFH |Display buffer Buffer zone of character and
painting
0C0000H~0DFFFFH |Output/input read only Use of interface card
extension area output/input program
OEOOO00OH~0EFFFFH |Read only memory area Reserved for the user to extend.
reserved by the system
OF0000H~0FFFFFH |(BIOS) System basic System’s start-up self-test,
input/output program area interrupt service program
storage area (BIOS)
100000H~FDFFFFH [Maximum memory area Extending 15 MB memory
FEOOOOH~FEFFFFH|System memory reserved area |[Reserved for the user to extend.
FFOOOOH~FFFFFFH [Basic I/O system program area |System’s start-up self-test,
interrupt service program
storage area (BIOS)

1.3 Brief introduction of PC XT/AT interrupt concept

PC XT/AT computer system I/O service can be divided into 3 types: POLLING,
INTERRUPT and DMA; to carry out I/O service by means of POLLING, the overall
system efficiency is the worst, because its system CPU needs to continuously check
related peripherals, causing the system to waste a lot of time on I/O checks; to carry
out I/O service by means of INTERRUPT, the system efficiency is high, interrupt
request is sent by I/O device to the system, in comparison with the POLLING method,
it can reduce the time for CPU needed to check related peripherals; and to carry out
I/O service by means of DMA in order to make use of DMA. When interruption
occurs, I/0 device sends out DMA request, allowing I/O device to exchange data with
system memory directly and the data need not be read and written by CPU, thus the
overall transmission efficiency is the highest.

As for practice, interruption types can be divided into software interrupts and
hardware interrupts. Also PC XT/AT can use 256 interrupts in total and use the
method of interrupt vector to facilitate processing-interrupt vector from the computer

is achieved by assigning a memory block, which is the so-called interrupt vector table;

the interrupt vector table is located in the memory absolute address scope
0000:0000H~0000:03FFH, each interrupt vector can allocate 4 memory addresses, so
that the first address of each interrupt is interrupt vector multiplies 4. Software
interrupt is to achieve the goal of interrupt by using INT instruction, still needs to
refer to and use the contents of the interrupt vector table, which is quite convenient in
practice. PC XT/AT hardware interrupts handle peripheral interrupt request signal
with one or two 8259, while peripheral devices informs the system to interrupt by
means of hardware implementation. Table 1-3-1 shows the functions of PC XT/AT
hardware interrupt request; table 1-3-2 describes the function of hardware direct

memory access; and table 1-3-3 lists bit configuration currently used for common X86

series platforms.

Table 1-3-1 Function description of hardware interrupt request

Interrupt PC XT PC AT

signal Vector Function Vector value Function

(interrupt value

group)

IRQO (1) 8 System 8(08H) System counter
counter

IRQ1 (1) 9 Keyboard 9(09H) Keyboard

IRQ2 (1) 10 Reserved The second 8259

IRQ3 (1) 11 COM2 11(0BH) COM2

IRQ4 (1) 12 COM1 12(0CH) COM1

IRQ5 (1) 13 HDD 13(0DH) LPT2

IRQ6 (1) 14 FDD 14(0EH) FDD

IRQ7 (1) 15 LPT 15(0FH) LPT1

IRQS8 (2) Unused 70(46H) RTC

IRQ9 (2) 71(47H) Point to IRQ2

IRQ10 (2) 72(48H) Reserved

IRQI11 (2) 73(49H) Reserved

IRQ12 (2) 74(4AH) Reserved

IRQ13 (2) 75(4BH) Floating-point unit

IRQ14 (2) 76(4CH) HDD

IRQ15 (2) 77(4DH) Reserved

Interrupt priority sequence

0>1>2(8>9>10>11>12>13>14>15)>3>4>5>6>7

10

Table 1-3-2 Hardware direct memory access function

Channel number (DMA Function

controller groups)

0 (1) DRAM update

1(1) The secondary DMA controller

2(1) Use of floppy disk

3(1) Open to use

4(2) Connected to the first group of DMA controller
512) Open to use

6(2) Open to use

7(2) Open to use

Priority sequence

0>1 (4>5>6>7) >2>3

11

Table 1-3-3 Current I/O address configuration

Name of I/O system or peripheral interface I/O address
(group)
DMA Controller 00h~0Fh (1)
COh~DFh (2)
Programmable Interrupt Controller 20h, 21h (1)
AOh, Alh (2)
Programmable counter (Programmable Interval Timer) 40h~43h (1)
44h~47h (2)
Keyboard Controller 60h~64h
Programmable Option Controller 90h~96h
Floating-point auxiliary operation processor (Math Co-Processor, |FOh~FFh
X87)
Secondary IDE interface 170h~177h
Primary IDE interface card 1FOh~1F7h
GAME I/0 joystick interface (Game Port) 200h~201h
Sound Card interface 220h~22Fh
PnP Configuration Register 279h, A79h
(Serial Port 4 interface 2E8h~2EFh
Serial Port 2 interface 2F8h~2FFh
MIDI interface (Midi Port) 330h, 331h
Parallel Port interface 378h~37Ah
Single color graphic display interface (MDA/MGA) 3BOh~3BFh
Color graphic display interface (EGA/VGA) 3C0h~3CFh
Display cache (CGA/CRT) 3D4h~3D%h
Serial Port 3 interface 3E8h~3EFh
Floppy Diskette interface 3FOh~3F7h
Enhanced IDE interface 3F6h, 3F7h
Serial Port 1 interface 3F8h~3FFh
PClconfiguration address cache (PCI Configuration 0CF8h
Register/Address)
PClconfiguration data read/write port (PCI Configuration 0CFCh

Register/Data)

12

1.4 Brief introduction of chips like 8255/8254

For PC XT/AT conventional ISA interfaces, chips like 8255 and 8254 play very
important roles. 8255 is a 40 pin programmable peripheral interface chip, which can
achieve very control functions through program language software planning; this chip
has 24 1/0O bits, and is generally divided into three 8 bits I/O ports: A, B, C, or divided
into two 12 bits I/O groups: A, B, whereby group A is made up of A port and upper
half 4 bits on C port, while group B is made up of B port and lower half 4 bits on port
C. The I/O mode of this chip can be divided into 3 types: mode 0, mode 1 and mode 2,
port A can operate the above 3 modes, port B can only operate mode 0 and mode 1,
and operating mode is determined by controlling the control field of register. 8254 is a
24 pin programmable timer/counter chip, can be used to solve timing control
problems, inside which there are 3 independent 16 bit counting-backward counters,
which can handle binary and decimal counting, yet its operating mode can be planned
into 6 modes such as mode 0 to 5; chip planning action is carried out by controlling
the control field of the cache. Figure 1-4-1 shows the external pin diagram and
internal structure diagram of 8255 and 8254.

Other ISA interface related chips include 8259 of interrupt control chip,
keyboard and display interface chip 8279 and communication element 8251,etc. 8259
is a 28 pin programmable interrupt controller, which can handle the priority Sequence
of 8 groups of 8 interrupt requests; PC XT uses a 8259 chip, while PC AT connects
two 8259 chips in series, which is connected to the auxiliary 8259 interrupt controller
via main 8259 interrupt controller IRQ2, solving the problem of interrupt controller
compatibility and extension; request input can be interrupted by connecting several
groups of 8259 extension in series. For the uses of ISA interface-related chips, they
can be further discussed in books about PC XT/AT.

As with ISA interface operation, when used under peripheral chips like 8255, 8259,
etc. It is necessary to set the action mode of peripheral chips, plan the operating
modes of chips by defining control characters so as to write the relevant control

programs. Table 1-4-1 shows the I/O addresses of relevant chips.

13

s sYema
wa [s [
an]s [
wls a7
=[]« Fell
(s uljon
g | i
g sxcma m
s I S m
o [w[Jm
uu__-u -_'ﬁ.
sea [o[l
s [1 =[] e
B b i
s Mel]
s afJm
me[] s [Tem
S s T
S B

e G]

] (P |

|
Do L e, ([s

w A =, f——

Sl

s

[

o e 1] war
o [l [T wh
-] -
By Ja Filim]=
B E LT
(=4 [] 1% Aa
': BITEL =
07 Ll T8
[[] 1 [T 3
=y imi 16 [JGRFL 2
ot ju L mg-1 g
caTEA] [caTE N
ana e 13 7 o 4
e, B om—" P y
— | ol (L8
n.ag¢ ‘_f‘ D;n:; A ‘-'1_|\) WU;""—"' & CATEG
—_—— _'L,f BEFFER l_l,- o e
0w
] mite k=58 [
= m—eg : i
- :-::Tc; ; 'LJ;EW L]
o 5 L BTV 1
o T e E o
]] L 7
|
CONTROL T
o e - Lo <— (d:l'>m - b
o LT REGISTER T 2
- — 0ut r
l—|
T T 1
| e

Figure 1-4-1 8255, 8254 pin and internal structure diagrams

Table 1-4-1 ISA interface-related chip I/O address

Chip Function Address Description
8255 PPI_PA 0x300 8255 A port address
PPI PB 0x301 8255 B port address
PPI PC 0x302 8255 C port address
PPI CW 0x303 8255 control character address
8279 D79 0x310 8279 data address
C79 0x311 8279 control address
8254 CO 54 0x320 8254 counter 0 address
Cl 54 0x321 8254 counter 1 address
C2 54 0x322 8254 counter 2 address
C3 54 0x323 8254 control address
8251 D51 0x330 8251 data address
C51 0x331 8251 control address

14

1.5 ISA interface brief introduction

Table 1-5-1 is the ISA interface pin diagram, including the definition of another 8
bits extension pins. The signal pins are described by dividing into 4 types: table 1-5-2
describes data bus, table 1-5-3 describes address bus, and table 1-5-4 describes control
bus, while the remaining power portion is described in 1-5-5. Figure 1-5-1 is the

sketch of ISA interface card, describing the definition of interface card A/B sides.

AT (18~C1) XTIAT (A31~Al)

XT/AT (B1~B31) AT (D1~D18)

Figure 1-5-1 Sketch of ISA interface card appearance

Table 1-5-1 ISA interface pins

PC AT PCXT : . |[PCXT PC AT

Pin |Slot |Pin
I/O|Signal I/O|Signal Signal I/O|Signal /O
G |GND G |GND B1 Al [-/OCHCK I |-I/OCHCK |I
O |RESET O |RESET B2 A2 D7 I/0|SD7 /O
P |+5 P |45 B3 A3 (D6 I/O|SD6 /O
I |IRQ9 I |IRQ2 B4 A4 D5 I/O|SD5 /O
P |5 P |5 B5 A5 |D4 I/0|SD4 /0
I |DRQ2 I |DRQ2 B6 A6 D3 I/O|SD3 /O
P |-12 P |-12 B7 A7 (D2 I/O|SD2 /0
I |OWS I |NON BS A8 D1 I/O|SD1 /O
P [+12 P |+12 B9 A9 DO I/O|SDO /0
G |GND G |GND B10 A10-I/OCHRDY |I |-/OCHRDY I
O |-SMEMW |0 |-MEMW BIll Al11|AEN O |AEN O
O |-SMEMR |0 |-MEMR B12 Al12|A19 I/O|SA19 I/O
I/O|-IOW I/O-IOW B13 A13|A18 I/O|SA18 /O
I/O|-IOR I/O-IOR B14 Al4|A17 I/O|SA17 /O
O |-DACK3 |0 |-DACK3 [BI5 Al15|A16 I/O|SA16 /O
I |DRQ3 I |DRQ3 B16 Al6|A15 I/O|SA15 /O
O |-DACK1 |0 |-DACK1 |[B17 Al7|A14 I/O|SA14 /O
I |DRQI1 I |DRQI B18 Al18|A13 I/O|SA13 /O
I/O|-REFRESH|I/O|-DACKO |B19 A19|A12 I/O|SA12 /0
O |CLK O |CLK B20 A20(A11 I/O|SA11 /O
I |IRQ7 I |IRQ7 B21 A21/A10 I/O|SA10 /O
I |IRQ6 I |IRQ6 B22 A22|A9 I/O|SA9 /O
I |IRQS5 I |IRQS5 B23 A23|A8 I/O|SAS8 /O
I |IRQ4 I |IRQ4 B24 A24|A7 I/O|SA7 /O
I |IRQ3 I |IRQ3 B25 A25|A6 I/O|SA6 /O
O |-DACK2 |0 |-DACK2 |[B26 A26|AS5 I/O|SAS /O
O |T/C O |T/C B27 A27|A4 I/O|SA4 /O
O |ALE O |ALE B28 A28|A3 I/O|SA3 /O
P |+5 P |+5 B29 A29(A2 I/O|SA2 /O
O |0SC O |0SC B30 A30/Al I/O|SA1 /O
G |GND G |GND B31 A31|A0 I/O|SA0 /O

16

PC AT (ONLY) : : PC AT (ONLY)
Pins Slots Pins

I/O |Signal Signal /O
I -MEMCS16 DI Cl SBHE I/O
I -I/OCS16 D2 C2 LA23 I/O
I IRQ10 D3 C3 LA22 I/O
I IRQ11 D4 C4 LA21 /O
I IRQ12 D5 C5 LA20 I/O
I IRQI5 D6 Cé6 LA19 I/O
I IRQ14 D7 C7 LA18 I/O
O |-DACKO D8 C8 LA17 /O
I DRQO D9 C9 -MEMR /O
O |-DACKS D10 C10 -MEMW /O
I DRQ5 D11 Cll SD8 I/O
O |-DACK6 D12 Cl2 SD9 I/O
I DRQ6 D13 CI13 SD10 I/O
O |-DACK7 D14 Cl4 SD11 I/O
I DRQ7 D15 CI5 SD12 I/O
P |+5 D16 Cl6 SD13 I/O
I -MASTER D17 C17 SD14 I/O
G |GND D18 C18 SD15 I/O
P: power G: ground [: input O:output

Table 1-5-2 data bus

Pin signal Pin signal description Transmission
direction

SD0~sD7 Low byte Bi-directional
transmission

SD8~sD15 High byte Bi-directional

transmission

Table1-5-3 address bus

Pin signal Pin signal description Transmission
direction

SA0O ~ sA19 PC XT base address bus Bi-directional
Transmission

LAI7 ~ LA23 PC At high byte addressing signal Bi-directional

Transmission

17

Table 1-5-4 control buses

Signal group Pin signal Pin signal description Transmission
direction
System control | RESET System reset, power on, system Output
signals starts
ALE Address signal locking Output
AEN DMA and CPU cycle mode Output
SMEMR Memory read Output
MEMR Bi-directional
SMEMW Memory write Output
MEMW Bi-directional
I0R I/O read Bi-directional
oW I/O write Bi-directional
VEM CS 16 (O/C, T/ S.) m(.amory c.lata Input
transmission instruction
1/0 CS 16 |I/O data transmission Input
SBHE High byte transmission start-up Bi-directional
REFRESH DRAM regeneration instruction Bi-directional
Clock control 0SC Extension slot clock Output
signal CLK OSC/3, 1/3 system clock Output
Asynchronous I/OCHRDY |[Make CPU access slow Input
control signal OWS Place system access memory into|Input
waiting status
Interrupt request | IRQ Hardware interrupt signal Input
signal 1/0OCHCK Parity check error detecting Input
DMA control DRQ Direct memory access signal Input
signal DACK Response signal sent by DMA Output
T/C TERMINAL COUNT Output
Double processor | MASTER Multi-processor bus coordination |Input

coordination

18

Table 1-5-5 power signals

\oltage
+5V -5V +12V -12V GND
value
Output
e 4.75V~5.25V |-4.75V~-5.25V|11.4V~12.6v |-10.8V~13.2V
9 sy, +5% 5% £10%
specification
Output
current <I5A <0.5A <5A <03A |-
specification

1.6 Summary of computer in recent years

In recent years, computers have been breaking away from traditional structure by
means of Legacy Free PCs. New generations of computers are designed with
brand-new specifications; and in conjunction with newly defined hardware/software
interface specifications, a new generation of personal computers have been
manufactured. As seen from the motherboard platform layout, free of the constraints
of traditional structures in the past and with ISA bus, ISA extension slots discarded, it
supports only the latest, self-detecting/setting bus and interface specifications, such as
PCI, AGP, USB, SM, Bus, etc; besides, sound card, modem interface cards are also
gradually replaced by AMR or CNR interface.

Since Intel advocated USB, so far, most of the motherboards have a built-in USB
interface, and USB devices are becoming popular gradually; currently the most
popular motherboard is USB1.1 interface, even USB2.0 began to become popular so
that traditional medium or low speed interface such as serial ports, parallel ports,
joystick and PS/2 interface cards have been gradually abandoned. In addition to the
USB interface, PCI interface, AGP display interface card or IEEE1394 interface are
enough for common users to use. Table 1-6-1 describes the differences between

“traditional” and “new generation” computers.

19

PCI
Peripheral
hardware

PS/2

1

FDD

I [

PRINTER
PORT

ISA
Peripheral
hardware

COM

Figure 1-6-1 computer system structure diagrams

20

Nowadays, computer technology is developing very quickly and there are many
chip manufacturers, so the chips are largely identical in terms of specifications and
functions, however, there are still some differences in design details. Generally
speaking, the structures of today’s personal computers are described synoptically with
X86 system. Figure 1-6-1 shows the X86 system structure with single/double CPUs.
The difference between single and double CPUs lies in the structure of multi-mission
hardware environment, so double CPUs need IO-APIC to manage interrupt. Host/PCI
is commonly called the North Bridge, connects main processor bus and PCI bus.
PCI-to-ISA Bridge is commonly called the South Bridge, connects PCI bus and ISA
(or LPC) bus, usually integrating Interrupt Controller, IDE Controller, USB Host
Controller, and DMA Controller, the South and North Bridges chipset. Today, many
chipsets have replaced PCI interface to the South Bridge end.

Table 1-6-1 the difference between traditional computer and new generation of

computers
Legacy PC (traditional |Legacy Free PC
PC)
Shape design Fixed format, dull Diversified
Main host dimension ATX, MicorATX MicorATX, FlexATX
ISABus, ISASlot Yes (via LPC) None (fully
PCI Bus Yes abandoned)
AGP Bus Yes (not a must) Yes
USB Bus Yes (a must) Yes (not a must)
Yes (a must)
Serial Port COM1 & COM2 Yes None (completely a
Infrared Port (IR) Yes (not a must) must)
Parallel Port (LPT1) Yes Yes (not a must)
Game 1/O Yes None (fully
abandoned)
None (fully
abandoned)
The function USB device can|Yes (not a must) Yes (a must)
directly start up the computer

1.7 Recent computer structure
The configuration of memory and I/O address for recent computers was nearly
completed in the era of 80386, except for some large main hosts, the configuration of

memory is largely the same as that of PC AT, and the maximum memory limitation is

21

determined by the chipset. In theory, the maximum memory capacity that can be
addressed on computers is 4GB, and basic I/O address is similar to the I/O address of
PC AT.

Generally speaking, X86 system can use address line drives, access memory
addresses or I/O port drive, there are only 16 1/O ports, so from 00000h~0FFFFh, 1/0
ports is 2'°. In common ISA interface system, only 2'°ports (0000h~03FFh) are used,
while PCI interfacees use 1/O ports over 0400h. PCI interface cards used in this
practice are driven by I/O ports.

Also, X86 system designs 256 interrupt vectors from INT Olh to INT Fifth
respectively, each vector contains 4 bytes; under real models, the memory address of
interrupt vector tables are addressed between 0000: 0000 and 0000: 03FFh, using the
1KB memory space in the forefront. Table 1-7-1 shows the lists of interrupt vector

numbers, which is related with the writing of assembly languages.

22

Table 1-7-1 Interrupt vectors numbers lists

Interrupt Property |The description of interruption meaning
number
INT 00h (Error) CPU Divide Error
INT O1h (Hardware)|CPU Single Step
INT 02h (Hardware)|NMI (Non Mask able Interrupt)
INT 03h (Hardware)|Break Point code (instruction break point, instruction code
0CCh)
INT 04h (Error) CPU Overflow (Data overflow break)
INT 05h (Software) |BIOS process, press Print screen button’s print service
(Error) program interface
BOUND Range Exceed
INT 06h (Error) Invalid Op Code
INT 07h (Error) Floating Point Processor/FPU Not Available
INT 08h (Hardware)|[IRQO — System Timer (system timer interrupt)
INT 8 is generated every 1/18.2 second, used to carry out
the work of system timing
INT 0%h (Hardware)|IRQ1 —Keyboard Interrupt
(Error) Processor Extension Protection ERROR (block selection
extension directional error)
INT OAh (Hardware)|IRQ2 — Connected to the auxiliary program of IRQ8~15
(Error) Invalid Task State Segment (TSS), Invalid Task State
Segment error
INT 0Bh (Hardware)|IRQ3 — COM2 (secondary serial port)
(Error) Segment not present (actual memory corresponding to the
segment not present)
INT 0Ch (Hardware)[IRQ4—COM1 (Primary serial port)
(Error) CPU Stack Fault, (CPU stack processing fault)
INT O0Dh (Hardware)|IRQ5 —LPT2 (secondary print port), now it is reserved for
(Error) PnP system configuration
GENERAL PROTECTION VIOLATION
CPU produces protection violation error
INT OEh (Hardware)|IRQ6 — Floppy Diskette read/write interrupt
(Error) PAGEFAULT Switch page fault
INT OFh (Hardware)[IRQ7—LPT1 primary print port
INT 10h (Software) |Screen I/O interface, switch character/graphics mode.
Providing display/paint scroll service
INT 11h (Software) |PC peripheral equipment check

23

INT 11h (Software) |Data/address alignment check error, occurring to CPU
above 486

INT 12h (Software) |Sending back PC main memory size check

(Error) MACHINE CHECK EXCEPTION

INT 13h (Software) |Disk I/O interface (services such as floppy diskette, hard
disk read/write, format)

INT 14h (Software) |Serial Port Communication port interrupt service routine

INT 15h (Software) |Cassette interface service program, AT extension interrupt
service call, numerous programs

INT 16h (Software) |Keyboard read service program

INT 17h (Software) |Print service program

INT 18h (Software) |ROM BASIC entry point address, network card Diskette
Start-up interception point

INT 19h (Software) |Entry point of starting up the operating system

INT 1Ah (Software) |BIOS time interface/CMOS Real-time Clock battery clock
interface

INT 1Bh (Software) |Interrupt entry point handling program of CTRL BREAK
for BIOS

INT 1Ch (Software) |User timing interrupt, process auxiliary program call from
INT 8

INT 1Dh (Hardware)|Video interface card address table

INT 1Eh Floppy diskette parameter address table

INT 1Fh Character dot matrix fonts table address (ASC80h ~ OFFh)

INT 20h MS-DOS end program execution

INT 21h (Software) IMS-DOS API

INT 22h (Software) [IMS-DOS program ends jump address

INT 23h (Software) IMS-DOS program presses the interrupt entry point of
CTRL BREAK

INT 24h (Software) IMS-DOS Fatal Error Handler

INT 25h (Software) |DOS Absolute Read

INT 26h (Software) |DOS Absolute Write

INT 27h (Software) |Permanent memory interface in. COM file

INT 28h (Software) |System call of DOS idle state

INT 29h (Software) |DOS Console Output

INT 2Ah (Software) |Network software interface layer, Net BIOS

INT (Software) |Reserved and unused

2Bh~2Dh

24

INT 2Eh (Software) |Transmit command queue parameters to DOS command
interpreter

INT 2Fh (Software) |Multiplex Interrupt Multiplex system Interrupt
CD-ROM, HIMEM.SYS (XMS), Windows & DPMI Check

INT 30h (Software) |Reserved and unused

INT 31h (Software) |DOS protection mode

INT 32h (Software) |Reserved and unused

INT 33h (Software) |Mouse interrupt service

INT 34h~3Eh|(Software) |Used for floating-point unit

INT 3Fh (Software) |Overlay Manager

INT 40h (Software) |Disk interrupt service program

INT 41h Primary hard disk parameter address table

INT 42h (Software) |INT 10h display service

INT 43h Dot matrix fonts data table address

INT 44h Dot matrix fonts data table address

INT 45h (Software) |Reserved and unused

INT 46h Secondary hard disk parameter address table

INT 47h~49h |(Software) |Reserved and unused

INT 4Ah (Software) |[CMOS/RTC Alarm Interrupt

INT 4Bh~64h|(Software) |Reserved and unused

INT 65h (Software) |Audio call service program

INT 66h (Software) |Reserved and unused

INT 67h (Software) |LIMEMS service

INT 68h~6Fh |(Software) |Reserved and unused

INT 70h (Hardware)|[IRQ8 CMOS/RTC Time Interrupt

INT 71h Hardware [IRQ9 (pointing to IRQ2 —INT 0Ah)

INT 72h Hardware [IRQ10 (PnP)

INT 73h Hardware |IRQI11 (PnP)

INT 74h Hardware [IRQI12 (PS/2, USB)

INT 75h Hardware [IRQ13 (Co-Processor — X87)

INT 76h Hardware [IRQ14 (Primary IDE)

INT 77h Hardware [IRQI15 (Secondary IDE)

INT 78h~7Fh |(Software) |Reserved and unused

INT 80h~Efth |(Software) | BASIC interpretation program

INT FOh~FFh|(Software) |[Reserved and unused

(Software): services of software call;

(error): error detection

(hardware): TRQ hardware interruption;

25

1.8 Brief introduction of related interface

Nowadays, computer systems are developing very quickly and specifications of
CPU, memory, peripheral hardware and motherboard chipset are likewise expanding
rapidly and varied. However, transmission specifications and interfaces are not easy to
change. Interfaces commonly seen on common personal computers include the SM
Bus, USB, IEEE1394, IDE, AGP and PCI, etc, while AC97, LPC and SCSI are rarely
seen. In the following paragraphs, we will briefly describe interfaces such as AC97,
SM Bus, USB, LPC, while AGP, SCSI, IEEE1394 will not be described.

AC’97 (Audio Codec 97)

AC97 is Analog Component 97 (for short AC97), which was introduced by
Intel96 when developing NSP MULTI-MEDIA; its latest version is V2.1 (issued on
May 22nd, 1998), and became the later CNR 1.0 specification through subsequent
extension. AC 97 mainly include analog/digital conversion circuit functions such as
computer platforms (motherboard), sound card chip, modem transmission chips,
which are divided into Analog Codec and Digital Codec; pure Digital Codec is placed
on motherboard, while Analog Codec is located on Riser Card of extension slot.
Signals are controlled and transmitted by motherboards (chipsets) with AC-Link,
which can reduce the interference from high frequency signals of the motherboard and
improve the sound quality of built-in audio chip motherboard. This extension slot is
called the AMR slot.

Another characteristic of AC97 is that it can enable low pin and low cost Analog
Codec designed in compliance with AC97 specifications, through the increasingly
powerful operating abilities of CPU, to simulate 16 bit sound blaster level recording,
playing sound and MIDI sound play function. Modem Codec in conformity with AC
97 simulates the basic 56Kbps modem function of V90 specification by means of
software, or the two can be integrated into AMC (Audio/Modem Codec) of
audio/modem transmission. As with the mixer, it can be outputted from traditional
speaker Lineout, and buzzers on the motherboard can be omitted.

Most of the motherboards manufactured recently conform to AC 97
specifications, attaining a set of simple and cheap sound card or 56 Kbps modem
functions by opening BIOS, which is enough for users who only type the words,
merely surfs the net or places little emphasis on acoustic-optic effects, however,
opening the Audio or Modem functions of AC97 can consume the execution
efficiency and resources of the CPU, when installing high operating efficiency and
sound quality sound card or external modems, motherboards in conformity with AC

97 specifications will automatically detect external sound cards or modems.

26

Meanwhile, close the AMC elements on the motherboard, and let the hardware sound

card/modem to take over.

SM Bus (System Management Bus)

SM Bus (System Management Bus) is the bus contact interface of the two
signal lines designed following I2C protocol, which is a low speed interface
(80KHz~400KHz) for setting of the detection, positioning, reading and writing

parameters of peripheral parts in compliance with SM Bus.

Normally, computer motherboards have built-in SM Bus control circuits (SM Bus
Controller) inside south bridge chipsets. The motherboard can, via SM Bus. Detect
DRAM and automatically grab timing parameters (SPD) and read the parameters of
hardware monitoring chips, monitor CPU, operating temperature and voltage of
motherboard and motor speed (RPM) of coolant fan, etc. And, the motherboard of
notebook computer detects the electrifical power index of the battery and the
possibility to independently close or restart peripheral devices, parts via the SM Bus,
temporarily closes peripheral devices and parts power supplies that are not used
currently via the SM Bus through ACPI protocol when the entire system needs to

enter power saving status to optimize power management.

USB (Universal Serial Bus)

USB is the computer peripheral bus standard jointly developed by computer and
communication industry manufacturer such as Compaq, IBM, DEC, NEC, Intel,
Microsoft and Northern Telecom, which is a so-called general-purpose serial bus. X86
motherboard was introduced in 1997. In 1999, Apple iMac also adopted USB,
speeding the popularity of USB peripheral devices.

USB bus provides extension ability to medium and low speed peripheral devices.
Peripheral devices such as keyboard, mouse, joystick, speaker, microphone, modem,
cinematograph, through USB interface designs, can be directly connected or removed
by means of hot-plugs; computers and OS may automatically detect and
enable/disable the device to achieve the objectives of Plug and Play. USB has strong
expansion abilities, capable of connecting at most 127 sets of peripheral devices
(including USB HUB), the connection distance of each hub to device runs to 5 meters,
and USB connector has a special design, which makes it very convenient to install or
remove. USBv1.0/1.1 provides maximally 12 Mbps(=1.5MB/s) transmission rate; so
far, the motherboards meet the specifications of version 1.1 and the newly approved
version 2.0 increased transmission rate to 480Mbps (=60MB/s) , what is more,

relevant interface cards, peripheral devices and motherboards have already achieved

27

this function and become the supporting item of future chipsets.

Hardware specification mainly includes Universal HCI (Universal Host
Controller Interface) developed by Intel and Open HCI (Open Host Controller
Interface) designed and opened by COMPAQ, common USB peripheral devices
support these two protocols, with the differences between the two shown in table
1-8-1 below.

Table 1-8-1 USB device hardware specification comparisons

Specifications|UHCI (Universal Host OHCI (Open Host

Different items Controller Interface Controller Interface)
First published Jan 15™ 1996 Nov 22" 1995
Manufacturer (IP Intel, exclusive intellectual |{Compaq (Compaq), open
source) property intellectual property
Chipset manufacturer |Intel, VIA Ali, SiS

Setting characteristic
Circuit implementation is |The design of the circuit is
easy; the cost is low and complicated, however, it will
easy to integrate, however |not affect the CPU and bus
the efficiency is poor in efficiency.

case of mass transmission

Control/addressing 10 base (IO Port) Memory address

mode

Due to the complicated driving methods of USB, normally, USB devices are
controlled by operating systems and loaded into drive program so as to be driven and
used; in recent years, some BIOSs also support USB control programs and evolve
with devices such as USB keyboard, USB floppy diskette, hard disk and drive,
provide basic USB device drive and read functions, are capable of start-up using USB
keyboard, mouse, USB floppy diskette, hard disk, and even USB CD-ROM, and have
even acquired the ability of the USB Device Boot.

IEEE-1394

IEEE-1394 can support high data transmission rate equipment, such as digital
video equipment, high performance consumer electronics and PC equipment.
IEEE-1394 has heat exchange and Plug-and-Play characteristic. Its equivalent
structure provides a method to connect more than two pieces of equipment without

the need for a special adapter and complicated settings. Its current transmission rate

28

can reach 400Mbps, much faster than the speeds of serial, parallel, USB, and even
PClIs. The IEEE-1394A specification of the standard can support transmission rates of
100, 200, 400Mbps. With the continued development of the standard, new generations
of specification-IEEE-1394B will be able to support transmission rates up to
800Mbps. Actually, new generations of products that work at 800Mbps have emerged,
and equipment with transmission rates of 1600Mbp will be delivered to the market
soon as well. In addition to speed, real reciprocal interface is the key advantage of
IEEE-1394. IEEE-1394 is a module made up of physical layer interface equipment
and link level controller. It is very difficult to integrate analog and digital technologies,
and with transmission rate striding toward 800Mbps, chip designs will face more
challenges. Due to the different number of ports supported, some 100Mbps, single
TQFP packaging IEEE-1394 chips have only 48 pins, while some have up to 100 pins,
capable of supporting 800Mbps and /or more ports, therefore products with
IEEE-1394 standards in the market include video editing board, camera, video set-top
box, VCR and PC. IEEE-1394 is becoming a PC industrial standard. Consequently,

this makes some new multi-media applications possible.

LPC (Low Pin Count) Interface

Published by Intel on Sep 29" 1997, LPC (Low Pin Count interface) was the
new interface specification used to replace ISA Bus. As with control I/O interface
such as old ISA extension slot/interface card, ROM BIOS chip, south bridge chip
must retain one ISA Bus connecting Super I/O chip to control traditional peripheral
devices. Traditional ISA Bus clock falls between 7.159 (14.318MHz Frequency
Divider) and ~8.33MHz (PCI clock divides 4); in theory, peak transmission value is
16MB/s (actually it is less than 7 MB/s), but ISA Bus is largely different from PCI
Bus in terms of electrical characteristics, signal definition methods, south bridge chips,
super I/O chips need to spend more pins to process and clock/line designs of the
motherboard also appear to be complicated.

As with LPC interface definition, separate and decode the old ISA address/data
and change to the shared decoding methods of PCI address/data signal so that the
number of signal lines is greatly reduced and the working clock is synchronously
driven by the PCI bus. The improved LPC interface likewise maintains maximum
transmission value at about 16MB/s and the number of signal pins is significantly
reduced to 25~30. Both Super 1/O chips and Flash chips designed with LPC interface
can enjoy the benefits of reduced number of pin and smaller sizes, also , the design of
the motherboard may be simplified, which is the purpose of LPC—Low Pin Count.
Figure 1-8-2 below compares the differences between ISA and LPC.

In case traditional ISA extension slots must be added, 33MHz, 4bit signal of LPC

29

interface is converted into 8MHz, 16bit signal via PCI/ISA bridge chip of LPC
interface and connected to ISA interface card. If ISA bridge chip is converted with
PCI, it will lead to increases in motherboard design areas and costs, also, the south
bridge needs to sacrifice the driving ability of a set of PCI extension slots to drive this
single ISA extension slot and its devices. In specification PC99, it was suggested that
ISA extension slots and the ISA Bus be abandoned and fully replaced with PCI
extension slots and LPC interface. The PC2001 specification presented the concept of
Legacy Free PC, whereby all peripheral devices are connected and extended via USB
and only four types of interface cards remain: PCI, AGP and CNR/ACR; Super 1/O,
IR, floppy diskette interface still exist and the I/O methods of control are fully

identical, without obvious differences in the writing of software.

Table 1-8-2: Difference between ISA and LPC

ISA LPC
Data width 16bit 4bit
Operating 8.33MHz 33.3MHz*!
frequency
Addressing 2*=16MB 2¥%=4GB
space
Max 16MB/s 16MB/s
transmission
bandwidth

1.9 Operation rules applied to computer bits

For computer interfaces, the definition of byte and different scale rules must be
first understood. The definition of bytes is as follows: a byte is equal to 8 bits (1-Byte
= 8-Bits); a word is equal to 2 bytes (1-Word = 2-Bytes), that is, equal to 16 bits; and
a double word is equal to 4 bytes (1-DoubleWord = 4-Bytes), name equal to 32-Bits,
and so on, QuadWord is 64 bits.

For different scale rules, binary, decimal and hexadecimal are the commonly
seen ones. Binary is expressed as Bin, or the English letter b is added to the mantissa,
for instance: “0000 1101b”, “0010b”, “10b” etc. Decimal is mostly expressed as dec.
mostly it is omitted, or letter “d” is added to the end to facilitate identification, for
example: “29d”, “3729d”, “4d, etc: and hexadecimal is expressed as hex, or “h” is
added after the numbers for easier identification, for instance: “9C6Ah”, “4Ah”, “Eh”
etc.

Different scale rules can be interchanged. Take 0100 1010b as example for
binary, when converted into hexadecimal, it is 0%27+ 1#¥2%+ 0%2°+ 0#*2*+ 1%#2°+ 0%2*+

30

1%214+0%20 = 74d”’; and because 24216, with four bits as a group, it can be converted
into hexadecimal 0100b = 4d = 4h, 1010b = 10d = Ah”, so it is "4Ah” for
hexadecimal. To convert decimal number ”74d” into binary, first divide 74 by2, the
resulting quotient is 37, and the arithmetical compliment is 0, the arithmetical
compliment obtained is the constant of 2°; then divide 37 by 2, the quotient obtained
is 18, arithmetical compliment is the constant of 21, and so on, the constant of 2° is 0,
the constant of 2° is 1, the constant of 2*is 0,and now the quotient obtained is 2, then
divided by 2 again, the quotient is 1, the arithmetical compliment is 0, now the
arithmetical compliment obtained is the constant of 2° , the quotient is the constant of
2°. In summing up, the converted value is 100 1010b. And for decimal/hexadecimal
conversion, we first convert the decimal into binary to compensate 100 1010b” bits to
be 0100 1010b”, then convert, or convert directly in the manner similar to
decimal/binary conversion, divide 16 by 74 to obtain arithmetical compliment and
quotient, the quotient is the constant of 16° and the arithmetical compliment is the
constant of 16",

This is because the hexadecimal expresses the numbers more then 10 with table
1-6-1 below, while the conversion result is “4Ah”. Hexadecimal/binary conversion is
made as shown in table 1-6-2 below. Take “4Ah” as an example. When it is
converted from hexadecimal to decimal, it becomes “4%16'+ 10%16° = 74”.

Those are the three main scale rules in this book, for conversion between
different scale rules, please carryout more operational exercises. As PC XT/AT ISA
interface mentioned previously is only briefly covered in this chapter, please refer to
the many books with in-depth research and discussion of this to acquire more
knowledge about computer interfaces. With the rapid development of computers in
recent years, the powerful plug and play peripheral equipment and operating system
software’s have combined to make it easier for users to use computers; consequently,
the previous difficulty in setting hardware and software is overcome. In the next

chapter, we will discuss the trends of PCs since the year 2000.

31

Table 1.6.1 Table of definition of hexadecimal numbers

Decimal

1

2

3

4

5

6

7T |8

9

10

12 |13 |14 |15

Hexadecimal

1

2

3

4

5

6

7 |8

9

A

C D |[E |F

Table 1.6.2 Comparison table of hexadecimal/binary conversion

Binary Hexadecimal Binary Hexadecimal
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F
1000 8 0000 0

32

Exercises:

1.Convert the following binary numbers into decimal numbers.
“000111017,71011,711,711100111”

2.Convert the following binary numbers into hexadecimal numbers
“01011011,71101,7107,711000101”

3.Convert the following decimal numbers into binary numbers.
13 1 024””95 12,9”7255”’”65535”,5’ 1 0055’7740969””807’

4.Convert the following decimal numbers into hexadecimal numbers.
13 1 024””95 12,9”7255”’”65535”,5’ 1 0055’7740969””807’

5.Convert the following hexadecimal numbers into binary numbers.
CGAbh”’")D lh”’7900FAh’7’7910h”’”SOh”

6.Convert the following hexadecimal numbers into decimal numbers
CGAbh”’")D 1 h”’”OOFAh”’” 1 Oh”’”80h7,

7.Refer to books on ISA interface, have a try at describing the definitions of ISA pins.

8. Have a try at describing binary addition operation and multiplication

9. Have a try at describing the hexadecimal addition operation.

10. Refer to books on ISA interface, have a try at describing the structure of relevant

chips and principle of actions.

33

Chapter 2 PCI interface

PCI interfaces have many specifications. In this chapter, we will discuss basic
principles such as PCI interface signal types, signal pin definitions and instruction sets
and transmission modes, etc. The address of this interface is shared with the data bus,
in any transmission mode, address signal is transmitted in advance of the data signal,
additionally, the signal timing control is very important. For PCI interface-related
knowledge, the descriptions in this book are simply fundamental without discussing
advanced theory and extended specifications. Table 2-0-1 roughly illustrates the

specifications and evolution of PCI interfaces.

Table 2-0-1 Specifications and evolution of PCI interfaces.

Operating |33MHz 33MHz |66 MHz |[133MHz |266 MHz (533 MHz

frequency

Working 32bits 64bits 64bits 64bits 64bits 64bits
bits

Peak 133MB/s 266 MB/s |533 MB/s {1066 MB/s (2133 MB/s |----
transmission

Commercial |Yes Yes Yes Yes No No
Examples of|Audio U160 U160 U160/U320

applications |card, advanced |advanced |advanced

network |[SCSI card, [SCSI card, [SCSI card
card, U2W |1Giga 1Giga

SCSIcard, |network |network

/0 card card
extension PCI-X
card

2.1 PCI (Peripheral Component Interconnect) brief introduction

Intel developed the PCI bus to ensure the compatibility of different special
processor’s area bus architectures. The earliest PCI specification published is version
1.0, which became effective on June 2nd, 1992. Rev 2.0 became effective in April
1993. Rev 2.1 was published in the first quarter of 1995. The latest version 2.2 was
completed on Dec 18", 1998 and became effective in Feb 1999.

Devices on the PCI bus can access each other or the system memory very
quickly and can be accessed by the processor at speeds close to that of its built-in bus.
The transmission of all PCI bus reads and writes can be executed by means of burst,

which is superior to interfaces such as ISA and VESA in efficiency, with bus master

34

deciding the length of burst. At the beginning of data transaction, starting addresses
and transaction types are assigned to target. However, the target is not informed of its
transmission length. When a master is prepared from transmitting data, it will inform
the target whether this data is the last batch. The transaction is completed when the
last batch of data is transmitted. Table 2-1-1 illustrates the characteristics of PCI
interface.

PCI devices can be divided into three types: Target/Slave, PCI Master and
Initiator. In normal computer systems, PCI master and initiator are considered as the
same device, and both can control PCI bus. The North Bridge of the system usually
plays the role of initiator, when there is SCSI interface card that can be turned off
(with read only memory) on PCI bus, this interface card can have the actions of PCI
master, and can also control this bus. So when the interface cards of bus-related PCI

Master function chips have only PCI Master in the system, it must be PCI Initiator.

Typical PCI devices contain a peripheral device adapter packaged in an IC or
integrated into a PCI extension card, with commonly seen examples such as network
cards, display cards or SCSI cards. After PCI specifications are devised, still many
manufacturers continue to use the old devices incompatible with PCI as interface’s
connected to system motherboard PCI bus, these devices can be used on PCI bus by
using Programmable Logic Arrays.

Again, display interface (AGP) can be seen as the extension of PCI interface,
mainly provides high bandwidth for the graphic interfaces to use. So far, its product
specification has evolved from the early AGP1.0 (1x/2x%) to today’s AGP3.0 (8x) and
the transmission speed has also increased from 32 bits to 256 bits. As with AGP
interfaces, they are only used in graphic interfaces and classified as PCI peripherals;

however, this is not discussed in this book.

35

Table 2-1-1 PCI interface characteristics

Characteristics

Description

Irrelevant with processor

Element designed by PCI bus is PCI-specific, separating
device design from processor.

At most 80 PCI functions

Normal PCI bus supports about 10 electricity loads, each

for each PCI bus device is considered as a load, each device can contain at
most 8 PCI functions.
At most 256 PCI bus Providing at most 256 PCI bus supports.

Low power consumption

Reduce system design that wastes power as possible as
practicable, operate with OMHz in idle state.

Burst transmission can be
executed in all read/write
transmission

32 bits PCI bus supports read/write transmission of peak
transmission rate of 133Mbytes per second. The peak
transmission rate of 64 bits PCI is 266Mbytes per second.
And the maximum transmission rate of 64 bits, 66 MHz PCI
bus can reach 533Mbytes per second.

Bus speed

The highest PCI bus speed supported by Rev 2.0
specification is 33MHz., while 66MHz bus operation is
added to Rev 2.1.

64 bits bus width

Complete 64 bits extension definition

Access time

60ns (When initiator or Master of PCI bus is writing PCI
Target and bus clock is 33MHz).

Parallel bus operation

Bridge supports complete bus parallel, processor, PCI bus
and extension bus can be used at the same time.

Support bus master

Complete bus master support allows peer-to-peer PCI bus
access, access, via PCI-to-PCI and extension bus bridge, it
accesses main memory extension bus device. PCI master
can access the target of lower level PCI bus in the system.

Hidden bus arbitration

PCI bus arbitration is required when multiple groups of bus
masters are transmitting on PCI bus.

Low pin counts

Reduce the use of bus signal pins, functional PCI target
uses only 47 pins, initiator uses only 49 pins

Check of transaction
integrality

Parity check with address, instructions and data.

Automatic configuration

With specification that supports automatic device detecting
and configuration bit-level Configuration Register.

The thoroughness of
software

When the software drive program is communicating with
PCI device or devices associated with its extension bus, the
same instruction sets and status definitions can be used.

36

2.2 PCI connector and pin

For the PCI interfaces used, the sketch of PCI interface signal group is shown in
Figure 2-2-1, connector specification description is shown in Figure 2-2-2, while the
configuration of signal pins is shown in Figure 2-2-1, with the definition of each
signal described in the following section.

Generally speaking, PCI pins are divided into required pins and optional pins, as
shown in Figure 2-2-1. The required pins include data and address bus pins
(ADI[31:0]), interface control pins (FRAME#, TRDY#, IRDY#, etc.), error signal pins
(PERR#, SERR#), etc. Each PCI peripheral must have this type of pins; optional pins
include 64 bits extension pins, LOCK#, interrupt pins (INT#[3:0]), JTAG insect; this
type of pins can be selected as required. Figure 2-2-2 shows the specification of 32
bits PCI interface slots; on the left of the figure is the rear baffle of computer. Form
observing normal motherboard, we can learn that most of them use PCI slots of 5V
specification, this slot can use general or 5V specification PCI interface cards; 64 bits
PCI slots are mostly 3 V specification. However, these types of slot and interface
cards are rarely seen.

And 64 bits connectors are the extension of basic interface and are listed in
Figure 2-2-1. Attention should be paid to B49 pin, which is ground signal when
operating at 3.3V/33MHz and M66EN when operating at 3.3V/66MHz; there should
be a pull-up resistor on the system board and small capacitor need to be connected to

interface cards to remove electrical coupling.

37

Required Pins

L

Address ‘ oty)
& Data

Interface /
Control

| 3 s
{: F'iRR# :

Error
Reporting
Atbitration { #—Gitg
(masters only) -»
CLK
System{ —Rsts :

PCI
COMPLIANT
DEVICE

Optional Pins

-‘ AD[63:32) '

CIEE[T 4 }64-Bit
¢—FP2R84 [Extension

REQ64Z
1 ACKBAZ t
— XKy Y Interface

INTA# o 7
.‘__mm_.__.. Control
i ;E%E E}Interrupts
30831 Cache
1—&%355—’ Support
5 >

TCK }JTAG
1 THES (IEEE 1149.1)
P

Figure 2-2-1 PCI signal groups

38

5V 32bits
I | |

3.3V 32bits

General interface card

Figure 2-2-2 PCI 32 bits connector specification

Table 2-2-1 Pin configuration

i) General interface
NS 5V interface card 3.3V interface card card R
A side Bside |Aside Bside |Aside B side
1 2V [TRST# 12V |TRST# |l2v |[TRsT# | oame
head
2 TCK +12V TCK +12V TCK +12V
3 GND TMS GND TMS GND TMS
4 TDO TDI TDO TDI TDO TDI
5 +5V +5V +5V +5V +5V +5V
6 +5V INTHA | +5V INTHA |[+5V INTHA
7 INT#B |[INT#C |INT#B |INT#C |INT#B [INT#C
8 INT#D |+5V INT#D |+5V INT#D |+5V
9 PRSNT#I1 Reserved |PRSNT#1 [Reserved |PRSNT#1 |Reserved
10 Reserved [+5V Reserved |+3.3V Reserved |+Vi/o
11 PRSNT#2 [Reserved |PRSNT#2 [Reserved |PRSNT#2 |Reserved
12 GND GND
= GND GND KEY 3.3V_KEY
14 Reserved |+3.3Vaux |Reserved [+3.3Vaux [Reserved |+3.3Vaux
15 GND RST# GND RST# GND RST#
16 CLK +5V CLK +3.3V |CLK +Vi/o
17 GND GNT# |GND GNT# |GND GNT#
18 REQ# GND REQ# GND REQ# GND
19 +5V PME# |+3.3V PME# |+Vi/o PME#
20 AD [31] |AD[30] |AD[31] |AD[30] |AD[31] |AD [30]

39

21 AD[29] [+3.3V |AD[29] [+3.3V |[AD[29] [+3.3V
22 GND AD [28] |GND AD [28] |GND AD [28]
23 AD [27] |AD[26] |AD[27] |AD[26] |AD[27] |AD [26]
24 AD [25] |GND AD [25] |GND AD [25] |GND
25 +3.3V AD [24] |+3.3V AD [24] |+3.3V AD [24]
26 C/BE#[3] |IDSEL |C/BE#[3] |[IDSEL |C/BE#[3] [IDSEL
27 AD[23] [+3.3V |AD[23] [+3.3V |AD[23] [+3.3V
28 GND AD [22] |GND AD [22] |GND AD [22]
29 AD [21] |AD[20] |AD[21] |AD[20] |AD[21] |AD [20]
30 AD[19] |GND AD[19] |GND AD[19] |GND
31 +3.3V AD[18] [+3.3V AD[18] [+3.3V AD [18]
32 AD[17] |AD[l16] |AD[17] |AD[16] |AD[17] |AD[16]
33 C/BE#[2] [+3.3V |C/BE#[2] [+3.3V |C/BE#[2] |+3.3V
34 GND FRAME# |GND FRAME# |GND FRAME#
35 IRDY# GND IRDY# GND IRDY# GND
36 +3.3V TRDY# |+3.3V TRDY# |+3.3V TRDY#
37 DEVSEL#|GND DEVSEL#|GND DEVSEL#/GND
38 GND STOP# |GND STOP# |GND STOP#
39 LOCK# |+3.3V |LOCK# |[+3.3V |[LOCK# [+3.3V
40 PERR# |Reserved |PERR# |[Reserved [PERR# |Reserved
41 +3.3V Reserved |+3.3V Reserved [+3.3V Reserved
42 SERR# |GND SERR# |GND SERR# |GND
43 +3.3V PAR +3.3V PAR +3.3V PAR
44 C/BE#[1] |AD[15] |C/BE#[1] |AD [15] |C/BE#[1] |AD [15]
45 AD[14] [+3.3V |(AD[14] [+3.3V |AD[14] [|+3.3V
46 GND AD [13] |[GND AD [13] |[GND AD [13]
47 AD[12] |AD[11] |AD[12] |AD[11] |AD[12] |AD|[11]
48 AD[10] |GND AD[10] |GND AD[10] |GND
4 |GND |AD[09] |G/MG6EN|AD [09] |G/Me6EN|AD 097 | ¢ O
66MHz
50 GND GND
KEY KEY 5V_KEY
51 GND GND -
52 AD [08] |C/BE#[0]|AD [08] |C/BE#[0]|AD [08] |C/BE#[0]
53 AD[07] |+3.3V |AD[07] [+3.3V |AD[07] [+3.3V
54 +3.3V AD [06] [+3.3V AD [06] [+3.3V AD [06]
55 AD [05] |AD[04] |AD[05] |AD[04] |AD[05] |AD [04]
56 AD [03] |GND AD [03] |GND AD [03] |GND

40

57 GND AD [02] |[GND AD [02] |[GND AD [02]

58 AD [01] |AD[00] |AD[01] |AD[00] |AD[01] |AD [00]

59 +5V +5V +3.3V +3.3V |Vi/o Vi/o

60 ACK#64 [REQ#64 |ACK#64 |REQ#64 |ACK#64 |REQ#64

61 +5V +5V +5V +5V +5V +5V

62 +5V +5V +5V +5V +5V +5V
(The above are 32bits PCI) ------ KEY------ (The followings are|64bits

64bits_PCI) Separation

63 Reserved |GND Reserved |GND Reserved (GND

64 GND C/BE#[7]|GND C/BE#[7]|GND C/BE#[7]

65 C/BE#[6] |C/BE#[5]|C/BE#[6] |C/BE#[5]|C/BE#[6] |C/BE#[5]

66 C/BE#[4] |[+5V C/BE#[4] |+3.3V |C/BE#[4] |Vi/o

67 GND PAR64 |GND PAR64 |GND PAR64

68 AD [63] |AD[62] |AD[63] |AD[62] |AD[63] |AD [62]

69 AD[61] |GND AD[61] |GND AD[61] |GND

70 +5V AD [60] [+3.3V AD [60] |Vi/o AD [60]

71 AD[59] |AD[58] |AD[59] |AD[58] |AD[59] |AD [58]

72 AD [57] |GND AD[57] |GND AD [57] |GND

73 GND AD [56] |GND AD [56] |GND AD [56]

74 AD [55] |AD [54] |AD[55] |AD[54] |AD[55] |AD [54]

75 AD [53] [+5V AD [53] |+3.3V |AD[53] |Vilo

76 GND AD [52] |GND AD [52] |GND AD [52]

77 AD [51] |AD[50] |AD[51] |AD[50] |AD[51] |AD [50]

78 AD [49] |GND AD [49] |GND AD [49] |GND

79 +5V AD [48] |+3.3V AD [48] |Vi/o AD [48]

80 AD [47] |AD[46] |AD[47] |AD[46] |AD [47] |AD [46]

81 AD [45] |GND AD [45] |GND AD [45] |GND

82 GND AD [44] |GND AD [44] |GND AD [44]

83 AD [43] |AD[42] |AD[43] |AD|[42] |AD[43] |AD [42]

84 AD [41] [+5V AD[41] [+3.3V |AD[41] |Vi/o

85 GND AD [40] |GND AD [40] |GND AD [40]

86 AD[39] |AD[38] |AD[39] |AD[38] |AD[39] |AD [38]

87 AD [37] |GND AD [37] |GND AD [37] |GND

88 +5V AD [36] [+3.3V AD [36] |Vi/o AD [36]

89 AD [35] |AD[34] |AD[35] |AD[34] |AD [35] |AD [34]

90 AD [33] |GND AD [33] |GND AD [33] |GND

91 GND AD [32] |GND AD [32] |GND AD [32]

41

92 Reserved |Reserved |Reserved [Reserved |Reserved |Reserved

93 Reserved |GND Reserved |GND Reserved |GND

94 GND Reserved |GND Reserved |GND Reserved

A side Component side B side Top over layer

Remark: it is low logic when the signals are driven, all such signals end with “#”,

conversely when it is high, then signals have no “#” followed.

2.3 PCI interface pin definition
Electricity definition of digital circuits used on PCI interface may be classified
into five types: INPUT, OUTPUT, T/S (Tri-State), S/T/S (Sustain Tri-State) and O/D
(Open Drain). I/O signal is a standard signal only; T/S is standard tristate I/O signal,
whose logic diagram and truth table are shown in Figures 2-3-1 and 2-3-1; similar to
T/S signal, S/T/S is the continuous signal that can be driven by only one device. After
initiating driving of this signal, to stop driving this signal, it is necessary to pull up
this signal for one clock and then floating this pin and pull-up resistor is required to
keep this signal strong during intervals. O/D is an open drain signal, requiring an
additional pull-up resistor to maintain its backdrive, roughly, it requires 3 clock cycles
to meet the demands of backdrive actions, with logic diagrams and truth tables shown
in Figures 2-3-2 and 2-3-2. The following is the necessary signal definition and signal
type description.
As with signals on PCI BUS, normal PCI device needs to use 47 signal pins,
excluding PERR# and SERR#, with the definitions of these signals described as

follows:

CLK (Input) “working frequency”

CLK provides the timing of all transmission on PCI BUS, except RST#, INTA#,
INTB#, INTC#, and INTD#, the remaining PCI signals are sampled on rising
edges of CLK.

RST# (Input) “RESET SIGNAL”

As long as RST# ACTS, all PCI output signals must enter Tri-State (it is floating
for O/D type signals), to prevent signal such as AD, C/BE# and PAR floating
during resetting, system chips may pull these signals low. Although RST# is
asynchronous with CLK, system chips must ensure that it is a clean signal without

bounces.

ADI[31:00] (T/S) “data and address bus”
Address and data lines operate using AD[31:00] pins. When the first Frame# on

42

the low CLK rising edge, AD[31:00] represents address line; when IRDY# and
TRDY# are both on low CLK rising edges, it represents a data line. When this
type of pin is used for the address line, for I/O, AD[31:00]32 are needed, for
configuration and memory, only AD[31:02] is address line, and [01:00] is
otherwise used. When this type of pin is used for data line, AD[07:00] is the data
of lowest byte (LSB), while AD[31:24] is the data of highest byte (MSB).

C/BE[3:0]# (T/S) *“control signal”

Not only is the address line and data line multiplexed together, but also bus
instruction and byte enable are multiplexed together. When the first Frame# is on
the rising edge of low CLK, C/BE[3:0]# represents bus instruction, in the rest of
the time, C/BE[3:0]# represents byte enable, indicating which data transmitted is
byte enable among the four bytes of data line, so C/BE[3:0] is used on PCI BUS
to identify, and its corresponding relation is that C/BE#[0] corresponds lowest
byte; C/BE#[3] corresponds highest byte(MSB), and low represents corresponding

byte, namely actually transmitted data.

PAR (T/S) “parity check signal”
PCI BUS uses the method of Even Parity”, that is , all “1”” numbers on AD[31:00],
C/BEJ[3:0] and PAR should be even. The key is to check whether there is data

transmission error, as with timing, it will lag behind by only one CLK.

FRAME# (S/T/S) “Transmission control signal”

As with data transmission on bus, PCI Bus Master converts Frame# from high
low, if Frame# continues to low, it means that data is transmitting; when Frame# is
changed from low to high, it means that the last batch of data is waiting to be

transmitted.

IRDY# (S/T/S) “Initiator Ready signal”

For writing, when it is placed low, it means PCI Bus Master has got the data
ready on bus. While for reading, it means that PCI_Bus Master is ready to receive
data.

TRDY# (S/T/S) “Target Ready signal”

For writing, when it is low, it means that the PCI_Target is ready to receive data;

while for reading, it means that data is ready on bus.

43

STOP# (S/T/S) “interrupting transmission signal”
PCI_Target may request PCI_Master to interrupt the current transfer cycle via this

signal.

DEVSEL# (S/T/S) “Device Select signal”
The return signal that is used by PCI Target to notify PCI_Master to select the

signal

IDSEL (Input) “Initialization Device Select”

A special signal that is used for Configuration Read/Write transfer Each PCI Slot
in the system can select any of the signals in AD[31:11]. It is not connected to its
IDSEL and can not be repeated, mainly used in Plug & Play operating

environment.

REQ# (T/S)

The device that has the ability to master PCI sends requests to acquire the bus
control from PCI Initiator of the system via this signal, thus becoming the
PCI_Bus Master.

GNT# (T/S) “signal Grant”

Enable the device that wants to acquire bus control to become new matter on the
bus. REQ# and GNT# become pairs of point-to-point signal, on each slot, there
are independent REQ# and GNT# connected with system chips.

The above signals are commonly used signal pins for PCI interfaces, and the
remainders are optional pins. Apart from pins added by 64 bits extension mode,
JTAG is also a characteristic of PCI interface. Because this type of signal is
capable of monitoring chips on PCI peripherals, it can significantly increase the
reliability of this interface in use, however, only a few advanced peripheral use
this signal pins. Figure 2-3-3 shows the pin diagram of 33MHz/32 bits PCI
interface relative to PCI interface pins definitions. In this chapter, we just briefly
describe it and in the next chapter, we will discuss the types of C/BE#[3:0] and
configuration cache, which can be considered as important information in using

PCI interface device.

44

EN

TH

LG

Figure 2-3-1 Tri-state logic symbol diagram

EN

et

T

Figure 2-3-2 Open drain logic symbol diagram
P
—EL 3 TRSTS —L1—
— R F 1 f—
a1 o e
.] Ton a—
=1 .= ey [
i L T A E—
B e T BT [—
o Ll | O Y
2 pasrTE ACST oD —a—
=L 8 s SE FsED P
—LLJ s Tez ROsC oD i
—y e P Py [
. P R W [
= i (=

—m—n RESE FwED ST RV ED —aE
—InJ o T
[BN re—— Gt LI
e e Gap 18-
= PN REsT YT L3
e L ER] PYSEEE et
- =T R el - 18
Y any AT [t
B e gy g
—lii) arvos G i
Sy oA Froery L.
- . T A I [
—= oD Anzs =8
iy a7 ADT0 =t
=2l anin ey =0
iy T A AL E il
= TR Arind it
—O] CnE e +5 an e

T s Tl
[e an ooy L.
SRR Ly TADY S it
e T N L5 T B .
T . SToes —=—
Lol R e i
A o e et]
A0 R L gy ey =
T (i ey i
e EEEL Fam it
B e A0S e
ET LN T Py .
AOE_R ey FETEl e
os) ot prrdifl
A 3 emiin S A8
SaL § .o Py =
e e e BT G
e N E T P ey ke
e A] =y
A0% R anw ety B
108 3 a9y P - .
ALTF R e A =3
A28 § any Gy S8
L08R Az =L
LY s A
TN T Sy il
EE SConss et
LI N Ly 5y =l
AR oy 5y B2

Figure 2-3-3 33MHz/32 bits PCI pin diagram

45

Table 2-3-1 Tri-state logic truth table

Input Output
EN A N Z
L iV H L
L H H H
H X X Hold
X X &L Hold

Table 2-3-2 Open drain logic truth table

Input

Output

EN

Z

IF

L

H

Hold

TN
H
X
L

Hold

2.4 PCI instructions

C/BE#[3:0] and configuration cache are important information in designing PCI
interfaces. Table 2-4-1 illustrates PCI instructions types, where PCI bus is
Little Endian bus; table 2-4-2 describes the significance of data phase byte enable.

PCI bus transmits data on AD[31:0], while C/BE#[3:0] transmits instruction and
address enable signal. Generally, PCI signal transmission can be divided into two
parts: address phase and data phase. During address phase, signal on C/BE#[3:0] is
PCI instruction, as is shown in Figure 2-4-1 below is the signal configuration of this
phase of C/BE#[3:0], now data address bus AD[31:0] transmits address, during data
phase, signal on C/BE#[3:0] is byte enable signal, mainly defining AD[31:0] bus in
this phase to transmit data. As with what are the effective bytes on AD[31:0], table

2-4-2 will give a definition for it.

Table 2-4-1 PCI instructions types

C/BE# :
Instructions types
3 2 1 0
0 0 |0 |0 |Interrupt Acknowledge
0 0 |0 1 Special Cycle
0 0 1 0 |/O Read
0 0 1 1 I/O Write
0 1 0 |0 |Reserved
0 1 0 1 Reserved
0 1 1 0 |Memory Read
0 1 1 1 Memory Write
1 0 [0 |0 |Reserved
1 0 |0 1 Reserved
1 0 1 0 Configuration Read
1 0 1 1 Configuration Write
1 1 0 |0 |Memory Read Multiple
1 1 0 1 Dual Address Cycle
1 1 1 0 |Memory Read Line
1 1 1 1 Memory Write and Invalidate

46

Table 2-4-2 Definition of data phase byte enables

C/BE# Definition
Data path o)

3 2 1 0 Byte of transmission addressing dword
numbers

0 0O [0 [0 |4 All the 4

0 0 |0 1 3 The higher 3

0 0 1 0 3 The higher 2 and the lowest 1

0 0 1 1 2 The higher 2

0 1 0O 0 3 The highest 1 and the lower 2

0 1 0 1 2 The highest 1 and the third highest 1

0 1 1 0 2 The highest 1 and the lowest 1

0 1 1 1 1 The highest 1

1 0O [0 [0 |3 The lower 3

1 0 0 1 2 The second highest 1 and the third highest 1

1 0 1 0 2 The second highest 1 and the lowest 1

1 0 1 1 1 The second highest 1

1 1 0 0 2 The lower 2

1 1 0 1 1 The third highest 1

1 1 1 0 1 The lowest 1

1 1 1 1 0 Unused

Byte enable : :

: Data path Addressing location

signal

C/BE#[3] 3 AD[31:24] |The fourth location in the addressed dword

C/BE#[2] 2 ADJ[23:16] |The third location in the addressed dword

C/BE#[1] 1 ADJ[15:08] |The second location in the addressed dword

C/BE#[0] 0 ADJ[07:00] |The first location in the addressed dword

2.5 Configuration address port and configuration transaction

Generally, the configuration mechanism of PCI peripheral is divided into two
types: configuration mechanism #1 and configuration mechanism #2. PCI 2.2 Version
has deleted configuration mechanism #2 and each PCI function on each PCI device
needs 64-dword special configuration cache; for X86 system, I/O address is 64KB
maximally. When it is not in conflicts with old interface, the I/O addresses that can be
used by the PCI interface fall between 0400h~04FFh, 0800h~08FFh and
0CO0h~0CFFh.

Configuration mechanism #1 uses two 32 bits I/O ports: address OCF8h and
OCFCh. OCF8h~0CFBh is 32 bits Configuration Address Port, while
OCFCh~0CFFh32 is Configuration Data Port. Their definitions are shown in table
2-5-1, with definition of each bit described as follows:

47

Table 2-5-1 Configuration address port

0CFEh 0CFAR 0CF3H 0CF8h
31/30(29|28[27|26|25]24|23]22|21|20] 19| 18[17)16]15)14] 1312|1110 0 [8| 7 | 6 [5 |4 | 3] 2| 1] 0
Reserved bus no. device no. function no. Dword oo

bit [0:1]:hardware connection, read only, must be 0 when writingBit [7:2]:
d_word that confirms Target function configuration

Bit [10:8]: function number parameters of PCI Target device

bit [15:11]: PCI Target device numbers

bit [23:16]: PCI Target bus numbers

bit [30:24]: all are “0”bit [31]: configuration access is “0”, bus I/O access is “1”

Configuration transaction can be divided into two types, Type 0 and Type 1.
When conducting configuration transactions, the lowest valid bit for AD bus is 00b in
case of Type 0 and 01b in case of Type 1 configuration type. FRAME# is driven low,
IDSEL signal can only correspond to Type 0 configuration transaction, C/BE#[3:0]
instructs the actions of configuration transactions. In the following paragraph, we will
describe the two types of configuration transactions respectively.

As with configuration transaction Type 0, AD [1:0] is 00b, it is Type 0
configuration transaction, AD [7:2], AD [7:2] means dword of Target configuration,
AD [10:8] means functions of Target device, AD [31:11] is reserved and not read, and
is interpreted by IDSEL into device numbers.

IDSEL implementation examples are shown in Figures 2-5-1 and 2-5-2. Figure
2-5-1 connects IDSEL to the unused AD lines, AD [31:11] is not used during Type 0
configuration transaction address phase. Host/PCI bridge configuration address port
bit [15:11] is responsible for interpretation. This method can correspond to 21 devices
and reduce the numbers of Host/PCI bridges pins and connections. Figure 2-5-2
shows the connecting methods of added resistance coupling, which has been added to
bus stability; and the other IDSEL implementation method is that Host/PCI Bridge

completes decoding actions together with digital logic circuits.

48

CFT

LI

Host/PCI Bridge “——> Main Memory

AD16 AD1Y | AT1E | AD1S I AD20

% % % % =
= = = = =
Device 0 Device 1 Device 2 Device 3 Device 4

Figure 2-5-1 IDSEL example of implementation (without decoupling resistance)

R
1
: Host/PCI Bridge [~——> Main Memory
Resistance
AD15 AD16 AD17 AD18 AD19
¥ h J ¥ ¥ ¥
] = = = B
[[&)] [£5] [€5] [y
& & & & &
Device 0 Device 1 Device 2 Device 3 Device 4

Figure 2-5-2 IDSEL example of implementation (with coupled resistance)

49

Address phase: Another IDSEL implementation method is to interpret with digital
logic circuit. Figure 2-5-3 shows example of configuration read using this method,
which is described with by the address and data phase.
* PCI Initiator reads PCI Target
FRAME# to below, transaction begins
+ AD[1:0]=00b— >Type 0
AD[7:2] — > configuration dword address
AD[10:8] — > function numbers
« C/BE#[3:0]==1010b (configuration read)
+ PCI Initiator shows it can read data.
* PCI Target shows it can transmit data.
* Type 0 needs IDSELto select device.

Data phase
* PCI Initiator reads PCI Target
+« FRAME# counter drive shows it is ready to complete the last data transmission
phase.
+ PCI Target transmits configuration data to PCI Initiator.
« Bridge duplicates byte enable of processor to C/BE#[3:0]
PCI Initiator reads data in case of IRDY# and TRDY#

CLE TR ANE " ARNERN

RDT# < _f

TED ¥# ; @Lﬁ
DEVSEL# | | " _j_FD

ST

IT=ETL

e

Figure 2-5-3 Type 0 configurations read

50

Figure 2-5-4 is Type 0 configuration write example, which is described in the address
and data phase.
Address phase:
+ PCI Initiator writes PCI Target
« FRAME# low, and transaction begins
+ AD[1:0]=00b— >Type 0
AD[7:2] — > Address of configuration dword
AD[10:8] — > function numbers
« C/BE#[3:0]==1011b (configuration write)
« PCI Initiator indicates it can transmit data.
« PCI Target indicates it can read data.
* Type 0 needs IDSEL to select device.
Data phase
« PCI Initiator writes PCI Target.
« FRAME# counter drive indicates it is ready to complete the last data transfer phase.
+ PCI Initiator transmits configuration data to PCI Target
+ Bridge duplicates processor’s byte enable to C/BE# [3:0]
PCI Target receives data in case of IRDY# and TRDY#

ETE NG

FEADIES ‘ : ‘ ‘

=) gD

TR T :%.;r; w

TEIY# : -

DEWVSEL# | | "
ST T v i i i
IDSEL m__L_____L_

Figure 2-5-4 Type 0 configurations write

51

As with Type 1, AD [1:0] is 01b is Type 1 configuration transaction, AD [7:2]
confirms 64 dword in Target configuration, AD [10:8] confirms 8 functions of Target,
AD [15:11] confirms 32 entity devices, selects different device IDSEL lines, AD
[23:16] confirms 256 buses in the system, AD [31:24] are reserved and are all 0.

Bus numbers on AD buses are different from sub-bus numbers and are not within
the same bus scope, so this configuration must be ignored. If bus numbers are equal to
sub-bus numbers, then they can be configuration accessed through Type 0 and be
transmitted to sub-bus. If bus numbers are not equal to sub-bus numbers, but sub-bus
is within the scope of the bus, Host/PCI make configuration access by means of Type
1. Figure 2-5-5 is Type 1configuration read, which is described in the address and data

phase respectively
Address phase
« FRAME# driven low
+ AD[1:0]=01b— >Type 1 configuration transaction
« AD[7:2] — > configuration dword address
« AD[10:8] — > function numbers
« AD[15:11] — >device numbers
« AD[23:16] — >bus numbers
« AD[31:24] — >unused
« C/BE#[3:0]==1010b (configuration access)
+ IDESL can be ignored.

Data phase
« FRAME# counter drive indicates the last data transfer phase has been completed.
« PCI Target sends back the requested configuration data.
+ Bridge duplicates processor’s byte enable to C/BE#[3:0]
+ PCI Initiator device is ready
+ PCI Target provides data and announces transactions

+ PCI bridge receives data

52

C LK 1 1 1 1 1

FE & IE# .) . . ‘

TRDT# — : T i e
TRD Y# -) : - -

DEVSEL# | ! " ! __/_'7
arre | L/ 1

IDE=EL

Figure 2-5-5 Type 1 Configuration read

Figure 2-5-6 shows Type 1 configuration writes, which are described in the
address and data phases respectively.
Address phase
* FRAME driven low
+ AD[1:0]=01b— >Type 1 configuration transaction
« AD[7:2] — > configuration dword address
« AD[10:8] — > function number
« AD[15:11] — >device number
« AD[23:16] — >bus number
« AD[31:24] — >unused
« C/BE#[3:0]==1011b (configuration writes)
+ IDESL can be ignored

Data phase
« FRAME# counter drive indicates that the last data transfer phase is ready
« PCI Target receives bridge’s configuration data
+ Bridge duplicates processor’s byte enable to C/BE#[3:0]

+ PCI Initiator device is ready

53

* PCI Target device is ready

+ PCI Target receives data

CLK 1 1 1 1 1

IRDY# '—.;(; _f
L A :
TRD Y# ! w_ﬁ
: e : |
DEVSEL# | " w ;
am |/ 1

Figure 2-5-6 Type 1 configurations write

2.6 Configuration cache

The first 16 dword of PCI Configuration cache is Configuration cache header,
defining the parameters of PCI devices. This header field is divided into 3 types: Type
0, Type 1, Type 2. Type 1 defines PCI-to-PCI Bridge, Type 2 header defines
PCI-to-Card Bus Bridge, and Type 0 defines the remaining PCI devices. Generally
speaking, Type 0 is more common. Table 2-6-1 shows type 0 configuration cache

Regarding Type 0 configuration header, this chapter only describes more
important caches such as Vendor ID, Device ID, Revision ID, Class Code,
Sub-System Vendor ID, Sub-System ID / Sub-System Device ID.

Vendor ID is 16 bits cache assigned by PCISIG, with the information of the PCI
bendor number inside; Device ID 16 bits cache defined by vendor himself, if the
interface card used is PLX 9052 chip, then Vendor ID=10B5, Device ID=9052.
Revision ID is 8 bits cache defined by vendor himself, via which programs of
different drive versions are defined; Sub-System Vendor ID, (Sub-System ID)/
(Sub-System Device ID) is 16 bits cache defined by the vendor himself respectively,
and are connected to bridge Host/PCI, PCI-to-EISA ISA, PCI-to-Micro Channel,
PCI-to-PCI, and computer Interrupt Controller. DMA Controller, Programmable

54

Timer, RTC Controller, need not contain this cache, which mainly identifies the type
of sub-system and Sub-System Vendor ID =10B5, Sub-System ID=9052 of the
interface car used in this practice

Class code cache consists of three 8 bits caches, as shown in Figure 2-6-1, and
the 3 caches are: class code, sub-class code and program interface. This cache is
developed and is freely used by the vendor. Table 2-6-2 shows the class code cache
definitions. Instruction cache is 16 bits cache, defining basic device response and
access ability. Table 2-6-3 is instruction cache definitions. State cache is 16 bits cache,
keeps track of functions states aimed at functions defined by PCI device instruction
cache, with format definition shown in table 2-6-4. Header type register is 8 bits cache,
bit [6:0] is header type, bit [7] defining device is a single/multi-function device. If
[7]= 0 is single function device, [7]= 1 is a multi-function device.

In addition to the above mentioned more important Type 0 configuration caches,
there are several other caches such as Cache Line Size cache, Latency Timer cache,
Built-In-Self-Test cache, Base Address cache, Extension ROM base address cache,
Card Bus CIS, Interrupt Pin cache, Interrupt Line cache, Min_Gnt: time block request,
Max_Lat: priority level request, ability index cache, etc. For these types of caches and
Type 1 configuration cache, the reader can refer to the book--PCI SYSTEM
ARCHITECTURE.

Table 2-6-1 PCI configuration cache

00h 02h 04h 06h 08h 09h 0Ch 0Dh OEh |0Fh
i) o Cache
Vendor |Device |Instruction|Status |Revision|Class . Latency|Header
Line . BIST
ID ID Cache Cache |ID Code Si Timer |Type
ize
10h 14h 18h 1Ch
Base address 0 Base address 1 Base address 2 Base address 3
20h 24h 28h 2Ch 2Eh
Sub
Sub System
Base address 4 Base address 5 Card Bus/CIS System -
Vendor ID
30h 34h 35h 3Ch 3Dh 3Eh 3Fh
Extension ROM|Ability Interrupt (Interrupt | .
] Reserved |] Min GNT |Max LAT
base address index line line
0Bh 0Ah 0%h
Class Code Sub-Class Code Program Interface

55

Figure 2-6-1 class caches

Table 2-6-2 class code cache

Basic Class Device Sub-Class Program) o
.) Device description
Code description code interface
Device built 00h 00h All non-VGA device
00h before class code Device compatible with VGA
definition 01h 01h
00h 00h SCSI Controller
01h xxh IDE Controller
olh Mass storage 02h 00h FDD Controller
media controller |03h 00h IPI Controller
04h 00h RAID Controller
80h 00h The other storage peripherals
00h 00h Ethernet Controller
Olh 00h Token Ring Controller
03h Network 02h 00h FDDI Controller
controller 03h 00h ATM Controller
04h 00h ISDN Controller
80h 00h The other network peripherals
00k 00h Device compatible with VGA
01h Device compatible with 8514
03h Display controller|01h 00h XGA Controller
02h 00h 3D Controller
80h 00h The other display peripherals
00h 00h Video device
04k Multi-media 01h 00h Audio device
device 02h 00h Computer telephone devices
80h 00h The other multi-media devices
00h 00h RAM Controller
05h Memory 01h 00h Flash Controller
controller
80h 00h The other memory controllers
06h Bridge device 00h 00h Host/PCI
01h 00h PCI/ISA
02h 00h PCI/EISA
03h 00h PCI/Micro Channel

56

04h 00h PCI/PCI
01h Subtraction decoding PCI/PCI
05h 00h PCI/PCMCIA
06h 00h PCI/ N u Bus
07h 00h PCI/Card Bus
08h xxh Race Way
80h 00h The other bridge device
00h XT compatible serial controller
olh 16450 compatible serial
controller
02k 16550 compatible serial
controller
16650 compatible serial
00h 03h controller
04h 16750 compatible serial
controller
16850 compatible serial
05h
controller
Simple 06 16950 compatible serial
07h communication controller
controller 00h Parallel port
01h Bi-directional parallel port
0lh 02h Following ECP1.xparallel port
03h IEEE128 controller
FE h IEEE1284 Target
02h 00h Multi-port serial controller
00h General purpose modem
01h Interface compatible with 16450
03h 02h Interface compatible with 16550
03h Interface compatible with 16650
04h Interface compatible with 16750
80h 00h The other communication device
08h Basic system 00h 8259 interrupt controller
peripheral device 01h ISA PIC
00h 02h EISA PIC
10h 10 APIC
20h 10 APIC interrupt controller

57

00h 8237 DMA controller
01h 01h ISA DMA Controller
02h EISA DMA Controller
00h 8254 timer
02h 01h ISA system timer
02h EISA system timer
03h 00h RTC controller
01h ISA RTC Controller
04h 00h PCI hot-plug controller
20h 00k The' other system peripheral
devices
00h 00h Keyboard controller
0lh 00h Digitizer (PEN)
02h 00h Mouse controller
0%h Input device 03h 00h Scanner controller
04h 00h Common Game Port controller
10h Game Port controller
80h 00h The other input peripheral device
) General docking station
0AL Doc.kmg 00h 00h system
Station
80h 00h The other docking station system
00h 00h 386
01h 00h 486
02h 00h Pentium
0Bh Processor 10h 00h Alpha
20h 00h PowerPC
30h 00h MIPS
80h 00h Co-Processor
0Ch Serial bus 00k 00h Fire wire (IEEE1304)
controller 10h Open HCI IEEE1394
01h 00h ACCESS bus
02h 00h SSA serial storage architecture
00h UHC-USB
10h OHC-USB
03h 20k USB without particular program
interface
FE h USB device

58

04h 00h Fiber Channel
05h 00h SM-Bus
00h 00h IRDA compatible controller
0Dk Wireless 01h 00h Consumer IR controller
controller 10h 00h RF controller
80h 00h Other wireless controller
Smart IO xxh Following 120 controller
OEh 00h -
Controller 00h Signal FIFO of address
) 01h 00h (TV)
Satellite -
o 02h 00h (Audio)
OFh communication -
03h 00h (Voice)
controller
04h 00h (Data)
Encryption/decip |00h 00h Applied to network and operation
10h hering 01h 00h Used in entertainment
Controller 80h 00h Used for other functions
Data acquisition |00h 00h DPIO module
and signal
11h processing
controller 80h 00h L
Other controllers of this kind
12h~FE h Reserved
FFh Device not in conformity with the defined class code

Table 2-6-3 instruction registers

Bit Description Preset value
15
14
13

Reserved 0
12
11
10
09 Fast Back-to-Back enable
08 SERR#enable 0

) 1 when wused, 0 when
07 Gradual drive control
unused

06 Parity error response 0

59

05 VGA color table monitoring NON-VGAisl, VGAis 0
04 Memory Write and Invalidate enable 0
03 Special cycle 0
02 Bus Master 0
01 Memory space 0
00 IO space 0

Table 2-6-4 Status register

. |read (R) .
Bit) Function Preset value
/write (W)
15 R/W Parity error detected 1: Parity error detected
System error signal has been|l: The device may generate
14 R/W .
sent out SERR# signal
13 |R/'W Master Abort received Receive Target Abort signal
12 |R/'W Target Abort received Receive Master Abort signal
Target Abort signal has been
11 R/'W 1:error occurs
sent out
10 o 00b:fast
R DEVSEL timing
09 11b: reserved
08 [R/'W Master data parity error 1:error occurs
. 1:supports this function, 0:does not
07 |R Fast Back-to-Back ability
support
06 |R UDF support 1:supports UDF, 0:does not support
. 1:Capable of 66MHz operation,
05 |R 66MHz ability
0:33MHz
.] l:with ability index cacheO:
04 |R Ability serial]))
without this function
03
02
R Reserve 0
01
00

2.7 Read transmission

As with PCI read transfer, take PCI Initiator reading PCI Target as an example,

single data read and burst read are described respectively. Figure 2-7-1 shows single

read transfer; Figure 2-7-2 shows burst read transfer.

Single read transfer, with actions of each described as follows:

Clock 1 When it is detected that bus is in idle (both FRAME# and IRDY#are

60

Clock 2

Clock 3

Clock 4

counter-driven high), initiator begins to conduct transaction on the rising
edge of clock 1. Initiator drives address on AD[31:0], drives instructions on
C/BE#[3:0], and drive FRAME# low, indicating the transaction begins and

there 1s an effective address and instruction on bus.

Clock rising edge, targets on the bus are sampled address, instructions and
FRAME#, address phase are completed. All targets begin to decipher,
deciding the target of this transaction. Initiator drives IRDY# low,
indicating it is ready to receive the first batch of data read from target.
While initiator drives IRDY# low, it back drive FRAME# high, indicating it
is ready to complete the last data phase of this transaction. Initiator stops
driving instructions to C/BE#[3:0] and starts to drive byte enable so as to
indicate the location of the first dword to be read. There is not any target

driving DEVSEL# low and announcing the transaction.

Clock rising edge, initiator is sampled so that DEVSEL# is backdriven high,
indicating that the transaction has not need announced by target. So, the data
phase is not completed, it was prolonged by a clock (a wait state). In wait
state, initiator must continue to drive byte enable and drive IRDY# until
target drives DEVSEL# low so as to announce the transaction. Meanwhile,
target drives TRDY# low, indicating that it is driving the first dword onto
AD bus.

Rising edge, initiator and target are both sampled and IRDY# & TRDY# are
driven low. At the same time, initiator latches data and the setting of TRDY#,
indicating the data is valid. The first (also the only one) data is read
successfully. When target is sampled and FRAME# is backdriven high,
indicating this is the last data phase. The transaction is completed, so
initiator drives IRDY# high and stops driving byte enable, target backdrives
TRDY# and DEVSEL# high and stops driving data.

Clock 5 Clock rising edge, bus returns to idle state.

61

CLE

FRAME# || N\ / | .

RDY# | T w/\ . e
TRDY# | :
DEVSEL# |1 % w
GNT# _/

IDEEL

Figure 2-7-1 single read transfer

As with Burst read transfers, the actions of each clock are described as follows:
Clock 1 Initiator drives FRAME# low, indicating that transaction begins, and there is
a valid starting address and instruction. FRAME# must continue to be driven
low until initiator is prepared to complete the last data phase. When initiator
is driving FRAME# low, it will drive the starting address on AD bus and
drive transaction types on instruction/byte enable line. Address and
transaction type are driven onto the bus during clock period 1. During the
clock period 1, IRDY#, TRDY# and DEVSEL may not be driven (prepared
to be taken over by new target). It is maintained to logic high by pull-up

resistor on the system board (requiring system board resources).

Clock 2 Initiator stops driving AD bus. On all signals that may be driven by more
than 1 PCI agent, a reverse cycle (namely dead cycle) is needed. This cycle
is intended to avoid that when one agent is closing its output driver, another
agent begins to drive the same signal (resulting in data collision), target will
acquire the control of AD bus so as to drive the first requested data item (one
to four bytes), transmitting it to initiator. During the process of reading,

clock 2 is defined as reverse cycle, because the ownership of AD bus is

62

Clock 3

Clock 4

Clock 5

converted into the addressed target by initiator. Target is responsible for
continuously backdriving TRDY# high to accomplish this cycle. At the same
time, initiator stops driving instructions onto instruction/byte enable lines,
and uses them to indicate the bytes to be transferred (and the data path used
during the process of data transfer) in the dword that has been addressed so
far. Usually, during the process of reading, initiator may drive all byte enable.
Meanwhile, initiator drives IRDY# low, indicating it is prepared to receive
the first data item from the target. While driving IRDY#, initiator does not
backdrive FRAME# high, therefore indicating that this is the last data phase
of the transaction. During the last data phase, it is required to drive IRDY#
low and counter drive FRAME# high at the same time, indicating it is

prepared to complete the last data phase.

Target drives DEVSEL# low, indicating its recognizes its address and takes
part in this transaction. Meanwhile, target begins to drive the first data item
(one to four bytes, as requested by the setting of C/BE lines) onto AD bus
and drives TRDY# low to indicate the emerge of the request data.

When initiator and the currently addressed target are on the rising edges of
clock four, they both are sampled and TRDY# & IRDY# are driven low,
initiator will read the first data item from the bus. The first data phase
consists of clock 2 and the wait state of target insertion (clock 3, a reverse
cycle). At the beginning of the second data phase (clock edge 4), initiator
sets byte enable, indicating the byte to be transmitted in the first dword. The
rule is when a data phase is in progress, initiator must immediately output
byte enabling necessary to the data phase. If initiator does not know what
will the byte enable of the next data phase will be set to, it may maintain the
backdriving state of IRDY#, preventing the current data phase from ending.
After entering into the second data phase, initiator continues to drive IRDY#
low rather than backdrive FRAME# high, indicating that initiator is prepared
to read the second data item. In multi-data transactions, target (if it supports
burst) is responsible for latching the starting address-to-address counter and

managing the address counters of each data phase.

Initiator is sampled and TRDY# is backdriven high, confirming target is
requesting more time so as to input the second data item, so it inserts a wait
state into the second data phase (clock 5). In wait state, target begins to drive

the second date item onto the bus and drive TRDY# low, indicating the

63

Clock 6

Clock 7

emerge of data item.

When initiator is sampled and both IRDY# and TRDY# are driven low, it
reads the second data item from the bus. This is the end of the second data
phase, which consists of clock cycle 4 and 5. Initiator sets byte enable,
indicating the bytes to be inputted in the next dword. Meanwhile, it
backdrives IRDY# high, indicating that it needs to exceed the time of a
clock cycle before getting ready to receive data. Target continues to drive
TRDY# low, indicating it will immediately drive the third requested data

item onto AD bus.

Target must continue to drive the third data item onto AD bus, initiator
drives IRDY# low, indicating it wants to receive the third data item at the
rising edge of the next clock. Meanwhile, it backdrives FRAME# high,
indicating this is the last data phase.

Clock 8 When it is sampled that both IRDY# and TRDY# are driven low, initiator

Clock 9

reads the third data item from the bus. The third data phase consists of clock
6 and 7. On the rising edge of clock 8, sampling to FRAME# is backdriven
high, instructing target this is the last data phase and the burst transfer made
up of the 3 data phases is fully completed. Initiator backdrives IRDY# high,
allowing the bus to return to idle state (on the rising edge of clock 9), while
target backdrives TRDY# and DEVSEL# high.

The bus returns to idle state (both TRDY# and DEVSEL# are driven high)

64

CLE

FEAME# i_\ ;

IEDY# .E'./_.e

TEDY#

DEVSEL# | ,
o | L/

Figure 2-7-2 Burst read transfer

ShHivie—q

2.8 Write transfer
AS with PCI device write transfer, take PCI initiator writing PCI target as
example, single data write and burst write are described respectively. Figure 2-8-1 is

single write transfer, while Figure 2-8-2 is burst write transfer.

As with single write transfer, the actions of each clock signal are as follows:

Clock 1. When it is detected that the bus is idle (both TRDY# and DEVSEL# are
backdriven to high), initiator begins to conduct the transaction on clock
rising edge. Initiator drives the address on AD[31:0] , drives instructions on
C/BE#[3:0], and drives FRAME# low, indicating that the transaction begins
and there is a valid address and instruction on the bus.

Clock 2. Clock rising edge, all the targets on the bus are sampled and address,
instruction, and FRAME#, the data phase are completed, all the targets start
to decipher to decide the target of this transaction, initiator drives IRDY#
low, indicating its is driving the first written data item onto the AD bus, as

long as the time that initiator drives IRDY# low is within the 7 clock cycles

65

after entering data phase.

When initiator drives IRDY# low, it also cunterdrives FRAME# high, thus
indicating it is prepared to complete the last data phase of this transaction.
Initiator stops driving instructions onto C/BE#[3:0] and begins to drive byte
enable, indicating it wants to be written into the first dword. During clock 2,
target drives DEVSEL# low to announce the transaction; meanwhile, target
drives TRDY# low, indicating it is prepared to receive the first written data
item.

Clock 3. Master is sampled and DEVSEL# is backdriven low, indicating that the
target has announced the transaction. Target is sampled to IRDY# and data
on AD bus. The setting of IRDY# also shows that it has latched the first
valid written data item. The setting of IRDY# instructs initiator and target
are prepared to receive, meanwhile, target is also sampled so that FRAME#
is backdriven high, indicating that this is the final data phase. The
transaction is completed, initiator is backdriven by IRDY# high and stops
driving byte enable, target backdrives TRDY#and DEVSEL# high and stops

driving data.

Clock 4. Clock rising edge, the bus returns to idle state

66

CLE /__./__./__./__./_\
FRAME# || % / et

IRDY# .{'.r}

L
TRDY# | T
pEVSEL# || WAL/ |
e |/

Figure 2-8-1 Single write transfer

Burst writes transfer: the actions of each clock signal are described as follows:

Clock 1. FRAME# and IRDY# are backdriven high (on the rising edge of clock one),
the bus remains in idle state. Initiator drives FRAME# low, indicating the
transaction begins and there is a valid starting address and instruction on the
bus, FRAME# must continue to be driven low until initiator is ready
(already driven IRDY# low) to complete the last data phase. While initiator
drives IRDY# low, it drives the starting address on AD bus and drives
transaction types to instruction/byte enable line- C/BE#[3:0]. Address and
transaction types are driven onto the bus during clock period one. IRDY#,
DY# and DEVSEL# will not be driven (prepared to be taken over by new
initiator and target). And it maintains high with the pull-up resistor on the

system board.

Clock 2. Initiator stops driving AD bus and begins to drive the first written data item
and may immediately starts to drive the first data item onto AD bus. Initiator
stops driving instructions and begins to drive byte enable to indicate the byte

that has been written into target in the currently addressed dword. Initiator

67

drives written data onto AD bus and drives IRDY# low, indicating that data
has emerged in the bus. While initiator drives IRDY# low, it does not
backdrive FRAME# high (because this is not the last data phase). Target
deciphers address and instructions and drives DEVSEL# low, announcing
the transaction. At the same time, it drives TRDY# low, indicating that it is

prepared to receive the first written data item.

Clock 3. When initiator and the currently addressed target are on the rising edges of
target and are sampled and TRDY# and TRDY# are driven low, indicating
that it is ready to complete the first data phase. This is a transfer (single
clock data phase) of zero wait state. Target receives the first data item from
the bus (and sampling byte enable t decide which bytes to be written),
completes the first data phase, and adds 4 to address counter to point to the
next dword. Initiator drive the second data onto AD bus and sets byte enable,
indicating the byte it will write in the next dword during the second data
phase and the data path used, also continues to drive IRDY# low, and it will
not backdrive FRAME# high, therefore indicating that initiator is prepared
to read the second data phase rather than the last data phase. The setting of
IRDY# indicates that the data to be written appears on the bus.

Clock 4. Initiator and the currently addressed target are sampled and TRDY# and
TRDY# are driven low, indicating they are both prepared to complete the
second data phase, which is a data phase of zero wait state. Target receives
the second data item from the bus (and sampling byte enable to decide
which data paths are valid data), completing the second data phase. Before
initiator begins to drive the next data item, it needs some time (because it
encounters empty cache). So it backdrives IRDY# high to insert a wait state
into the third data phase, immediately setting the proper byte enable
necessary to the third data phase. Before target is prepared to receive the
third data item, it also needs more time, to indicate more demands for time,
target backdrives TRDY# high during the clock period. Target again adds 4
to address counter to point to the next dword, although initiator has not the
third data item that can be driven, it must drive a stable signal onto the data

path to prevent AD bus from floating.
Clock 5. When initiator and target are sampled and IRDY# and TRDY# are driven

high, they insert a wait state (clock cycle 5) into the third data phase.
Initiator drives IRDY# low and drives the last data item onto AD bus.

68

Clock 6

Clock 7.

Clock 8.

Meanwhile, it drives FRAME# high, indicating this is the final data phase,
and continues to drive the byte enable necessary to the third data phase until
it is completed. Target continues to backdrive TRDY# high, indicating it is
not prepared to receive the third data item.

Initiator is sampled and IRDY# is driven low, indicating it is transmitting
data, but TRDY# is still high (backdrive state) (because target is not
prepared to receive the third data item). Target is also sampled and FRAME#
is backdriven to high, indicating that the final data phase is in progress,
continuing to backdrive TRDY# high, until it is prepared to receive the final
data item. TRDY# is backdriven to high sampling, target and initiator insert
the second wait state into the third data phase. During the second waits state,
initiator continues to backdrive TRDY# high, indicating it is not prepared to
receive the third data item.

Target and initiator are sampled and IRDY# is driven low, indicating
initiator is still transmitting data, but TRDY# is still high. In response, target
and initiator inset the third wait state into the third data phase, during which,
initiator continues to drive the third data item onto AD bus and maintain the
setting of byte enable. Now, target drives TRDY# low, indicating it is
prepared to complete the last data phase.

Initiator and target are sampled and IRDY# and TRDY# are driven low,
indicating that they are prepared to end the third, also the final data phase. In
response, the third data phase is completed on rising edge of clock 8. Target
receives the third data item on AD bus. The third data phase consists of 4
clock cycles (the first clock cycle of data phase, clock cycle 4, and the 3 wait
states). Initiator stops driving data onto AD bus, stops driving C/BE# bus,
and back drives IRDY# high (enabling bus to return to idle state). Target
back drives TRDY# and DEVSEL# high.

69

CLE

FEAME# ;_\

=] - 00aD -

IRDY# .E':}

e PN N i
e j ; I . ,

DEVSEL# %\
et | L/

Figure 2-8-2 Burst writes transfer

This chapter has described the hardware architecture of PCI interface, pin
definition and configuration cache, etc. Usually, PCI interface configuration cache can
write C/C++ program languages to read and write. However, changing configuration
cache may cause PCI interface card unable to operate. When it comes to this
circumstance of incomplete data, it is better not to change the data in configuration
cache without authorization. Regarding the implementation of PCI interface, it will be
described in the next chapter with PLX PCI 9052 chips and actual examples of

practice kits made of it.

Exercises

1. Give examples to describe PCI_Master, PCI_Slave, and PCI_Initiator, PCI Target
device.

2. To understand the definition of cache by reading PCI configuration cache, please
have a try to describe with actual computer device.

3. Have a try to describe the relevant data that will replace PCI interface in the
future.

4. About the relevant applications of PCI interface, give practical examples to

describe its functions.

70

5. Compare the differences between ISA interface and PCI interface.

6. Give examples to describe the advantages and disadvantages PCI interface.

71

Article 2 PCI-1O/LAB hardware description

This article is divided into chapter 3 and 4, which describe hardware lines of
PCI-IO/CAB and the important specifications of chips used. For PLX9050/9052 chips
please refer to chip specification documents of PLX Company. The specifications of
other parts can be found in the disk attached with this manual.

72

Chapter 3 PCI-10/LAB hardware

The hardware of PCI-IO/CAB is designed and manufactured by Leaper for the
electronic circuits of this exercise equipment. This manual will discuss the products
functions in two chapters to help the reader to understand the basic concepts of this

device.
3.1 PCI-10 hardware

Shown in Figure 3-1-1 is the picture of PCI-IO interface card, with
PLX-9050/9052 chip in the middle of this figure as the core of this interface card;
PLX-9050/9052 chip is briefly described in next chapter. To use this chip, a serial
EEPROM as cache is needed, storing characteristics related with this interface card.
Figure 3-1-2 shows the pin of this interface PCI slot; Figure 3-1-3 shows the
producing circuit of 8254 chips and related clock. Figure 3-1-4 shows the decoupling

capacitor, mainly eliminating the noise of interface card.

73

Figure 3-1-1 PCI-IO interface card (engineering version)

Figure 3-1-5 shows part of the decoupling capacitance and chip mode setting.
Figure 3-16 shows Chip LOCAL end interrupted pin, PCI-IC is set to operate under
Non-Multiplexed and the LOCAL end does not produce interrupted input, only uses
the interface card as IO output/input. Figure 3-1-7 shows the serial EEPROM of
PLX-9050/9052, storing settings related with this interface card. Figure 3-1-8 is
PLX-9050/9052 connection diagram. Figure 3-1-9 is resistance network, mainly
connecting PLX-9052 chips and allowing this interface card to have IO function in
conjunction with related setting. Figure 3-1-10 is also a decoupling capacitance.
Plenty of decoupling capacitance is needed on the PCI interface card to mitigate
electricity and noise interference. Figure 3-1-11 is an output clock frequency selection,
4 different kinds of LOCAL end operating clocks can be selected. Figure 3-1-12 and
3-1-13 show RAM and IO port input or output selection, common output may be
unnecessary to be set. However, it must be set when used in input status. Figure
3-1-14, 3-1-15, 3-1-16, 3-1-17, 3-1-18, 3-1-19 shows the circuit diagrams of 1O
respectively, from the diagram we can learn that output and input signals switch
channels here. Figure 3-1-20 is output /input end protection loop. Figure 3-1-21 shows

output joint, output end on the interface card respectively and another output end on

74

the baftle, which is connected to PCI-LAB with a 68-pin connecting wire, while
3-1-22 is IO-BANK selection circuit.

There is an IO-BANKO inside this interface card, while IO-BANK1~I0-BANK4
may also be in it. Normally, implementation can use internal and external IO-BANK,
however, internal [O-BANK mechanism has been fixed to use 8254 chips. The read
himself can also implement 8254-related practice in [O-BANK1~IO-BANKA4.

ADREAH

GHD ADD -
el aonng) picpvons . ™
L P e f Y S —
L— = —TT e E— @or=n
s P e —
|y T ot f——
2 —T 3] Em—— X
AL -L—TN Y.t AD0]
e Do) 10| [,
e LT AECE4S [l
i IO i T é: _: e <7

Figure 3-1-2 PCI-1O card PCI slot

75

WCT q 3
-] Ri
q 24 s
A H oA
i i LI
B =& i i
—L A : c oo HE 4
g o o0 g
1. . - 22‘ = e KT
T EMP
o | ENT
o u]
LD
=T
AACED
Bz

EC KD
(e
ECE OLKA
(ram=]

MLV = COLINTER (G
EREL OOLITER_ DL
b 7L ‘—EE—QU.J..N'EE ol
L ODAMTER OUT

bR ERRER

T

Counter Source

m
bl

External CLE

Internal CLE

N)
]
ML | il

Figure 3-1-3 Built-in 8254 and clock circuit

s

Us Us U7 TS U100 U1l Ulz Ul3 Ul4 UlS Ulse ULT Ul8 U195 U20 U21 U22 U23 U24 U265 U26 U27 U28 U258 ¥1 ¥2
i) T &) T T 7 T T T 7 =

74

Figure 3-1-4 Decoupling capacitance

Non-mullipleted mode:

WO
B
cal e} CEZ RE 47
- e

Ty :I'I'-{:E lﬁl

AT WuFAEY TduFiey !

Figure 3-1-5 Decoupling capacitance and chip mode setting

T

76

Figure 3-1-7

Defauilt: both LINTH and LINT2
are active high intarrupt inpuls.

LINTIY

A2
L

Wiy
R0
1K
2
oo s
e e T |t
0F Sdohn 00 [e—
AT
i WCEHA 0P 5 ot
93C46 serial EEPROM

77

CHEM
CHEIR
CBEI
CHEIS

fi £ [

DSE
PR ¥
ak
FRAKES
CEVEELA
IR
TROS sk ATEEN B
LoCHS ORI, -

£
SEHESLBE [
ADES
BALEAE
o sroes LA
PERAA
d s=rAs
oo
BLASTS
ETERN?
INTAE LADYIS
HEMAORCSS i
RET MEMARHCE1 it
USERZACEDS s
UEERICEA
BOLHD
LoLK +

= LHOD

b L I errg LHOLDH

e e ORI EER AT I

| = il £ AR IEERALLOCH S : g

b Em0 LN

B i T — ok

g unmz {

el W
= - cEl
100F
TEsT
AH
ik

Figure 3-1-8 PLX-9052 connection diagrams

78

F
=
=
B
&
t

11
By

&

i

]

il
B

el B

Ie]
¥

(3]

Figure 3-1-9 Resistance network

'
| i 5} iFj ik} = i
L iuF LiuF) GiuF AuF LAuF) iuF CoiuF) OiuF | Goiuf AuF
e 1= t= to e vt _tor _bes _Yow] oca
LOWF
v
Figure 3-1-10 Decupling capacitance
LCLK source selection, Fil
iz one resistor only
JP1 | LTLE
1-2 | e »mz
R 1-4 | 12 muz
. o | 5.5 | 32 muz
il 7-3 | 33 ME=

Figure 3-1-11 Clock selections

79

B
BRI8

D-‘ =
A 05 et}
BE =5 —Ljv—"'i al, /
AT
BE
AG
A0
A1
BAZ
=513
A4
A5
G
TE1
CEZ
QE
WE
P a1 o 200md
R e —
5 [’
] ——
& 'E_S'!_/ /1
= I01E A
LIV IE

SEE1HI0EAE-12 B0 S00md

Figure 3-1-12 RAM control port (only engineering version has RAM)

80

ur
o1 al Foo
e aF FD_1
o a2 TRz
4 pat LK
DS = FO_4
e b= A
o7 oar FO_E
[o= PO T
poik
=13
piE LR a2
=
N 1| [
[T F
T T g?
LEMTT = =
= [t

ROARRERE

at]
1ata]
ata]
|
et
et]
1]
M
G [T e
Ui e FRI1 i
L LEIAAMN,
— 1 Ty i -
g il it A
[taz o = La)
o oW : B PV
1 164 AAS A
=1 11 o d = K
== 51 1 . P
i nz m— Vi
5 o KT =
S Eie] 303 == o
v i e
i ey]
2a
TALS S S0P
ol
Y.~ I Lz
] 3 R
— 2t o1 =] 11 11 A
- e = s 1z s
— o2 o & 13 1v3 =
g =™ il T3 1] e g
o e e as [HE B 3
— ra o E—Li] s Fard
B =R BTN o ey I
— Ldre oy W I v
oaR -5
TALEZETE BOF LS 50

Figure 3-1-14 I0_PORTO circuit diagram

81

==
UE) BRIz
— a0 101 —_ dEAAN B
e 1y 10z AP
14 e T 2z
R BAE 13 T . %
o ;.'::: ﬁ 11 o q nM
i 3 iz i — AAA
3 o KT ML) T
E o 3 [H2 T P
v 3 Wiy
2 g (eags M
<}
-
i [
v | 21 11 1 2
it £ @ = iy 117 17z =16
- £ud 103 1y3 =l o
214 S = el e 1
e R T L 1 2
idre o @ vz = 3
or o —IE s Va2 4
s o [— #vd 35
T Fo Lpoi =]
R 33
TAEETE LA S0P

7 SaiE]
0 15
% ™1 101 | — 1 BN
] ot I o1 M
Ly 17z 143 e :
Tvd 144 —
= 11 L = r
e= il 21 [e rm P
= BE 243 =15 e & m
Frd 204 M
1= bl 10 T ST
2 P
TALS M S0F
™ FD @
He [T
._"|||: - j-
—- - o1 a1 141 1 2
1= 7| B2 e n e w5y
—= e asfs 182 17 el
T =™ g T R g
T B as2 21 Eyall i
- lidps as T2 vz (£
L o7 P T N Y Y3 [
L Lid e 08 |l 5y v
ot o — M
—) CLR 33
T TALZAA 50F

Figure 3-1-16 IO_PORT?2 circuit diagram

82

i

S— -]
3 24
1 111 181 = S
e e taz L e
1 ™3 143 T =7
T 144 o]
= =71 zn1 M —
i 7z ZAz =l e
= &E 203 o= S|
v A
g pl—
70—
S
b iz uge
LOe
— = o1 al fl f 181 171 ﬁ
ijpz azf& i jaz 1vz Hb
] 12
1 2
1 rd
3

SR
Y
3 A
AN
i

10

=

=

S 1=}
LS g 181
b DA 1z
Adg vz 153
1v4 154
= ER e =il
VE Eeg = —E
= B 2 =B -
V4 204
Ty -y —
2
TILZAd a0F
e G
o s
— 181 171 =i
e 152 1v2 =
— 163 12
— 154 T =t
i 21 v =
T s il o
— TG va =
- 2]
T P 1G
3
TALZ=44 50F

Figure 3-1-18 IO-PORT4 circuit diagram

&3

Wk

i e e
c awF = AN
1€ 1 vz 1eg paa
14 wy s B ol Fh
13 153 Yaroe
1 E AR A
174 154 Yor,
] 11 3
F B A [e A
Have 2 o AN
3 EE P
T4 284 AN
13 b LT D
30 [elk—
AT 50
1144 CE
3 =k
St miie—tiw ol
| o e [[k 14
Hpe azfs 1a 1
-2 D4 a4 = =5 174 T =L
11 25 e [Ll 1
2 e aE =z o
o7 e e] vz
P) 0F el — v
T F1 11
e Cup —o 5
[FEEETR L T T
i e 1s SME-
b lmciccy oo TALEZA4 50F

MR R GRS

Figure 3-1-19 IO-PORTS circuit diagram

84

LET
o) 1 e
T 2 [a 1
9 2 1 2
[] i [=
S0 | = [e 4
O = 8]| 5
e 7 o3 B
(2 g o= i
:-' i o
1M14E SO DOF =
D B4 ORI LA
LS
LS = 1
o] z o] 1
LA [i (=] 2
T -1
[‘é’ (o | i
[= Ly 3 ;
o L [g
oE B o e
8] &
1R 4E COMTT DR 8 |
e ABM4E CORd B DF
—_ RE
L =1
o - -1z
Lo 0 = 4 e 3
L=) ; [] i
J £ = o =
(8 3 - =T)
[i a o g B
|| £33
R4 CORLF DF 2
L0 1hM148 CORTTFI DR
o 1]
Lo] f S 1
L 4] ?

7 3
Lo 5 ~ 4
" o [
o '5 o o 8
ts 8 b o

==r—1]&

1148 COMTT DR]
L1 RMI4E CORR] DF

1 Dt

2 1

| [==

< T 3

= o= |4

T o 5

% _—

-] t.- - g

iF OoF e]
L1z 1BM14E CORR DF

T -

_m_z"'l 3 L 1

=1 s

T . -

11..—“' T 8 b _‘!

o e

—=: oo

— 9 o as -

LI =

1148 COMTT DoF — o
T 1B14E SO DoF

Figure 3-1-20 1O protection circuit

&5

FZ
FUSE mindSBIDCIED SRD

F1
FUSE RGE300 34 DiF

WD o

a
ki Q10
FFOUFEY S o1
SRF.
o 13
~7 o714
0]
o_24
o s
07
027
o2
030
0 a0
03
o_40
ST -
o4z
e
O 44

i

EHECEHEY RN 2R ER

O

RRIDER

Betini 'TF ESpiny

=

SO ARG 3402

Figure 3-1-21 Output joint

BIAGHRERS

v
TLEZTIEOF

S

o
H

Figure 3-1-22 IO-BANK selection

3.2 PCI-LAB hardware

Figure 3-2-1 shows the hardware diagram of PCI-LAB, this section only
describes the common circuit, while the various module circuits are described
respectively in implementation.

Figure 3-2-2 shows the power switch of PCI-LAB, when changing PCI-LAB
modules, please be sure to cut off the power supply to prevent the PCI-LAB from
being burned. As with the power supply of PCI-LAB, we can learn from observing the

86

LED display in Figure 3-2-3 that when PCI-LAB is operating, the red light of this
LED must be on. Close the PCI-LAB, then this LED light is off.

Figure 3-2-2 PCI_LAB power switch

li! RE a0
...‘h.-. 1
S RED LED) J_

-

Figure 3-2-3 PCI_LAB power indicator LED light

87

Figure 3-2-4 shows the 68-pin of PCI-LAB; which is connected to PCI-10
through this, while Figure 3-2-5 is the interpretation circuit of
I0-BANK1~IO-BANKA4. Figure 3-2-6 and 3-2-7 shows the external pin of the PCI
extension module, which can be connected to the external heater, step motor and DC
motor external module. Figure 3-2-8 is the output footer of 8254, and is the output
measurement point of 8254 experiment. Figure 3-2-9 shows the lines of IO-BANK 1
I0-PORTS5 on PCI-LAB, which are used to switch the functions of port-used modules.

The circuits of the rest of the modules are described in detail in examples.

o souRcE QDL SRRCE
FE 33 dFER FET__33 dFiEF
a0 q i s 3
e] T ool a1 P o et
wn — il e Py L]
0 T = i 2 B o0
B " 1 as 2 W /a1
WO, { 3|2 36 I ! e}
R a1 g ra O A I — w1z
E Yol i I 4 22 & A 2 i
hEEL pial P Mgty e o Ol Rivy - iia
T e, | =R o | T el
Trues | b | T e
FF2 IZ ARIEF a2 bl FR14 100 4REF
WIS i] 43 == WEd
i T 3 1] 1" MEE T g e
Ja T = T =11 ke T = 7 s
101 T il 1 T LY P I 3 = TET ¢
401 P Y Lz ar [gy e
N} L B T L W
W eyl it BT b g/l I T]
O - A b A ~)
JOE: e Taa 17 51 A e A
W e, e v #o
g E =5 == g
REd_ 7T dRUEF T B FFS 77 dRUEF
Kz o = e
i A I = e I i - JoHD
O 1 W] N I = s e I [t 7 =i
1o — R | dfzy s R | S A eSS e
s MW | A o | NNV A3
£ X136 . rm Bl ey . et =
e pieE3 gyl o N - o gthgligl P T bihs
KB — o, 2 7s oz 2 iyt - A5
1Rs - s e = Dl A e =
i e, e e, o7
s e e Thuzr
REE I dFuEP 212 Tre FP11_ 22 dFiEF
= 3 T
COUMTER_CIKD - N e] e - i COUNTER CLKI
COUNTER_GO E Pagavd I =T o Pl I COUNTER_G1
COUNTER_OUTD = ¥ = =3 i COUNTER_OUT
QA0 il WA 'Y BEpin W aa 1
L, & =1
o A NTE
I gl = NTH
 BOLRC T a g
12 _BOURCE S e s T
RFZ9
108 EFSF
N E]
e of] oof o
o B
LIS
o6 0 = N
an B N O BARE_1
aaz =] s K} BARK 2
EE] O EAME 3
Voo O—ie] 1 e O BANE 4
an 28 Hz=m o
N [——
- TALETS VoD U
CHES
O S
-

Figure 3-2-5 Explanation of IO-BANK circuit

88

WME
ey
T
o BABE T,
SO TER,_CLED
COUMTER_ G0
SO TER_CRITO

Figure 3-2-6 cartridges pinl

1Z:2F i 1807 2 Ornim Miad o Conimeecficr

Figure 3-2-7 extension module pins 2

COUNTER_CLK 1
COUNTER_G1 z
COUNTER_COHUT 3

P

-

Figure 3-2-8 8254-output ends

&9

BEIL 108 EFOE

2R R]
o —
W5
LEn
A2 141 171 —LE_“ m W0 ECT_EM
o 152 IVE =t B kil LOD EEL
JoEd 143 el i Wz e TA_CE
WIS 1 e Y = Vi AD_ 5
oas
e e A B TALE e
s = EL 3 "
(ALY TR X ¥4 s
A W Bl
O B »_d’;: 15 B V1 WO _WR
5 i 0RO
TALEA 2 mp
TALS 125

L i

000 0 o o
'm 'm'o'm'o'n'do'n

[=]

Ao

50

i? SRR =D
1

CEIE
=R [o)

AH)ed

Figure 3-2-9 PCI-LAB function and parameter switch

90

Chapter 4 Brief introduction of related chips

This chapter introduces PLX PCI9050/9052, 93C46 serial EEPROM and 8254
chips. 9050/9052 chip is the core of the interface card in this experiment, and 93C46
used to memorize the PCI cache data in this interface card, while 8254 is the built-in
counter of this interface card, the rest of the parts are 74 series logic gates, so this
article only briefly introduces these three kinds of chips.

4.1 PLX9050/9052 chip

PLX9050/9052 chip is PCI Slave chip, mainly connects the PCI bus and common
logic bus. This series of chips have powerful functions, which can be designed into a
PCI-to-ISA keyed and can use 10 output, with several kinds of modes available for
choosing. Shown in Figure 4-1-1 below is the sketch of external framework of this
series of chip, with serial EEPROM providing 9050/9052 chip PCI Host and Local
end configuration information; one end connects PCI bus, the other end can be
connected to the IO controller or memory. Generally, this type of chip connects the
DSP or FPGA chips, etc., forming an IO control board. Figure 4-1-2 shows the pin
diagram of this type of chip.

91

AD[31:0 LAD[3T0]
UBE[30} LA[27:7
PAR LBE|3:0]
FRAME? LINTi1
RO LINTiZ
TRDY# = LCLK
STOP S LHOLD
IDSEL I= LHOLDA
é o DEVSELT 4 LRESET#
= PETL &= BCLED
¢ SERRE (= s (100
LISE ROANAITO
LUSER1/LLOCK
ClK LIS ERZCS 28
RS TE USERICS38
[T ADSE
LOCKS BLASTE
WRE
PCI 9050 (R
VWRA
EESK LROYi#
Cerial EEDO . BTE RMi
EEPROM 4 EEDI ALE
. EECS : MODE

Local Bus

/O Contraller

Mermary

Figure 4-1-1 PCI 9050/9052 external structure diagram

92

voo

LAz?

Anse
ELAST#
WWRe

RD&

LWiR=
LRDY#
ETERK?
Chor

5ls
LRESET®
LHOLDS
LHOLD

LCLKE

LIMTI2
LINTH
USEROWEAITOR
USERTLLGOCKaE
USER2ICE2E
USER3CE3E
EECS

EEDD

EESK

EED

oo

V58

RET

CLE

AD

AD2

AD22

AD2E

AD27

ADze

AD23
AD24
C/BE3#
IDSEL

A

VoD

2
3
4
5
b
[
a
9

o

BE
o & <

AD2G
Alle
ADTR
Am7
voo
Allh
C'BEZA

w
el
=

IRDE

TEST
L&a

a7

T

£

L4&

L45

a5

PCl 9050

TRV

STOP#

Lk
PERRE
SERRE
PAR

22

(BE1£
AMMS

23
]
25

=
=
=

A3

Lad

a4
a3

L43

28

A2

L4z

32

19
30
3

AR

L&D
L&m

a

an

ACe
ACs

Lan2

49

a2

LaD3

&8

i)
1
15
36

CIBECE
aD7

A%

LAY
LALS
LADR

LADT

7
B6
B5
Bd
B3

37
a3
35
a0

A4
ACA
A2

V5

LALS
LADA
VLo

B2
81

V55
LADID
Lapn
Lapz
Lap3
LAD4
LAD5
LAD TR
Lap7
LaDe
Lape
LaDzn
MOCE
HE
Voo
V§E
ALE
ECLED
LAD2Y
LAD22
LAD23
Lamad
Lap2s
LAD2E
LAD27
LAD2R
LAD29
LAD3D
Lapy
ViE
Voo
LBEQ#
LEE1#
LBE2#
LBE3=
Ne
INT&=
apa
A
Voo

Figure 4-1-2 PCI 9050/9052 pin definition diagram

93

Configuration Serial EEPROM

st
L s — User-specified

FCI Bus register
Tl initialzation

Run-Time

Machinas FIFOs

 Width ig-, 16-,
PFETE% — Direct Slave Read —— local Master 0,314,%

30-bit, 33MHz PC Bus

Xors) ; Joriped, =8
o — Djract Slave Wit P "0 [

32-hit, 40MH z Local Bus.

Figure 4-1-3 PCI 9050/9052 internal structure diagram

Figure 4-1-3 is the internal structure diagram of PLX 9050/9052. This chip
structure can use PCI function of standard C/C++ language without the need to use
the development library supplied by the PLX company and PLX 9050/9052 RDK kit
(Rapid Develop Kit) had been issued for many years. If the reader wants to design the
advanced PCI experiment card by himself, this kit is another development mode.

PCI instructions supported by PLX PCI9050/9052 chips are shown in table 4-1-1.
Because this chip is PCI Slave chip, part of the functions cannot be used. The basic
operating mode is divided into 2 modes: Non-Multiplexed and Multiplexed, which
needs to be adjusted from hardware as listed in table 4-1-2, while LEAP PCI-10
interface card used in this manual is set to be Non-Multiplexed. The rest of the
settings are software settings, stored in 93C46 EEPROM; most of the settings of this
chip are done by means of software, which can use PLXMON supplied by the PLX
Company to conduct configuration modifications. However, this manual does not
provide this function so as to avoid interface card damages.

Here, this manual describes the differences between Big Endian and Little Endian.
Figure 4-1-3 shows the comparison between Big Endian and Little Endian. From this,
it can be learned that the high, low bits of the two are arrayed in reverse order. Figure
4-1-4 shows the sketch of the conversion between the two, the operating modes of
these two memories depend on the differences of the IO controller.

Table 4-1-1 Instructions of this PCI chip

94

Command Type Code (C/BE[3:0]#)

/O Read 0010 (2h)

/O Write 0011 (3h)
Memory Read 0110 (6h)
Memory Write 0111 (7h)

Configuration Read 1010 (Ah)
Configuration Write 1011 (Bh)
Memory Read Multiple 1100 (Ch)
Memory Read Line 1110 (Eh)
Memory Write and Invalidate 1111 (Fh)
Table 4-1-2 operating mode
MODE Pin Mode Bus Width
0 MNon-Multiplexed _
- 32-, 16, or 8-Bit
1 Multiplexed
Byte Numbear
Eig Endian Little Endian Eyte Lane
3 0 LAD[7:0]
2 1 LAD[15:8]
1 z LaD[z3:16]
] 3 LAD[31:24]

Figure 4-1-3 Comparison
Little Endian with Big Endian

Little Endian

[Br1E0 | BYTE 4

EYTEZ EYTE2

Big Endian

Figure 4-1-4 Changeover between
Little Endian and Big Endian

95

4.2 Serial RRPROM

Many computer products use memory as its initialization function, which can
change the character of the internal firmware data. Additionally, its internal data can
be reserved even if the system is closed. The memory used is called by a joint name as
non-volatile memory, including ROM, PROM, EPROM, EEPROM and FLASH
ROM, etc., EEPROM and FLASH ROM can even be used as RAM. Regarding its use,
this type of memory can be divided into serial and parallel data transmission methods,
whereby 27Cxx and 29Cxx are serial types, while 93Cxx is parallel. Due to the small
sizes and low costs of serial memory, it has been wisely used on the configuration and
memory of TV channel selectors, software protectors (Keypro) and PCl-related
interface cards and so on.

Serial electronics can erase a larger number of memory pins. This type of
memory are mostly packaged by means of DIP, PQFP and PLCC, has 8 bits data bus,
and controls memory position through more than 10 address buses. It is often used in
BIOS of computer motherboard, BOOT ROM of PCI network card and disk firmware.
The writing and burning of its internal programs are common and convenient. It only
appears to be complicated because its circuit board has a larger number of pins, but it
can still be considered as the mainstream of current erasable programmed memory.
Figure 4-2-1 shows the internal structure of 29F002, this type of memory can use a
memory capacity of 2048Kbits (8x256Kbits) in total. This is the same amount as
other serial memory structure except that the memory capacity and memory block
vary with its types. Serial electronic erasable memory usually has only 8 pins, is
mostly packaged by means of DIP and PLCC. Due to its smaller size compared with
serial memory, it is widely used in the memory of PCI peripheral interface card. This
type of memory transmits data and bus in series, reducing the number of pins so as to
reduce the size of circuit board significantly. This will be the mainstream standard of

future erasable programmed memory.

96

Vee ! ¥ Block Protect Switches DQO-DOQT
Wiag —m

_\,?fff‘:]am | Erase Voltage Generator
é!ﬂlr‘r Input/Output BufTers
Comntrol
WE—™ i
r
Program Voltage
‘l—' s .
Command ;-:nml:n{u STH Y
Register Chip Enable ' Data Latch
— |_..1 Outpist Enable
CE Lowic
0O il i
¥ ¥
Y -Decoder b ¥-Gating
SIBR | 5
; éj)
Voo Detector Timer =
% | X Decoder Cell Matrix
..?F.I .
AD-ALT
3

Figure 4-2-1 29F002 internal structures

This section will describe the interface characteristic and application methods of
serial EEPROM (96C46, 56, 66series) , type 93C46, 93C56, 93C66 is the difference
of memory capacity: 93C46 has1024 bits, 93C56 has 2048 bits » 93C66 is 4096bits.
Some further instructions, 93C46 single instruction needs to use 9 bits, while 93C56
and 93C66 are both 11 bits, with the rest of the structure and functions being the same.
Because this experiment version uses 93C46 as the memory of PLX-9052 chip

configuration, we use 93C46 as an example to describe its principle of operation.

Functions and internal structure of 93C46

93C46 is the serial EEPROM that can access 1024bits, with 64 registers inside,
the length of each register is 16 bits, 1024 bits (1024 bits) in total. Seven 9 bits
instruction controls all actions of this IC, whereby the data can be kept for 10 to 40
years. Figure 4-2-2 and 4-2-3 show its block diagram and pin diagram. This memory
has only 8 pins, with the definition of pins shown in table 4-2-1.

97

DUMMY 'b
HI?DG'T;TAER BT o
il Ly| MSTRUCHOH: s S e
(11 BIfS} —™ R AMES L
ADDRESS ¥ DECODE 5
insTRUCTION ¥ ™ REGISTER AR
DECODE
cs CONTROL EEPROM
AND ARRAY
CLOCK (64 X 16)
GENERATION V. RANGE
DETECTOR
SK E
3
I e e
ENABLE GENERATOR
Figure 4-2-2 29C46 internal structures
© N/ o0 N/
cs]! s|Evee Ne g [NC
Sk]2 7BNne vee 2 7 GND
pI]3 6 INC cs]3 61DO
DO 4 sEGND sk[]4] mm I
PDIP-8L / SOP-8L Rotated SOP-SL
Figure 4-2-3 29C46 pin diagram
Table 4-2-1 29C46 pin definition
Pin | Chinese definition | English definition Description
CS Chip select pin Chip Select Chip read/write places this signal at
high potential
SK' [Serial Data Clock pin| Serial Data Clock |Read or write synchronous clock of]
various bits data action
DI |Serial Data Input pin | Serial Data Input |Serial Data Input pin (go with SK
signal)
DO | Serial Data Output | Serial Data Output [Serial Data Output pin (go with
pin SKsignal)
Vee | Power Supply pin Power Supply |Chip power cord
GND Ground pin Ground Chip ground wire
NC No Connection No Connection |No connection (unused)

98

93C46 instruction structure

7 instruction structures of 93C46 are shown in table 4-2-2, the length of each
instruction is 9 bits, which transmits address and data signals in a serial manner
mostly in conjunction with the SK clock signal. The first bit is the starting bit and
must be placed high. It judges the actions to be taken through the second and third bit
control code (OP Code). The subsequent 6 bits is address signal, transmits 16bits data
signal again, it will remain in the original action status if it works with SK signal.

Thus it needs to wait for clock signals to access data.

Table 4-2-2 instruction structures

Instruction Definition Starting bit | OP Code Address | Input signal
READ Read 1 10 A5~A0 —
WEN Write Enable 1 00 1TXXXX —
WRITE Write 1 01 A5~A0 D15~D0
WRALL Write All 1 00 01XXXX D15~D0
Registers
WDS Write Disable 1 00 00XXXX —
ERASE Erase 1 11 A5~A0 —
ERAL Erase All 1 00 10XXXX —
Registers
1: digital signal high potential 0: digital signal low potential
Description| A5~AO0: Address arranged from the highest bit to the lowest bit
D15~D0: Data arranged form the highest bit to the lowest bit

Read instruction (READ)

The Read instruction is to read the data stored in 93C46 through DO pin in a
serial manner. To read memory data, first enter the instruction and address signal in
sequence, this action will select the memory register, and place its contents in a 16
bits serial offset register and read the data when the SK signal is on the rising edge.
The serial data read is outputted in the order of “high bits first and low bits later” with

timing diagram shown in Figure 4-2-4.

99

Al AL AL
ol rr [o

TRI-ETATE] 3
- ARTL O W W

Figure 4-2-4 read timing

Write Enable instruction (Write Enable) WEN

To write data into the EEPROM 93C46, this instruction must be issued before
data can be written. Otherwise the write action will be invalid. For this chip, after
adding power is turned on, EEPROM is in an unwritable status, and after this
instruction is issued, it enters the writable status. Data write is controlled through
write instructions. After the writable status is enabled, it will be maintained until the
power supply disappears or issues instructions that forbid the write function to close

write. Figure 4-25 contains the timing diagram of write enable.

i
N e X
ol /T\"] '}/1 1 \\ by \

DO = TRI-STATE
A3-A0 don't care.

Figure 4-2-5 Write enables timing

Write instruction

Write instruction writes 16 bits data into the designated memory address. Input
the instruction and data in conjunction with SK clock signal in a serial manner.
After write is completed; CS should be kept at a low potential (at least 250ns). When
CS changes back to high potential, DO pin is at low potential and indicates that the
write action is not completed (busy). Oppositely, if DO pin is high potential, it
indicates that the write action has been completed (ready) and the next instruction

may be implemented. Before proceeding to this instruction, write enable instruction

100

must be executed first so that write action can operate properly. Figure 4-2-6 is the
timing diagram of writes action.

e | [[} I_I L

L
« MO AN PR AT

1l
L
— || -t - t
DO TRI-STATE o o BUSY
READY
—

Figure 4-2-6 Write timing

Write all instruction

Write all instruction writes 16 bits data after the instruction into all memory
registers, whose contents are the same. The address column of this instruction is
useless. After completing inputting instructions and data, CS must be kept low
potential (250ns). When CS changes back to high potential, DO pin can be used to
indicate whether the write action is completed or not, which is the same as the method
of write instruction in operating. Figure 4-2-7 shows the timing diagram of this
instruction.

it

o5 Ir

o — MMM UL
- Iyl
DI ﬂt‘ o ¢ /\k F:r

oo TRI-STATE i

TA3-AD don't care.

Figure 4-2-7 Write all timing

Write disable instruction
Write disable instruction forbids any write action, protects the data from being
modified unexpectedly. After the data is written, this instruction can be issued to

ensure the safety of the data. Its timing diagram is shown in Figure 4-2-8

101

- SN oo 0 o x---Tox

DO = TRI-STATE
AI-AD dont cara.

Figure 4-2-8 Write disable

The instruction to erase register contents (Erase)

When erasing the contents of a memory register, this instruction, which erases
the register contents of designated addresses, may be issued. After this instruction has
been issued, it is necessary to judge whether this instruction has been executed, which
is of the same manner as write instruction in operating, with timing diagrams as

shown in Figure 4-2-9.

1F]
ci J rr

[n]]

TRI-ETATE =
Do T

Figure 4-2-9 Erasing register contents

(Erase All instruction) RAL

After this instruction is issued, all the contents of registers change to high
potential. The same thing occurs with write instructions in operating mode. With the
timing diagram as shown in Figure 4-2-10. Generally, before data is written, the

contents of the registers may be erased first, and the write action may be carried out.

102

£l

- 4 T

ol frT\\ﬂ 2 frT\\Uf x""'ﬂ"'ﬁ
[

TRI-STATE
Do B

**A3-A0 dan't care.

Figure 4-2-10 Erase all timing

4.3 8254 timing/counting chip

It is a simple method to count time with software. However, the accuracy is not
high. The timing speed is affected by operating systems and peripheral hardware,
unable to achieve the accuracy of “within one 1ms”. When the software timing
program is executed, the execution of other programs is interrupted. Moreover, it
consumes the time for the microprocessor to process. Consequently, the hardware
counter appears to be more important to achieving real-time execution efficiency and

peripheral execution.

8254 1is the timing/counting chip that can be programmed, is widely used in
design and experiments of ISA interface, with maximum operating frequency of 8
MHz. The modified 8254 are 10MHz, can still be used in experiment of PCI interface.
Generally there are speedier timer/count chips available for use. This chip has a
read-back function, which can lock information such as count timer value or status in
any case to facilitate reading. Each 8254 has 3 sets of independent counters, the count
length is 16 bits, the highest count frequency is 8MHz, 2 sets of counters can be
connected in a series to be used to achieve a count length of 32 bits. Figure 4-3-1 is
the function block diagram of 8254 timer interface, while 4-3-2 is the pin diagram of
8254.

103

DATA
BUS
BUFFER

READ/
WRITE
LOGIC

CONTROL
WORD
REGISTER

it

=

COUNTER
i}

|-———CLK 0
-——— GATE D

F— QUT 0

4

INTERNAL BUS

COUNTER
i

———— CLK 1

&——— GATE 1

— OUT 1

(o

COUNTER
2

-——— CLK 2
-——— GATE 2

P OUT 2

i

Figure 4-3-1 8254-function block diagrams

CORNER I Y o o e A O |
/ 4 3 2 1 28 271 2%
Da [:1 5 25 INC
pa[]s 24[1Ts
pa2[] 7 23[] a1
oi[]s 82C54 22|] a0
Dol] 9 7] cLk2
cuko[] 10 20[JouTz
nc[] ¢ 1o] GATE2
12 135 ¥ 15 16 17 1B
OO O0OJ o0 o o
OUTO GATED GND NC OUT1GATE1CLK1

Figure 4-3-2 8254-pin diagrams

Like 8255A, the use of 8254 chips needs 4 I/O addresses, which are selected by
ﬁ, Vﬁ, &, A0 and Al pins of 8254. ﬁ, Vﬁ, Pins are I/O read/write control
signals, CS chip selection signal is connected to PLXPCI9052 chip, so I/O address
assigned by 8254 is A40h~A403h of IO BANKO. A0 and A1 pins are connected to
low base address line A0 and A1, used to select any of the four I/O addresses in 8254.

104

The 3 counters of 8254 each use an I/O address (A400h~A402h), and the remaining
I/O addresses are used for 8254 control ports (A403h), like the control port of 8255A,
control bits are written into 8254 control ports so plan the working modes of the
counters. Each set of counter of 8254 has 3 pins: clock input end (CLK), GATE
control input end (GATE), and signal output end (out), with the functions of each pin

described as follows:

Table 4-3-1 Counter pins

8 MHz The input end of base clock for
CLK timing; the maximum clock frequency

allowed by 8254 is 8§ MHz.

Used to control the start and close of counter,
GATE its function is determined by the working
modes set by 8254 control ports.

The output end of counter, which can be

ouT connected to CLK input ends of other

counters to achieve a counting length.

8254 chip has 24 pins, including bi-directional data bus DO~D7, control lines Al,
A0, RD, WR, CS and 3 sets of counter pins CLK[2:0], GATE[2:0], OUTJ[2:0], the
function of each pin is shown in table 4-3-2 below. Because address lines are used to
select 8254 internal counters and control the register, table 4-3-3 below describes its

actions:

105

Table 4-3-2 Pin functions

Pin Definition Input/output
DO~ D7 Bi-directional data bus Bi-directional
Unidirectional
CLKO~2 Counter timing input
input
Unidirectional
OUTO0~2 Counter output
output
Unidirectional
GATEO~2 Counter gate input
input
_ Unidirectional
CS Chip selection .
mput
- Unidirectional
RD Read control .
mput
- Unidirectional
WR Write control .
mput
. Unidirectional
Al A2 Address line
input
Vce power (+5V) | ----
GND Earth wire | ———-
Table 4-3-3 counter selection
A0 Al Selection
0 0 Counter 0
0 1 Counter 1
1 0 Counter 2
1 1 Control bit register

8254-control field

When 8254 is started initially, its internal counter working modes, count value,
and output signals are in a undefined status, the counter will not enter the usable status
before a proper control bit is written into the control port and the working modes of

the counter and count values are planned. In the summaries of the above tables and

106

figures, the basic read and write modes of 8254 are described as shown in table 4-3-4.

Table 4-3-4 8254-control fields

CS |RD |WR| Al | A0 Function
0 1 01010 Date write counter 0
0 1 0 0 1 Date write counter 1
0 1 0 1 0 Date write counter 2
0 1 0 1 1 Date write control register
0 0 1 0 0 Read counter 0
00 1 0 1 Read counter 1
0 0 1 1 0 Read counter 2
010 1 1 1 No action
1 X | X | X | X No action
0 1 1 X | X No action

8254 working mode

8254 counters can be planned into 6 working modes via control bits. The
following is the description of these 6 working modes.
©Mode 0— (Interrupt on Terminal Count)

Mode 0 is mainly used for event counter, with 8254 counter controlling a certain
amount. If the preset amount is 500, first set the counter to mode 0, load count value
500, CLK signal will count accordingly, the count value, subtracting 1 each time, until
the count value is subtracted to 0. The “OUT” output end sends out a signal, which
can be taken as Interrupt request signals to make data processing easier. Under mode
0, the counter actions are:

1. When it is set to mode 0, the OUT output signal of counter is low

2. GATE signal is used to control the counting actions of counter. When
GATE=high, the counter counts backwards properly; conversely; if GATE
=low, then current counting is paused. The counter continues to count until
GATE signal again rises to high.

3. After new count values are loaded into the counter, the counter begins to act,
now GATE signal must be high, and count value automatically subtracts 1 on

the decreasing edges of CLK signal. At the terminal of counting, OUT signal

107

will be outputted high and the current counting is stopped. Unless new count
values are loaded or new working mode is set, the OUT signal will maintain
high and the count values will continue to be 0.

Again, when a new count value is loaded during counting, the counter will
count from the new count value until the end of counting. If a 16 bits count
value is loaded, the following two events may take place: first when writing
high byte count values, the current counting is terminated; then when writing
low byte count value or loading new count value, the counting work may

continue.

©Mode 1—Hardware Retriggerable One-Shot output

Mode 1 is to take the counter as a one-shot generator that can be planned. The GATE

input end is taken as a trigger signal, when the GATE signal is triggered, a pulse wave

signal that can plan time width will be generated, which is called a one shot signal.

The pulse wave width of this one shot signal is jointly determined by the count value

of 8254 counter and pulse wave frequency of CLK input end. Under mode 1, the

counter actions are:

1.
2.

After mode 1 is set, the OUT signal of the counter will be outputted to high.
After loading the count value and on the rising edge of GATE signal, the user
adjusts the OUT signal to low and the counter begins to count backwards.
When the counter stops counting backwards, OUT signal will again rise to
high.

One shot signals can be repeatedly generated; if after the end of counting,
GATE signal is again triggered, another shot signal will be generated in the
same order as in item 2, with pulse wave width being the same as the old
ones.

This mode has the retriggerable function. If during counting (that is, OUT
signal is low), there is another trigger signal of GATE rising edge, the
counter will start to count backwards from the original count value until the
end of counting. This retriggerable function will make the pulse wave width

of one-shot signal become longer.

. If a new count value is loaded during the process of counting, the original

pulse wave width may not be affected. The counter will count from the

108

loaded count value when the next GATE signal was triggered.

©Mode 2—Rate Generator

When it is set to mode 2, the counter may divide input pulse waves from CLK
with N, and can often be used as interrupt signal generators of real-time pulse waves.
The value of N here is determined by the count valued loaded, but the value should
not be 1. During each counting cycle, OUT signal is low. Except for one short CLK
cycle, during the rest of the time, the OUT signal is high. Under mode 2, the counter
actions are:

1. After it is set to mode 2, OUT signal will maintain high. The counter will
begin to count backward when count value is loaded.

2. When GATE = high, the counter can count backwards; conversely, if GATE=
low, the current counting is stopped and forces OUT signal to be outputted
high.

3. During the process of counting (that is, GATE is high, and after count value
is loaded), OUT signal is maintained at H. Till the time when the counter
counts backward to 1, OUT output is low, then to O (that is the end of
counting). Now OUT signal will again rise to high. If after the end of
counting, GATE signal remains high, the counter will again begin to count
from the original count value, and repeats in cycles until the counter changes
to another working mode, or a new count value is loaded, or the GATE signal
comes to high.

4. If a new count value is loaded during the process of counting, the current
counting cycle may not be affected. It will count from the newly loaded

count value till the next counting cycle.

©Mode 3-- Square Wave generator mode (Square Wave Mode)

Except for different output of OUT signals, the counter action of mode three is
similar to that of mode 2. When operating under this mode, the counter, after dividing
the signal frequency from the CLK input end with N, outputs a square wave whose
duty cycle is about 50% from the output end. That is, the square pulse wave whereby
high and low account for half of the time respectively. When N is even, the square

wave is half of the time occupied by high and low multiplies cycle time of the CLK

109

pulse wave. When N is odd, then the time taken by high is-- (N+1) / 2 multiplies cycle
time of CLK pulse wave, while the time taken by low is (N—1) /2 multiplies cycle
time of CLK pulse wave. In other words, if N is odd, then the high of the OUT signal

will have one more CLK time then the low.

©Mode 4-- Software triggered strobe control signal output (Software Triggered
Strobe)

This working mode is to take the counter as strobe control signal generator

triggered by software. Under mode four, the actions of counter are:

1. After it is set to this mode, OUT signal will be outputted high.

2. GATE signal can control the actions of counter. When GATE is high, the
counter can count properly. When GATE is low, the counter stops counting.
However, GATE signal may not affect output to OUT.

3. After the count value is loaded (now the GATE signal is high, output of
OUTPUT signal should be low), the counter starts to count backwards. At the
end of counting, OUT output is low, and counts to 0 again. After lasting a
period of one CLK cycle, it again rises to high, which is the control signal.
To send out a new strobe control signal, a new count value may be loaded
upon the end of counting.

4. If a new count value is loaded during the process of counting, the counter
will continue to count from this new count value until the end of counting. If
a 16 bit count value is loaded, the following 2 events may take place: first,
when the high byte count value is written, the current counting is stopped;
then when writing low byte count value, the counting work may continue

from the count value loaded.

© Mode 5--Hardware Triggered Strobe signal output (Hardware Triggered
Strobe)

Like mode 4, this mode also takes counter as the generator of strobe control signal.
However, mode 5 takes the rising edge of GATE signal as the trigger signal of strobe
control. Under mode 5, the actions of the counter are:

1. After it is set to this mode, the OUT signal will be outputted high.

2. After the count value is loaded, the counter will not count backwards, it will

110

not begin to count before the trigger signal of GATE is on a rising edge. At
the end of counting, OUT is low, and will rise to high after lasting for a
period of a CLK cycle.

3. If before the end of counting, GATE signal is again triggered (rising edge),
the counter will count from the original count value until the end of counting,
namely the counter now has the function to be triggered again.

4. If a new count value is loaded during the process of counting, the current
counting work may not be affected. Only when the next GATE signal is again

triggered, the counter will count from the new count value.

Read the count value of 8254
It is usually desirable to read the present count value of 8254 without interfering
with the counting work of 8254. Generally speaking, there are 3 methods to read 8254

count values, which are described as follows:

© Common read command
Read count value with common control port command. The shortcomings of this
method is that it is unable to read the count value that is being counted, to read the

right count values, the counter must stop working.

© The locking command of counter
In the control bit of 8254, there is the command of counter locking. This command
can lock the count value of designated counters, then read count value with common
counters. Like control bits, this command must be written into the control port of
8254 in the following formats:
SCI and SCO are used to select 3 counters, D4, D5 must be 0, while DO~D3 is
any value; usually we set them to be 0. After this command is written into the
control port, the count value of selected counter will be locked in the latch circuit
inside 8254, and be kept until it is read. After the count value in the latch circuit

is read, data in the latch circuit will change with the count value.

© Read-back command
This command can not only read the count value of the counter, but also read the
status of the counter. This command is also written into the control port by means of a

control bit, which is described as follows:

111

I. CNTO~CNT2 are used to designate counters, that is, when either of
CNTO~CNT2 is set to 1, one counter is designated. For instance, when
CNTO0=1, this read-back command is only valid for counter 0.

2. When COUNT=0, lock the count value of the selected counter for reading,
this command has the same function as the above-mentioned counter locking
command.

3. When STATUS=0, lock the selected counter status data, then the status data

of the counter can be read.

As with initial value setting of 8254, when power is turned on, 8254 remains in
an undefined status, the output of various counters, count values and operating modes
are not defined. To use 8254 to make it act properly, control field data needed must be

written into registers, the unused counters need not be set.

D7, D6 (SC1, SCO0)

D7 and D6, the two highest bits in control field, are used to select any of the
three counters or read back instruction. To select counter 0, SC1 and SCO in control
field must be set to 0; to select counter 1, then SC[1:0] =01. Similarly to select
counter 2, SC[1:0] =10. It is read back instruction when SC[1:0]=11.

D5, D4 (RW1, RWO0)

The two bits D5, D4 are the high/low bytes that set read/write into various
counters, or locking instructions of the counter; the counter is 16-bit register, which is
divided into high bytes and low bytes. If high byte (D15~D8) is selected, then low
byte (D7~DO0) is cleared to be 0; conversely, if low byte (D7~D0) is selected, then
high byte (D15~D8) is cleared to be 0. If high and low bytes are selected at the same
time, the low byte action will be done first and the high byte actions second when

reading or writing data. When RW[1:0] =00, it is counter locking instruction.

D3~D1 (M2~M0)
The value of this bit determines the operating modes of various 8254 counters.

The operating modes of various counters that can be set include six types.

DO (BCD)
This bit is used to set write counter value to be hexadecimal or decimal. When
D0=0, the count value written is hexadecimal. In this case, the maximum initial value

of counter can be FFFFH; when D0=1, the count value written is decimal, and now

112

the maximum initial value of counter can be 9999. As for which scale to use, it may
depend on the actual situations: if the count value exceeds 9999, hexadecimal code

can be used.

113

Article 3 PCI interface experiment software hardware

basic setting

Leaper electronic company manufactures PCI interface experiment cards used in
this book. The use of PCI 9052 chip of US PLX company as its core, together with
8254 timer/counter, 16V8(PLD), memory 93C46 and 74 series logic switches enable
this interface card to have the functions of basic I/O cards. This interface card is
designed without hardware interrupt but with many IO so that it can replace the old
ISA interface experiment textbook.

With the current trend of Legacy-Free, ISA/EISA interface cards are about to fall
into disuse, and the R&D of interface circuit is sure to move toward more advanced
interfaces. However, since more advanced PCI interfaces are based on 32 bit, 33 MHz
PCI 32 bits interfaces, this type of experiment textbook must be important in the
areas related with future interface design. This article will describe in brief the
experiment board used, and describe the software and hardware setting of this
experiment board (the hardware portion is divided into 3 parts: assembly language,
Debug Mode, and Visual C++), then describe the setting and operating methods of the

3 types of program languages.

114

Chapter 5 PCI_LAB/IO software setting and description

PCI_LAB/IO is the PCI I/O practice board manufactured by Leaper electronic
company, the hardware portion of which is divided into two major parts: PCI 10
interface card and PCI_LAB, which are connected by a 68-pin cable. PCI_ 10 needs to
be connected to a PCI slot, while PCI_LAB is the experiment board for this practice,
used to observe the experiment result. This chapter will describe its hardware building
and drive program setting, while the software setting and operation will be described

in the next chapter.
5.1 PCI experiment board hardware building

This chapter will describe the installation of the PCI experiment board step by
step. First, PCI-IO interface card must be installed in the PC. Figure 5-1-1 shows how
the PCI-IO interface card to be used. The IO chip used is PLX 9052 chip. While
Figure 5-1-2 shows the sketch of common computer motherboard chassis interface
slot, containing AGP interface, PCI interface and ISA interface. Generally speaking,
the AGP interface slot on the motherboard chassis is brown, PCI interface slot is white,
and ISA interface slot is black. Figure 5-1-3 shows the sketch of PCI slot for this
interface card, any of the PCI slots can be used to plug this interface in. Never plug
into different types of slots to avoid damage to the motherboard chassis slot, and lock
out the screws on the rear board to prevent the interface card from coming off. Figure
5-1-4 is the connection diagram of PCI-1O interface card and PCI-LAB experiment
board, 2 devices are connected using 68-pin connecting wire; the end of which is wide
at the top and narrow at the bottom, and not easy to reverse plugs. With the above
steps taken, software settings can be made.

The change of modules on PCI-LAB and PCI-LAB can be made on this
experiment platform; usually, according to PCI specifications, the power supply of the
computer must be shut off, then can the changes of module and PCI-LAB be made,
which is the safest changing method. However, both this experiment board and
interface board have protection circuit, changes of PCI-LAB or modules can be made
by cutting off the power supply on the PCI-LAB, and power indicator LED is below
PCI-LAB power switch. To make changes, please make sure that the power supply
has been cut off, otherwise software errors may occur to the PCI-LAB or PCI-IP or

there may be risks of hardware being burned.

115

Ptk Vhbinhiiga Labbrdiiis

TR

UG TR

Figure 5-1;2 Interfa;:e slot sketch |

116

Figure 5-1-3 Installing PCI-IO diagram

o = P “!HH '
AR - pa — ; - - J
A% b o Yo | —-E=-L-E -

— =4 e

5.2 PCI-10 drive program setting
This experiment board is PCI-IO and PCI interface board, to install it into the PC,

the drive program must be installed. Currently, the most commonly seen operating
system is Windows 98/ME and Windows 2000/XP, this section will describe the

117

process of loading the drive program in two parts:

The computer operating system for installing this experiment is Windows 98,
with drive program settings as follows: after the computer is started, the system will
search new devices (Custon(OEM) PCI 9050/9052 Board)as shown in Figure 5-2-1.
When you are unable to see the Add New Hardware Wizard window, you can go to
the control panel to select Add New hardware. If this hardware can not be detected,
please shut off the computer and check whether the PCI-IO interface is plugged
securely in the PCI slot, or change the slot of PCI-IO interface card, move PCI-IO
interface card to another empty PCI slot, then start the computer to set the drive
program. Click Next in Figure 5-2-1, then the window is shown as Figure 5-2-2, click
the item suggested to be used, and click Next, then the window in Figure 5-2-3 will
appear. Click the designated position and browse...\Win32\Driver\Wdm in the drive
program, click Next, then the window shown in Figure 5-2-4 appears, indicating the
drive program setting of PCI-IO interface board on Win 98 system has been
completed.

The setting of the drive program installed in Windows 2000 operating system
environment for this experiment module is as follows: when installing PCI-IO
interface in computer system and after the computer is started, window shown in
Figure 5-2-5 will be displayed, informing you that a new device has been detected
(Custon(OEM) PCI 9050/9052 Board), meanwhile “New Add Hardware Wizard”
window shown in Figure 5-2-6 will be displayed. Like the drive program loading
methods under Win98 system. Select recommended options in Figure 5-2-7 window,
and select “Designated Position” in Figure 5-2-8 window, browse
“..\Win32\Driver\Wdm” in the drive program disk in Figure 5-2-9, while Figure

5-2-10 is the window that the installation of drive program has been completed.

118

ISR
b s BT RS E e AR 2 =

Cuztom (OEM) PCT 5050/3052 Board

%Eﬁﬁﬂlﬁﬁ%—ﬁﬁﬁ ' RSP E E:

=

IR Windows B THEEEHHET 7
 fEsdem A REEhTE o - iR E] -

C ETEElREE A E Y - BEECEIEES
HOgESHE >, =

rve| [TE | _w |

Figure 5-2-2 Win98 drive program setting step two

HZEREE

Windows BTETE

E B LT R B e PR R ER
Bz FE [F—F] ' =

;‘éj RRAREE
I ERREE

I~ CD-ROM SERREC)

I Microsoft Windows Updats (b4

Iv 1EREANTE L)

D@t E 2\ W in 3\ Diiverh Wi

BEER..

<t—#®| [T-—#- | it

119

Figure 5-2-3 Win98 drive program setting step three

ISR

@ Custom (OEM) PCI 9050/0052 Board

Windows EIEZ4E i IEEEE S R RR0EE -

HIiH

|

Figure 5-2-4 Win98 drive program setting step four

BB

@ Custorm (OEM) PCT 9050/9052 Board

LD .

Figure 5-2-5 Win2k drive program setting step one

BHERSEEHEEERE

SEEEE R EER SR EERETE, -

MF TR SR (T—F]-

.t—rE| TS, i

Figure 5-2-6 Win2k drive program setting step two

120

S HIISEEEE

FAEWAS T 5T n
S iRdi: 2 — R M EE AR BB B B raEh -

SEEEERS e e =i

@ Crstom (OEM) PCT 9050/9052 Eard

& Rl tE =, 2 Bt e = B ERVE RS 5, - Windows SRERRRENE B3Rk
T - LRI RS REiZFe R - ST R [T —F] -
EEFERITHELEY

(O L Eopiopt s i el e T
O FERRmoEEiEE HatniRahiz =g - B iEE st aRaEniE A)

t—g@| [F-Hw-| ma |

Figure 5-2-7 Win2k drive program setting step three

SHHISESEE

=kBE#EAE o
12 Windows fE (TSRS T2 F A8 37

{3 ¥R SR r A EE T e
@ Cugtom (OEM) FCT 5050/9052 Board

§EEE%H%E‘JEE@JEﬁEﬂE&MTE?EEE‘JHE%EEEF =i HRREh T2

BERaaIeS « ShE [T— 5] - MBISERS R CD-ROM KREE Hd -
S AR CD s ik (T 5]+
BSOS

[LA)

v EEEER)
[Microsoft Windows Updated

e | [FT-#w-| @ |
Figure 5-2-8 Win2k drive program setting step four

LSRR E |
Rl PRy BN s e e S
= S
EH
R SRR
[Sdene =1, i fverh HEE

Figure 5-2-9 Win2k drive program setting step five

121

SHEEEEE

TR FIHIRHEGE

@ Cusztorn (OEM) PCT 20509052 Board

Windows DHESERRFTEE HARS RIS -

FARASS SR S5i% BoAf] -

2o | e e |

Figure 5-2-10 Win2k drive program setting step six

Note: After installing the drive program, the computer must be restarted. After
restarting the computer, the read should confirm under Win98 operating system
whether there is PLXAPL.DLL dynamic linking document in WINDOWS\SYSTEM
and WINDOWS\SYSTEM32 folder and confirm under Win2k system whether there
is PLXAPLDLL dynamic linking document in WINNT\SYSTEM and
WINNT\SYSTEM32 folder. Lack of this document will cause VC/C++ program to be
unable to execute the program and output the results on PCI-IO interface card and
PCI-LAB. In this case, the reader himself can copy this file into the above position

from the disk attached with this drive program.

122

5.3 10 address of PCI-10 interface card

This PCI-1O interface card, after load the drive program, can restart the system.
After the system is restarted, you can observe the 10 base position of this interface
card, because this interface card and experiment board both use 10 port method.
Debug mode and Assembly programs can be written only after obtaining the 1O
address of this interface card, so this part of the information is very important. Also,
this section is divided into two parts: Win98 and Win2k, describing how to observe
the 10 address of this PCI-IO interface card.

To observe the IO port of this interface card in Win98 operating system
environment, by Start\Setting\Console\system or clicking “My computer” in the
desktop, window shown in Figure 5-3-1 appears; by clicking sub-page device
administrator in the window, a other devices can be found. After clicking this device,
window shown in Figure 5-3-2 appears ,and click sub-page resource in the window,
window shown in Figure 5-3-3 will appear; in which the input/output scope shown
ranges from 1000h~10FFh, 1488h~148Bh and 1880h~18FFh. These 3 groups output
scope listed are the 10 ports of this interface.

To observe the IO port of this interface card in Win2k operating system
environment, by Start\Setting\Console\system or clicking “My computer” in the
desktop, window shown in Figure 5-3-4 appears. Like the steps in Win98, select
Device administrator Other devices as shown in Figure 5-3-5, 5-3-6 and 5-3-7 in
sequence, and I/O scope between CO00h~C07Fh, C400h~C403h and C800h~C8FFh
may be found in sub-page Resource. The three groups of output scopes listed are the
10 port of this interface card, the address of IO scope from 00h to FFh is the 10 port

addressed used by this experiment board.

123

Figure 5-3-1

Figure 5-3-2

e S
'in--@ HEE

—f EBEES |Eeses | o |

v AR EEEE (T O EERREREED)

g2y COROM

-2 SCST FEHIR

-] B

B HitsEs

- BRL - AR BRI
-2 BRI

- o B T ST S+
- Y SERELE (COM & LPT)
- BRI

w7y iR

FErE

IO address read one of PCI-IO (Win98)

Cuztom (OER) PCI 9050052 Bosed FIEF

—# |sEEniEs | B |
C@ Custom (OEM) PCT 90509052 Board

dEE LR Hithd=s

BIE R PLE Technology, Tne.
T34 e o ooz
- BEEALRE

iEfEdEE BRi LIEER -
-BEEEH

[T s St)

vV ErEtiEREEs e AEE E)

BE |

HLiH

IO address read two of PCI-10 (Win98)

124

Figure 5-3-3

Cuztom (OER) PCI 9050052 Bosed FIEF

— | EEEiE EE |

@ Custom (OEM) PCT 90509052 Board

v i F EhREsE ()
HiFER | B =]
& B E68 1980 - 19FF
B BEE 1488 - 148B
i) B #EE 1000 - 10FF =
SRR
SRR
R aEE - =]
=
e | m |
IO address read three of PCI-IO (Win98)
2l x|

Figure 5-3-4

%%ﬁ%ﬁﬂ]’@%é& * BRI ~ B - IERRFOEEE

BaxE
EEEE.. |
-BBEEHS
SE a8 ST AR B SRS - 1
m| NERESERSAEERENE -
BEEESRED.. | #BEHSD).. |

- iR

@ R TE s TSR T I EETT T RIRUR SR TEAE -

ERSTEED.. |

me | mm | =Ew |

10 address read one of PCI-IO (Win2k)

125

=10l x|

-2y IDE ATA/ATAPT 354185
45 TS B RAID 3541188
- F i

-2 HihdEE

l-cps B ARS8
- B AR

-2 SRR

]é&v IR R FE T 2R
- W LR (COM & LPT)
H-y ImEREHE ISR
o[g i

-2 PRERREER

r|- S R

G B

ST IR-Cnped

Figure 5-3-5 10 address read two of PCI-IO (Win2k)

i = i —I—I_ O EI
#iTw wAm ||« - | OEM) PC1 905019052 Board FIE5 _ 2] x|
=& ABY1300 —# |sEEes | BE |
B2 DVINCD-ROM Seis
-2 IDE ATA/MATAPI F5153 Custor (OEM) FCI 9050/9052 Ecard
B4 SCST B RAID #3488
o) FfEE
- Hit#kE dEE AR Hihd#sE
@‘Q Custom (DEM) PCI 9050/90: Bt PLY Technolngy, In
e B9 W RS _ : ,
o e B & T 4 (PCIRERHE D » 252 11 - & 0)
EEI--% BRI —EEEAREE
B-Ep SERFEFIEE S EE = T - =
w Y SIS (COM & LPT) U 2
BTy IR RINIEEEE INFATE S S e 22 RARE © 351% [FRERMIRE] 125000
o E BEE -
-0 FHREE
- S8 S E |
HEh g
- BT
g (ERRFLDY:
[EmEEEe =) =
| wE | Ew |

Figure 5-3-6 10 address read three of PCI-10 (Win2k)

126

Custom (OEM) PCI 90500052 Board FIER 2] x|

—#% | @i EE |

Customn (OEM) PCT 9050/9052 Board

EFiEEEEE R

e E= (=]

W ERE o000 - CO7F =

W S EEE 400 - C403

35 BB SR CO00 - COFF =i

SEdeE: [Baooe k2
[| (P e E R EERTE (Y |

ESEEE AR

SRR - |

iz

Figure 5-3-7 10 address read four of PCI-IO (Win2k)

5.4 Configuration cache

As with the interface card PCI-IO of this experiment, software PLXMON of
PLX Company can be used to configure read/write action of cache. This book does
not provide this software, only fetches its cache values for the reader’s references.
Figure 5-4-1 is PCI configuration register. And Figure 5-4-2 is local configuration
register. Readers are specially cautioned not to change the internal values inside the
configuration cache willfully, otherwise it may cause the computer system or interface

card to be unable to act properly. However, we will not describe this in detail.

127

Vendor ID {00k
Revision [D {05k}
Header Type {0ER)
Baze Address 0 (108
Baze Address 1 {141y
Bage Address 2 {18h)
Baze Address 3 {1CH)
Base Address 4 (20h}
Bage Address 5 24
CardBus CI3 Ptr (28h)
Expansion ROM ~ (30R)
Intermpt {(3Ch)
Figure 5-4-1

IS E3

[10B5 | DeviceID {02h) 9050 | Conmand ey [0003 Sims (08h) [~ az80
07 ClssCode (9% [T 000000 CachelLineSize (OCK) [08 Letecy @DW [00
00 BuiltIn 8T ({OFh) r_g_g' [EIST
[ESOO0000 Details.. |
[oon0Enol - [¢] 1O
[DON0AE0T Detadls...
[00004401 Details.. |
[00000000 Dieteils.. |
[E4800000 Detsils..
00000000 §ub VendorID (2CK)[10B5 SubSystemID (2ER) | 9050
]Wonon” ™ Addres: Decods Enable Next Capability (34h) !—UU
[00 IntroptPin (DR 00| Minimum @ [oo Mexlakncy (Fh [00
ox | spply | Refesh |

PCI configuration cache (PCI-10 interface card)

—Ri Regi
Laiga:l Address Space 0 Range (00 I OFFFFFED Details ... I
Local Addres Space 1 Range D4k ['m Dietails .. I
Local Address pace 2 Range (g} I-m Defails ... I
Local Address Space 3 Range 0CH) [m Dietails .. I
Local Expansion ROM Range (g [00000000

— Bz Region Descriptor Registers
Space 0 Bus Descriptor (28h) I 40000020 Detadls ... I
Space | Bus Descriptor SCh) TWDDZ‘D‘ Details ... I
&pace 2 Buz Descriptor {30k I-m Detadls ... I
Space 3 Bus Descriptor {34k]_amTuﬁﬁu‘ Details ... I
Expanzion ROM Descriptor {38h) [_E'_me Detadls ...

ok | ipply | Refresh |

Figure 5-4-2 Local configuration register (PCI-IO interface card)

Description:

(00h)Vendor ID = 10B5 h=0001 0000 1011 0101 b PLX Technology
(02h)Device ID =9050 h = 1001 0000 0101 0000 b 9050/9052 OEM board
(04h)Command = 0003 h = 0000 0000 0000 0011 b with Memory and 1O space
(06h)Status = 0280 h = 0000 0010 0100 0000 b with Fast Back-to-Back ability
(08h)Revision = 02 h = 0000 0010 b Revision No of vendor product
(09h)Class Code = 000000 h All non-VGA device before class code definition
(0OCh)Cache Line=08 h 32 bytes(8 dword)cache lines
(OEh)Latency =00 h PCI Target device need not be set
(ODh)Header Type = 00 h = 0000 0000 b Single function device
disable BIST

(OFh)BIST = 00 h = 0000 0000 b

(10h)Base Address 0 = E500 0000 h
= 1110 0101 0000 0000 0000 0000 0000 0000 b Memory Base

128

1 —ERemap Registers
Local Address Space 0 Remap (14R) | 00000001 55 o0 Enable
Local Address Space | Remap (18hy | 00001001 [81 Enable
Loeal £ddress Space 2 Eemap {1Ch) [oooooooo | T &2 Enable
Local AddressSpace 3 Remap (@0K) [00100001 [83 Einable
Expansion ROM Remap (zahy [0OO00OOD.

1 —Chip Select Registe
Chip Select 0 Base Address {3Ck;| 00000011 | CS0Enabls
Chip Select | Base Address (o [00D0I081 | [C31 Enable
Chip Select 2 Base Address {441 [00ooooo0. [~ CS2 Enable
Chip Select Base Address @8h) | 00120001 [G813 Enable
b ot e gty [00000024 Detedls .
EEPROM Contiol (s0hy [16784604 Detadls .

(14h)Base Address 1 = 0000 BOO1 h

= 0000 0000 0000 0000 1011 0000 0000 0001 b IO Base
(18h)Base Address 2 = 0000 A801 h

= 0000 1010 1000 0000 0001 b IO Base
(1Ch)Base Address 3 = 0000 A401 h

=0000 1010 0100 0000 0001 b IO Base
(20h)Base Address 4 = 0000 h

= 0000 b Memory Base
(24h)Base Address 5 = E480 0000 h

= 1110 0100 1000 0000 b Memory Base
(28h)Card Bus CIS =0000 h undefined
(2Ch)Sub Vendor ID = 10B5 h PLX Technology
(2Eh)Sub System ID = 9050 h 9050/9052 Chip
(30h)Expansion Rom = 0000 0000 h no definition
(34h)Next Capability =00 h without new functions
(3Ch)Interrupt =00 h No hardware interrupt(engineering board)
(3Dh)Interrupt Pin = 00 h No correspondence(engineering board)
(3Eh)Min Latency =00 h time slice request
(3Fh)Max Latency =00 h Priority level request

5.5 Use PCI-10 in Debug mode

To use PCI-10 interface cards in Debug mode, no additional setting is required,
as long as the basic hardware settings are in the above 4 sections, Debug mode
program can be written. The process to open Debug mode is: click Start\execute, as is
shown in Figure 5-5-1. Click Yes after entering Debug, the window of Debug mode
will appear, as is shown in Figure 5-5-2; the program can be written in the window.

Debug mode instructions are discussed in chapter four.

[y SEEE A2 - FEEE - oriE Internet FIERDEHE ¢
: Windows & BEIRIRE -

e | 2= |

Figure 5-5-1 Open Debug mode

129

@] B G5 Allx

Figure 5-5-2 Debug mode working window

5.6 MASM assembly language setting

MASM is the X86 assembly language designed by Microsoft, which is shortened
from Macro Assembly; the editions that can be used for PCI-IO interface cards
include: MASM 6.11, MASM 6.14, MASM 6.15, etc. Form the disk attached with
this book, assembly language compiler folder, or downloading MASM compiler
online, they can be used by unzipping or copying into a fixed folder.

This folder is put in BIN folder in C disk, the assembly language can be
compiled by using Notebook; the storage format can be .txt file, if the file name of
this program is C:\testasm\test.txt, then it should be in Testasm folder; to assembly
this language, use “Start”, “Program”, “MS-DOS mode”, MS-DOS mode displays
“C:\WINDOWS>", key in “cd\bin”, after changing to MASM working folder,
assembly language can be started to be assembled. Figure 5-6-1 shows MASM folder.
Using masm C:\testasm\test.txt instruction, “test.obj” will be generated in the folder.
“.obj” is an Object file, namely mechanical language file. “link C:\testasm\test.txt”
needs to be used to produce a “test.exe” execute file. Usually, test.obj” and test.exe”

file can be generated by using “ml C:\testasm\test” File.

Dozt Lib Libraoy 1ib

130

Figure 5-6-1 MASM folders

5.7 Visual C/C++ standard original setting

Visual C/C++ program language is the C/C++ program language issued by
Microsoft, there are the following basic setting for using this program language to
write programs and using PCI-IO interface card, and notebook can be used to edit in
programming, or to write during the process of compiling programs. First copy
Include and Win32folder into Drive program folder in drive program disk, then
proceed to set.

The environment setting used in this compiling program is as follows, first a new
“Projects” must be opened, as is shown in Figure 5-7-1, and define it as test here. This
Project is in C:\TEST folder, and select Win32 Console Application, following the
windows in Figures 5-7-2 and 5-7-3; file window will appear, as shown in Figure
5-7-4. Figure 5-7-5 is adding the required program edit file; Figure 5-7-6 is adding
PlxInit.c to Source File. Figure 5-7-7 adds PlxApi.Lib to Test File, and sets
PCI_CODE and LITTLE ENDIAN in the setting of Project. Figure 5-7-8 and 5-7-9
show adding Include File and Library file to sub-page Directories in Option window
in Tool respectively. You can start to compile your own VC/C++ program after
completing the above settings.

Files Projects |Workspaces | Other Documents

& ATL COM AppWizard Project name:
<i|Cluster Resource Type Wizard Itesﬂ

& Custom AppWizard
iz Database Project

% DevStudio Add-in Wizard Logation:
&15AP Extension Wizard [eATESTytest E
i Makefile
'f MFC ActiveX ControlWizard
MFC AppWizard [dll])
EAMFC AppWizard [exe] & Create new workspace
i Utility Project 1 Addito curent workspace

= |Win32 Application

|~ Win32 Console Application
|«]Win32 Dynamic-Link Library | |
%] Win32 Static Library

7| Bependency of:

Platforms:
[Wiin32

0K I Cancel

Figure 5-7-1 Open new Projects

131

1 of 1

Yhat kind of Console Application do you
want to create?

A simple application.
€ A"Hello, World" application.
 An application that supports MFC.

< Back Next > | Finish | Cancel

Figure 5-7-2 Select empty Project

ject Information.

Win32 Console Application will create a new skeleton project with the following
specifications:

+ Empty console application.
+ No files will be created or added to the project.

Project Directory:
cATESTitest

: 0K l Cancel

Figure 5-7-3 Results after selecting

132

A=

:l 1’ test files

i Source Files
-_1 Header Files
.- Resource Files

Py B
"5 ClassY... | B Flle\.r'lewl_

Figure 5-7-4 File window of Project

Files |ijects Wurkspaces- Other Documents

=] Active Server Page v Add to project:
=] Binary File
& Bitmap File [test [
1 C/C++ Header File

[# C++ Source File

% Cursor File File

[@]HTML Page

| Jlcon File |tesll

i~=Macro File .

TResource Script Location:

#3 Resource Template Ic:'\TESﬂtest ‘_J

SQL Script File
Text File

OK I Cancel

Figure 5-7-5 Add the program file (.c file) compiled

133

Bcific e i) e

EFVED: |y Common
[} Fidnit.c

] Lt h
BRAHW: [Phdut
8 FERA (T

|C++ Files {c;opp;eaogtlis by tlh; anl;) LI HriH |

IFiIes will be inserted into folder titled 'Source Files' in projec

Figure 5-7-6 Add PlxInit.c file

M File Edit View Insext Project Build Tools Window Help

V7

B EEE | e o DR ey

[Globals)

L”[AII global m(:mberejl & SelectDevice

L=

ERED
=43 Source Files

|Z1 Header Files
-1 Resource Files
‘- |E] PhxApi.lib

i
T4 ClassY... I E] FileView

Wnrkspace 'test': 1 p B

Settings For: IWin32 Debug 'l

B-EE test
| Sou

rce Files
PlxInit.c

#] test.cpp
1 Header Files

; 1 Resource Files
"~ E] PlxApi.lib

General CiCt+ |

Category: IGeneraI

;| Heset |

Optimizations:

|Disable (Debug) =]

Warning level:
Level 3 L‘

I Warnings as errors

I” Generate browse info

Debug info:
!ngram Database for Edit and Continue LI

Preprocessor definitions:
l,_DEBUG,_CONSOLE,_MBCS,PCI_CODE,LITI'LE_ENDIAN|

Common Options:

Inheritance description not available. _;I

-]

Cancel

o]

Figure 5-7-7 Add PlxApi.lib, PCI CODE and LITTLE_ENDIAN setting

134

Editer | Tabs | Debug | Compatibility | Build Directories | Works| [1]7]

Platform: Show directories for:

|win32 =] |include files =]

Directories: EN A I 4
CAProgram Files\Microsoft Yisual Studiol¥CI8\NCLUDE &

CAProgram Files\Microsoft ¥isual Studio\WCI8\MFCAMNCLUDE
cyERENFEZMINCLUDE

0K Cancel

Figure 5-7-8 Designating INCLUDE file

0] pﬁlj T

Editor | Tabs | Debug | Compatibility | Build Directories | Works| [1]]

Platform: Show directories for:

|win32 =] |Library files =]

Directories: i G S
CAProgram Files\Microsoft Yisual Studio\YC98\LIB =

c:\[,ijﬁ$wm'-,nnaue '

Ok Cancel

Figure 5-7-9 Designating Library file

This chapter only describes the setting of the PCI interface card, which mainly
uses PLX-SDK original files to set. The next chapter is the simplified setting methods
after sorting.

135

5.8 Visual C/C++ 6.0 initial environment setting STEP by STEP

PCI 10 interface card Visual C/C++ 6.0 initial environment setting STEP by STEP

PCI 10 interface card Visual C/C++ 6.0 initial environment setting STEP by STEP

1) From Start->Program sets—>Microsoft Visual C++ 6.0->Microsoft Visual C++ 6.0
open Visual C++ 6.0

2) To open and complete Visual C++ 6.0 from File->New, the window has to be
opened then can complete Visual C++ 6.0. It is necessary to build a PROJECT to
compile the program, FIGURE as shown in Figure 5-8-1 appears.

21|
Files Projects | Workspaces | Other Documents |
ATL COM AppWizard Project name:

[=t]Cluster Resource Type Wizard I
[z Custom AppWizard
& Database Project Location:
B DevStudio Add-in Wizard ocation:
& ISAPI Extension Wizard |C:'||.Program Files\Microsoft ¥isu J
| Makefile
®= MFC ActiveX ControlWizard
[MFC AppWizard [dlI)
A MFC AppWizard [exe] * Create new workspace
gUt"iW Project 1 Add to current workspace
#|Win32 Application .
[T 1Win32 Console Application Ll Lzpsndensy i
|%|¥in32 Dynamic-Link Library | =
%] Win32 Static Librany

Platforms:

(VIWWin32

OK | Cancel I

Figure 5-8-1

3) Win32 Console Application using the mouse in the window as shown in Figure
5-8-1 to return it to blue as shown in Figure 5-8-2.

136

2]

Files Projects | Workspaces | Other Documents

£ ATL COM AppWizard Project name:
[=2]Cluster Resource Type Wizard I

% DevStudio Add-in Wizard Location:
B |5AP| Extension Wizard |C:'I|,ngram Files\Microsoft Visu J

58 MFC AppWizard [exe] &+ Create new workspace
i Utility Project = Addto current workspace

= Dependency of:
[+|Win32 Dynamic-Link Library | =]
%] Win32 Static Library

Platforms:
[¥\Win32

OK | Cancel I

Figure 5-8-2

4) Project name (its name) and Location (its storage location) in the window may be
changed, as shown in Figure 5-8-3. This example places the file whose Project
name is TESTPCI in the location of C:\TEST\TESTPCI. Then finally click OK
button using the mouse.

Files Projects | Workspaces | Other Documents |

L& ATL COM AppWizard Project name:
[=¢]Cluster Resource Type Wizard ITESTF‘CI|

& Custom AppWizard

f=1 Database Project _—
DevStudio Add-in Wizard Location:

8 1SAP| Extension Wizard [cATESTYTESTPCI [
| Makefile

#= MFC ActiveX ControlWizard

[MFC AppWizard [dIl)

A MFC AppWizard [exe) + Create new workspace

S Utility Project
®|Win32 Application .
—]Win32 Console Application I Lspsadsncy v

[« Win32 Dynamic-Link Library | j
%) Win32 Static Library

| Add to current workspace

Platforms:
[¥IWin32

OK I Cancel

Figure 5-8-3

137

5) After clicking OK pushbutton, the window shown in Figure 5-8-4 appears. Click
An empty project, and click Finish button using the mouse.

Win3d Console Lpplication - Step 1 of 1 2 x|

Yhat kind of Console Application do you
want to create?

" A simple application.
= A"Hello, World!" application.
" An application that supports MFC.

< Back Next > | Finish I Cancel

Figure 5-8-4

6) New Project Information window as shown in Figure 5-8-5 appears, with content
description such as Empty console application and No files will be created or
added to the project. In case of different information, please close the PROJECT
built previously, and rebuild a new PROJECT again, click OK with the mouse to
end this window. Following the above steps, the Test folder will appear in the hard
disk, in which there will be a PROJECT folder of all TESTPCI built.

138

Wew Froject Information 5'

YWin32 Console Application will create a new skeleton project with the following
specifications:

+ Empty console application.
+ Mo files will be created or added to the project.

Project Directory:
CATEST\TESTPRCI

OK —

Figure 5-8-5

7) Build and complete new PROJECT, start to set the program environment. Shown
in Figure 5-8-6 is the content displayed in the sub-window on the right of the main
window after building and completing new project, click TESTPCI Files, the
cross pattern in the left will be unfolded, displaying the content shown in Figure
5-8-8, then it can be learned that TESTPCI Files consists of three folders: Source

Files, Header Files, and Resource Files.

139

al=

#-E% TESTPCI classes:

't:uassviewl File\r'iewl
Figure 5-8-6

=]

=28 TESTPCI files

4] I W
%3 ClassView | Sl FileView|
Figure 5-8-7

140

=

=-E8 TESTPCI files
(1] Source Files
(2] Header Files
(2] Resource Files

| | ®
't:u:|ass'.riew| FiIe‘JiewI

Figure 5-8-8

8) Click Source Files to return it blue, as shown in Figure 5-8-9, then the window
shown in Figure 5-8-10 will appear from File->New, click C++ Source File to
return it to blue, as shown in Figure 5-8-11. Fill in the name of this file in the box

below the file, and fill in PCI as example.

141

& Yorkspore TES

E-E8 TESTPCI files

iSnurce Fili

[Z1 Header Fil

Al

Wurkspacc 'TESTPCI': 1 pro
E-E8 TESTPCI files

: Source Files

_1 Header Files

1 Resource Files

1 | H

BEClassView | File\r‘iewl_
Figure 5-8-9

Files | Projects | Workspaces | Other Documents |

‘Active Server Page
[+ Binary File

& Bitmap File

&1 C/C++ Header File
[C++ Source File

‘-] Resource |

5 Resource Script

=9 Resource Template
S0L Script File
Text File

v Add to project:

21

[TESTPCI =
File

|

Location:

[cATESTATESTPCI [

OK

| Cancel I

Figure 5-8-10

142

Files | Projects | Workspaces | Other Documents |

] Active Server Page v Add to project:

i:| Binary File

B0

Bitmap File |TESTPCI -]

&1 CiC++ Header File

C++ Source File

%Cursnr File File
HTML Page

| Jlcon File IF":I|

= Macro File

Resuurce Script

= Resource Template IC:\.TES'H.TESTF'CI J

SQL Script File

Text File

Location:

OK I Cancel

Figure 5-8-11

9) After clicking OK, PCI.CPP sample program logic file will be generated in C++
Source File folder, unfold C++ Source File folder, the results shown in Figure

5-8-12 will appear.

==
5 Workspace 'TESTPCI': 1 pro
=-E TESTPCI files
EBS Source Files
: 1 PCL.CPP
-7 Header Files
-] Resource Files

4 | B
' = Class\r'iewl FileView |_
143

Figure 5-8-12

10) Move the mouse cursor onto C++ Source File folder. After clicking mouse right

button and selecting Add Files to Folder, window shown in Figure 5-8-13 appears.
Look for PlxInit.c and add this file by selecting OK, with the result shown in
Figure 5-8-14.

Inzert Files into Project ll il
HBUED: [Relesse -] + & cf E-

Pl mat .
Plnith

BFEHEN: || 0K
SRR T |C++ Files { ¢;cppooroo this by tlh;ind; o) ;I HI:H

Files will be inserted into folder titled "Source Files' in projec
v
Figure 5-8-13

144

S|
5 Workspace "TESTPCI': 1 pro
=8 TESTPC files

: PCIL.CPP

: #] PlxInit.c

i~ Header Files

------- 1 Resource Files

| m
0 C|assview| FileView |_
Figure 5-8-14

11) Click TESTPCI to return it to blue, click mouse right button and after clicking
Add Files to Folder, select Library Files(.lib)in file types , as is shown in Figure
5-8-15. Look for PIxApi.lib and click OK to add it to PROJECT, with the result

shown in Figure 5-8-16.

145

Insert Files mbo Project il
WRIED: [Reboss ~] + @ cF E-
o8] PLicdpd

BEAHEW: | OK
ot w R ihraoy Files (lib) HT/H

Files will be inserted into folder titled "'TESTPCI files' in proje
v
Figure 5-8-15

A=
5 Workspace "TESTPCI: 1 pro
- Source Files

#] PCL.CPP

#] PlxInit.c
Z1 Header Files
-] Resource Files
“-[E] PlxApi.lib

1] I Bl
BE ClassView | File‘-r‘iewl_
Figure 5-8-16

146

12) Open the Window as shown in Figure 5-8-17 from Project—>Settings. Pay
attention to set the whole TESTPCI PROJECT here. After clicking C/C++, the
result is shown in Figure 5-8-18. Enter PCI_CODE and LITTLE ENDIAN in
Preprocessor definitions, as is shown in Figure 5-8-19, click OK to complete its

setting. Here, attention should be paid to the cases of the characters entered.
: 2lx]
j General | Debug | CiC++ | Link | Resources | Bi EE

=3 Source s

% PCL.CPP

Microsoft Foundation Classes:
Not Using MFC <

—Output directories

Intermediate files:

IDt:hug

Output files:
IDehug

[Allow per-configuration dependencies

0K | Cancel

Figure 5-8-17

21

Settings For: [Win32 Debug j General | Debug C{C++ | Link | Resources | Bg EE
Bz
EE Source Files Ll I 'I Eeset |

PCI.CPP

. [¥ Plxdnit.c Warning level: Optimizations:
- (11 Header Files Level 3 - Disable [Debu >
: 9
(1 Resource Files
(- PlxApi.lib [T WWarnings as errors [T Generate browse info
Debug info:
IPrugram Database for Edit and Continue j

Preprocessor definitions:
IWIN32,_DEBUG,_CONSOLE,_MBCS

Project Options:

fnologo JMLd M3 JGm fGX [Z] }Od [D "WIN32" {D o
" DEBUG" D" CONSOLE" (D" MBCS"
fFp"'DebugfTESTPCLpch" fyX jFo""Debugf’ fFd''Debug/” o

0K I Cancel |

Figure 5-8-18

147

Froject Bettings ll ﬂ
Settings For: |Win32 Debug j General | Debug C/C++ | Link | Resources | B; EE

=8
=43 Source Files Dellegfetiel IGE"EMI j Heset |

PCLCPP . L.
Pllnit.c Warning level: Optimizations:
-1 Header Files Level 3 | |Disah|e (Debug) -]
(1 Resource Files
(- PlxApi.lib [~ YWamnings as errors [Generate browse info
Debug info:
Ingram Database for Edit and Continue j

Preprocessor definitions:
I,_DEBUG,_CONSOLE,_MBCS,PCI_CODE,LITI'LE_ENDIAN

Project Options:

{nologo MLd A3 }Gm }GX [Z]}0d JD "WIN32" 1D o
" DEBUG" /(D" CONSOLE"{D" MBCS"
{Fp"'DebugfTESTPCLpch" fvX lFo"Debugf’ fFd"Debugf” [

oK | Cancel |

Figure 5-8-19

13) Open the window as shown in Figure 3-8-20 form Tools—=>Options, select
Directories, and its result is shown in Figure 3-8-21, select Include Files in Show
directories for, and move the mouse cursor to the box under Directories, click
mouse left key on it, as is shown in Figure 3-8-22, click and the status shown in
Figure 3-8-22 will be displayed, and click the ...” Pushbutton on its right to
look for the HEADER FILES as shown in Figure 3-8-24. The result is shown in
Figure 3-8-25. Add the “.h” document corresponding to the PLX chip of this

device here.

148

el
Editor | Tabs | Debug | Compatibility | Build | Directories | Works| [Ty

—Window settings

v ¥ertical scroll bar ¥ Horizontal scroll bar

[T Automatic window recycling ¥ Selection margin

¥ Drag-and-drop text editing

—Save oplions
¥ Sawve before running tools [~ Prompt before saving files

[T Automatic reload of externally modified files

— Statement completion options

¥ Auto list members ¥ Code comments
¥ Auto type info ¥ Auto parameter info
0K Cancel

Figure 5-8-20

0] T Homns _?I EI
Compatibility | Build Directories |Wurkspace | Macros | Data ‘I.Fit:; EE

Platform: Show directories for:
|win32 A i clude files -]
|Qirecturies: R G S

CAProgram Filest\Microsoft Yisual Studio\WCIB\NCLUDE

CAProgram Files\Microsoft Yisual Studio\WCIB\MFCAINCLUDE
CAProgram Files\Microsoft Yisual Studio\WVCIBWATIAMNCLUDE

1] .4 Cancel

Figure 5-8-21

149

]] o _?I 5'

Compatibility | Build Directories |Wurkspace Macrusl Data 'Uif:\: EE

Platform: Show directories for:
|win32 =] |include files |
Directories: T+

CAProgram Files\Microsoft ¥isual Studio\YCI8\INCLUDE
CAProgram Files\Microsoft ¥isual Studio\WCI8\MFCANCLUDE
| CAProgram Files\Microsoft Visual StudiolWCIBATLAINCLUDE

Ok Cancel

Figure 5-8-22

Compatibility | Build Directories |Wurkspace Macrusl Data 'U'iE'; EE

Platform: Show directories for:
Win32 =] |include files |
Directories: X r 4

CAProgram Files\Microsoft ¥isual Studio\WCI8\INCLUDE
CAProgram Files\Microsoft ¥isual Studio\WVCI8\MFCANCLUDE

1] 4 Cancel

Figure 5-8-23

150

Choogze Directorny

Directory name: 0K

DAEASYPCI Cancel

d} = Network...

% eas
CJ Include
3 Release
£ Win32

Drives:
= d: DATA |

Figure 5-8-24

Compatibility | Build Directories |Wurk5pacﬂ Macrusl Dﬂtﬂ”iﬂ; EE

Platform: Show directories for:
|win32 =] [include files |
Directories: F O S

CAProgram Files\Microsoft ¥isual Studio\YCIB\NCLUDE
CAProgram Files\Microsoft ¥isual Studio\WCIS8\MFCANCLUDE

ID:'-.EASYPCH |

Ok

Cancel

Figure 5-8-25

14) Add folder which contains PlxInit.h in the same sequence as step 13, as is shown

in Figure 5-8-26.

151

2]
Compatibility | Build Directories |Wurkspace Macrusl Data 'U'iE'; EE

Platform: Show directories for:
Win32 =] |include files |
Directories: X r 4

CAProgram Files\Microsoft ¥isual Studio\WCI8\INCLUDE
CAProgram Files\Microsoft ¥isual Studio\WVCI8\MFCANCLUDE
CAProgram Files\Microsoft ¥isual Studio\WVCISWATIAMNCLUDE

DAEASYPCNBELEASE

1] 4 Cancel

Figure 5-8-26

15) Select Library Files in Show directories for, add it to the folder where PIxApi.lib
as in step 13, as shown in Figure 5-8-27, then click OK to complete the setting.

21X
Compatibility | Build Directories |Wurkspace Macros | Data Viﬂé EE

Platform: Show directories for:
|win32 =] |Library files -
Directories: FE S S

CAProgram Files\Microsoft Yisual Studio\YCI8\LIB

EC\ IR
DAEASYPCNBELEASE

Ok Cancel

Figure 5-8-27

16) Click PCl.cpp using the mouse, and you can proceed to write the program code.

152

Chapter 6 Program language description

From what is described in chapter five, 10 port address of PCI-1O card can be
read. The reader records this address in table 6-0 below, in which reference 10 address
is the IO address used in the test in this book. The reader must compile the programs
using the setting of the computer host machine. Described below are the instructions

needed by Debug Mode, Masm, and vc/c++.

Table 6-0 PCI-IO interface card 10O address reference values and readers experiment

value record

Input/output |Reference values S Reader’s practice value
cope

scope in this book P (self-record)
Lowest IO scope | A400~A4FF 00~ FF
Second lowest 10

A888~A88B 8~ B

scope

Highest IO scope | AC80~ACFF 80~ FF

6.1 Debug mode instructions

As is shown in Figure 6-1-1 below is the Debug mode instructions for the

readers’ references.

153

Table 6-1-1 Debug Mode commands

Command Use Format
A Assemble A [address]
C Compare C range address
D Dump (Dump memory) D [address] or D[range]
E Enter Memory E address [list]
F Fill memory block F range list
G GO (execute) G [= add exec][[addr]..]
H Hexadecimal addition/subtraction |H Valuel Value2
I Input from port I port address
L Load file L [address]
L Load sector L address drive sector n
M Move memory block M range address
N Name file for Load and Write N file spec [filespec]
O Output byte to port O port address byte
Q Quit to DOS Q
R Display and or change Register/flags |R [register]
S Search list or string S range list
T Trace T [=address][value]
U Unassembled U [address]
. W [address](Write length to center
W Write file
of CX)
W Write sector W address drive sector n

6.2 MASM description

Generally speaking, register of 80X86 series CPU has the following types:
common register: AX, BX, CX, DX; point register: IP, SP, BP, SI, DI; segment
register: CS, DS, ES, SS; flag register: flag etc. While a float-point register (R7~R0)

and a 16 bits status register are added to 80486 portion, these are roughly commonly

seen registers.

Common register: AX (Accumulator store the result of operation), BX (base
registration), CX (counter), DX (date), 32 bits are four registers: EAX, EBX, ECX,
EDX. While AX, BX, CX, DX can be further divided into high low bytes. Figure

6-2-1 below shows its common bit format sketch.

154

EAX

AX

AL

00(01

02

03{04(05

06

07]08

09{10{11{12

13

14|15|16

25

28

Figure 6-2-1 Common register format

Pointer), index pointer and DI, EDI (index pointer) index pointer. The size of a

Pointer register is divided into IP(Instruction Pointer), program pointer, SP, ESP
(Stack Pointer), stack pointer, BP, EBP(Stack Pointer), stack pointer, SI, ESI (Index

segment is 64KB, the address pointed by segment register is the lowest address, and

the four registers do not affect each other, which can fully or partly point to the same

memory address. The Flag register mainly displays CPU status and operation results.

Figure 6-2-2 below shows the bit definition of flag register; while for the rest of

register figures, please refer to books related with combined languages.

1514 (13|12 11

10

09

08

07

06

05

04

03

02

01

00

OF

DF

IF

TF

SF

ZF

Reserved

Overrun

Direction

Interrupt

Single

step

Symbol

value

Zero |Reserved|Auxiliary

AF

carry

Reserved

PF

Odd/even

Reserved

CF

Carry

Figure 6-2-2 Bit definition of flag register

6.3 MASM instruction
Table 6-3-1 below shows the instructions of MASM assembly language; the

reader himself can refer to books related to MASM for more detailed instruction

explanations.

155

Table 6-3-1 MASM instructions

Instruction Detailed)
... Instruction
group division
Data
. . |mov, movsx, movzx, xchg
transmission
Dat Pile address |push, pop, pushf, popf, pusha, popa, pushfd, popfd
ata
o Address
transmission lea, 1ds, les, Iss, Ifs, lgs
access
Form access |Xlat
Flag access |lahf, sahf

Addition |add, adc, inc
)) Subtraction |[sub, sbb, dec, neg
Arithmetic - -
) Multiply |mul, imul
operation — —
Divide div, idiv, cbw, cwq
BCD aaa, aas, aam, aad, daa, das
Logic
) and, or, xor, not
operation
Bit Bittest |bt, btc, btr, bts, bsf, bsr

operation | Flag setting |Setxx
Offset
) shl, shr, sal, sar, ror, rol, rcl, rcr, shrd, shld
rotation
Jump jmp, jXx
Test compare [cmp, test
Loop loop, loopxx
Auxiliary
call, ret, retn, retf
Flow program call
control Auxiliary
program enter |enter, leave
and leave
Interrupted | . i
1nt, into, 1ret
call
String
i movs, scas, cmps, lods, stos
processing
String
processing Each string processing instruction has changes such ad
XXS,8sxb,ssxw,ssxd
Stub code |rep, repe, repz, repne, repnz
1/0 Data I/O |in, out

156

CPU control

String I/O |ins, insb, insw, insd, outs, outsb, outsw, outsd
Direct mode |[lock, wait, esc, hit
Memory
Bound
scope
Address |nap
Protection |lar, Isl, 1gdt, sgdt, lidt, sidt, 11dt, sldt, Itr, str, Imsw, smsw,
mode arpl, clts, verr, verw
80386 exclusive control instruction
Control
.) cr0, cr2, cr3
instruction
Error
detecting |dr0, drl, dr2, dr3, dr6, dr7
instruction
Test
) . tro, tr7
instructions

6.4 PCI-10in C/C++ program language instructions

API needed to be used by this PCI-IO interface card are:
DeviceSelected
PIxChipTypeGet
PIxPciDeviceOpen

PIxPciDeviceClose
PIxPciConfigRegisterRead
PlxIoPortWrite
PIxloPortRead

For API of other functions, please refer to PLX SDK Programmer's Reference

Manual document in the folder of drive program in the disk attached with this book.

The above API can use this interface card in a simple way.

As with the actions of this interface card, select the interface card device with

DeviceSelected and PIxChipTypeGet, use PlxPciDeviceOpen to open the interface

card, then use PIxPciConfigRegisterRead” to read 10 base address. Then 10 data can
be outputted with PlxIoPortWrite or inputted with PlxlIoPortRead. In the end, the

program executes the action of closing this interface card and completes this action

with PIxPciDeviceClose, which may not be used. However, each VC/C++ must have

a start and return-to-zero action. About the samples of each program, the user can

observe its use, now we will proceed to briefly describe the use of PIxPciDeviceOpen,

157

PIxPciDeviceClose, PlxloPortWrite, PlxIoPortRead and PIxPciConfigRegisterRead.

©OPIxPciDeviceOpen:

Format:

RETURN_CODE
PIxPciDeviceOpen(
DEVICE_LOCATION *pDevice,
HANDLE *pDrvHandle

);

Sample:

HANDLE hDevice;
RETURN_CODE rc;
DEVICE _LOCATION Device;

rc = PIxPciDeviceOpen(
&Device,
&hDevice

);
if (rc != ApiSuccess)

{
// ERROR — Unable to open a PLX device

H

©PIxPciDeviceClose:
Format:
RETURN_CODE

PIxPciDeviceClose(
HANDLE hDevice

);

Sample:

158

HANDLE hDevice;
RETURN_CODE rc;

// Release the open PLX device
rc = PIxPciDeviceClose(

hDevice

);

if (rc != ApiSuccess)
{
// ERROR - Unable to release PLX device

}

© PlxIoPortWrite(IO port write))):

Format:

RETURN_CODE
PlxIoPortWrite(
HANDLE hDevice,
U32 address,
ACCESS_TYPE bits,
VOID *pValue

);

Sample:

U32 port;

U32 RegValue;
HANDLE hDevice;
RETURN_CODE rc;

port = PlxPciConfigRegisterRead(
Device.bus,

Device.slot,

CFG_BARI,

&rc

);

159

port = port & ~(1 << 0);
RegValue = 0x00300024;
rc = PlxIoPortWrite(

hDevice,

port + 0x34, // Write to local register 34h

BitSize32,

&RegValue

)i

if (rc != ApiSuccess)

{

// ERROR - Unable to read 1/O port

H

© PIxloPortRead(IO port read):

Format:

RETURN_CODE
PlxIoPortRead(
HANDLE hDevice,
U32 address,
ACCESS_TYPE bits,
VOID *pOutData

)i
Sample:

U32 port;

U32 RegValue;
HANDLE hDevice;
RETURN_CODE rc;

port = PlxPciConfigRegisterRead(
Device.bus,

Device.slot,

CFG_BARI,

&rc

160

port = port & ~(1 << 0);

rc = PlxIoPortRead(

hDevice,

port + 0x34, // Read local register 34h
BitSize32,

&RegValue

)i

if (rc != ApiSuccess)

{

// ERROR - Unable to read 1/O port

}

© PIxPciConfigRegisterRead read:
“Subsystem Device/Vendor ID”

Format

U32

PlxPciConfigRegisterRead(

U32 bus,

U32 slot,

U32 registerNumber,
RETURN_CODE *pReturnCode

)i
sample:

U8 bus;

U8 slot;

U32 RegValue;
RETURN_CODE rc;

DEVICE _LOCATION Device;

RegValue =

PlxPciConfigRegisterRead(

Device.BusNumber,

161

Device.SlotNumber,

CFG_SUB_VENDOR_ID,

&rc
)

6.5 10 definition port of LEAP PCI-10/LAB
10 definition port of LEAP PCI-IO/LAB is shown in Figure 6-5-1 below. LEAP
PCI-IO card shares four IO-BANKSs, each of which has forty-eight IO outputs, and
eight IO outputs form an I0-PORT. As is shown in table 4-0, IO-BANK is built-in
IO-BANK (the user is unable to change it), which is used by built-in 8254.
I0-BANKI1~IO-BANK4 can be used by the reader himself. The 10 address of
I0-BANKT1 IO-PORTO is A410h, corresponding to 100~107 of IO-BANKI1. The 10
address of IO-BANK2 I0-PORTO is A420h, corresponding to I00~IO7 of
I0-BANK?2, while the 10 address of built-in 8254 is A400~A403 on I0-BANKO.
Table 6-5-1 10 definition port of PCI-IO/LAB

Unit 7-segment code LED display & LCD display | Dot matrix LED display
& 4x4 keyboard & buzzer & A/D&D/A | & Logic state input key
/O MAP I0_BANK 1 I0_BANK 2
LCD display LCD DBO0-LCD DB7 ,
Data . - - Dot matrix LED
1/00-107 D/A unit DA DBO-DA DB7
BUS . - - LED COL1
A/D unit AD DBO0-AD DB7 _|
7 t LED a-LED &
yoso1s | 0T SEgEr;en LED) HED-COLIO
; P (OUT)
IN
I/016-1019 | OUT 4x4 keyboard KEY INO-KEY IN3
4x4 keyboard KEY SELO-
1/020-1023 | IN -
KEY SEL3
ouT
1/024-1031 N Logic state input key
SW_1-SW_8

162

/032 | OUT 1033-32=0 enable Dot matrix LED | ROW_SELO
LED7 EN
7 segment -
1033-32=01 enable
LED
. LCD_EN
LCD unit -
/033 | OUT) 1033-32=10 enable Dot matrix LED | ROW_SEL1
/D/A unit -
) /DA_CS
A/D unit -
1033-32=11 enable
/DA_CS
/034 | OUT) 1035-34=10 enable Dot matrix LED | ROW SEL2
Unit read =
. /10_RD
write -
/035 | OUT ol 1035-34=01 enable Dot matrix LED | ROW_SEL3
contro
/1I0_WR
LCD
/036 | OUT . LCD RS
display -
/037 | OUT D/A unit DA _A/B
/038 | OUT Buzzer BUZZER_CTRL
/039 | OUT Fan FAN ON
7 segment Step motor control
/040 | OUT Common cathode SELO
code LED STEP_DRI1
7 segment Step motor control
/041 | OUT Common cathode SEL1
code LED STEP_DR2
7 segment Step motor control
/042 | OUT Common cathode SEL2
LED STEP_DR3
Step motor control
/043 | OUT
STEP_DR4
1/044 IN SENSOR control
/045 IN
/046 IN Fan unit FAN _OUTPUT
/047 IN A/D unit /AD_INTR

I0-BANK4 10-PORTS is A444, corresponding to 1032~1039 of I0-BANKA4.
Another IO PORT is the ninth IO PORT of each I0O-BANK, which defines the output
or input mode of each IO-PORT in this [O-BANK, and is described in the programs.

163

10

10 Port

10 BANK

Sample
value

10 BANK

Sample
value

10 (16 bits)

10 (24 bits)

(32 bits)

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

A410h

A411h

A412h

A413 h

A414h

A415h

A420 h

A421h

A422 h

A423 h

A424 h

A425h

164

6.6 Visual C/C++ simple program compiling description

For programs that use PCI-IO interface card to compile Visual C\C++, the
following program shows that the user can go straight to execute its result as long as
he changes the position of the program compiling zone with program code.

VC/C++ program code:

// start of the program//

#include <stdio.h>

#include "PlxApi.h"

#include "PciRegs.h"

#include "PlxInit.h" // Need to add different Include File to individual program//

int main() //main program//

{
U8 Revision;
uUle6 B
U32 ChipType;
U32 LocalAddress=0;
S8 DeviceSelected;
HANDLE hDevice;

RETURN_CODE IC;
DEVICE LOCATION Device;

IOP_SPACE IopSpace;
U32 port,RegValue;
U32 buffer[64]; /I define the parameters, add by yourself

upon lack of parameters //

DeviceSelected = SelectDevice(&Device); // Select interface card//
rc = PIxPciDeviceOpen(&Device, &hDevice); //PCI-IO card open action //

port=PIxPciConfigRegisterRead(
Device.BusNumber,
Device.SlotNumber,
CFG_BAR3,
&rc); // read base address//

buffer[0] = 0x00000000;

165

port = port & ~(1<<0); // return-to-zero and reset action//
PIxChipTypeGet(hDevice, &ChipType, &Revision); //1O Port setting //
TopSpace = IopSpaceO0;
IopSpace = IopSpacel;

< program writing zone > add program code here

return 1;

// end of the program//

166

Article 4 Basic PCI-LAB experiment examples

Basic I/O experiment conducts related interface test and experiment using the
most basic and simplest element of interface and electronics. This article is divided
into two parts: chapter seven and chapter eight. The pushbutton method is the most
basic input elements in the chapter, while the derived keyboard is a little difficult, and
LED is the principal basic output element. This chapter will focus on LED light and
seven-segment display screen, while LED dot matrix and LED display will be
described in detail in Chapter 8---advanced output experiment. Each chapter or
section will first briefly introduce the characteristics of elements used for basic 1/0
experiment, and then describe the experiment and its application. Complete sample

programs can be found in the sample program folder in the attached disk.

167

Chapter 7 Simple 1/0 experiment

LED is the most commonly seen electronic elements for display, which can
usually be used to display binary data. Whereby LED ON stands for 1, OFF stands for
0. When different LEDs are arranged together in different manners, more information
will be displayed, for instance, when seven LEDs are arranged in the manner shown
in Figure 7-0-1, they can display Arabic numerals symbols. This method is widely
used in electronic watches, electronic instrument, acoustic, which is commonly
known as seven-segment display.

Usually, commercially available seven-segment displays have many
specifications, which can mainly be classified as:

1. Distinguished by the overall dimension of LED display.

2. Distinguished by the colors emitted by the display, usually red, yellow,
green, etc (blue LED is rarely seem). In addition, there are LED displays
consisting of several different kinds of colors.

3. Distinguished by the display unit number contained in the display.

4. Distinguished by the connection methods of LED, which is divided into 2
types: common anode and common cathode.

In addition to specifications such as dimension, colors, brightness, common
anode and common cathode are more important in selecting LED display. This
characteristic affects the design of the LED display drive circuit. Figure 7-0-2 and
7-0-3 show the connection methods of common anode and common cathode LED
displays: the anodes of all LEDs in the seven-segment display are connected together
called the Common Anode. The cathode of all LEDs in the seven-segment display,
connected together is called Common Cathode. Figure 7-0-4 shows the corresponding
seven-segment LED display and Pins for PCI-LAB experiment plate, the format of bit
is ABCDEFGH.

168

Figure 7-0-1 Seven-Segment LED display

Figure 7-0-2 Common anode

Figure 7-0-3 Common cathode

169

Figure 7-0-4 Seven-segment LED display and bits correspondence

To facilitate identification, English letter codes a~g are used to represent the
seven LED. At the lower right corner of the seven-segment LED, there is another
LED point, which is used to display decimal points, and is expressed as symbol dp.
Due to the different Pins for seven-segment LED display manufactured by different
manufacturers, confirming with triple use ammeter is the most reliable method. For
digital ammeter confirming methods, if there is a specialized LED test file, it can
directly use this test file, namely judge the positions relationships between its Pins and
various displays form whether the LED is shining, and find out common contacts and
its polarity. If there is not specialized an LED test file, it can be confirmed using
common diode testing methods. As with pointer ammeter identifying method, transfer
the ammeter to x1 files specially for testing resistance, connect the black testing rod to
LED anode, and the red testing rod to LED cathode, then LED display Pins can be
determined by whether the LED is shining.

Pushbutton switch is the most widely used signal input element, and the switches
take the form of a mechanical switch, electronic switch and photoelectric switch, etc.
These experiments use the relatively simple mechanical switch. Generally speaking,
mechanical switch has two basic types: the first type is normally a closed switch,
which is generally in a closed-circuit (short-circuited) status; it will not become an
open circuit before the switch is pressed down. The other type is normally an open
switch, which is usually in an open-circuited status and becomes a closed circuit when
the switch is pressed down. Since the switch has two statuses: short-circuit and open
circuit, it is easy to match with a digital circuit. When the switch is an open circuit
(namely the switch is not pressed down), we can obtain the potential of H from the
input end by means of a 4.7KQ lifting resistance connected to +5V. Conversely,
when the switch is connected to the grounding end due to closing (namely the switch
is pressed down), then the potential of L will be obtained at the input/output end.

Common pushbutton switches can be used as the simplest logic input device.

7.1 Seven-segment display experiment (DEBUG Mode)

Experiment purpose: use DEBUG Mode to enable the seven-segment display to show
numbers 0~9.

Experiment module: single or six seven-segment LED displays (as is shown in Figure
7-1-1)

170

Figure 7-1-1 6 seven-segment LED display module

Part list:

digital IC:
one 74LS138
one 74L.S240
one 74L.S244

NPN-BJT:
six 2SC945

Analog elements:
eight R 330Q
six R 1KQ
three C 0.1 uF

Seven-segment LED display:

2 three sets seven-segment LED display

Circuit diagram: (as is shown in Figure 7-1-2)

171

[T=11 b T

[T="11 o e

[T = e o

o o el o

] HEE EE
el — = i
T

v

Ba FERERENE| g

£

iy
1 I oA

[

e, —
P g S
i |I R e
AR T |
T
i =

EEEEEERE
(-
-
E

[% R
Bl E

L COECEEED

E
£

......

[aTiE
RIS

Figure 7-1-2 seven-segment LED display circuit diagram

Principle of experiment: 6 NPN-BJT control the display of 6 seven-segment
LED display respectively, whose display bits are controlled by 74LS244 end. The
selected is common cathode seven-segment LED display, 74LS138 and 74L.S240 are
responsible for enabling 3 bit interpretation controls of 1042~1040 to select 7

segment display.

Seven-segment LED display selection

[0[42:
[0[42:
[0[42:
1042
[0[42:
[0[42:

The numbers displaye
I0[15:
I0[15:
I0[15:
I0[15:

40]
40]
- 40]
40]
40]

40] = 000b=0h
=001b=1h
010b=2h
011b=3h
100b=4h
=101b=5h

d:

00111111b=3Fh display 0
00000110b=06h display 1
01011011b=5Bh display 2
01001111b=4Fh display 3

oo o0 o0 OO
—_— e et

172

The first seven-segment LED display
The second seven-segment LED display
The third seven-segment LED display
The fourth seven-segment LED display
The fifth seven-segment LED display

The sixth seven-segment LED display

IO[15:8]=01100110b=66h display 4
IO[15:8]=01101101b=6Dh display 5
IO[15:8]=01111101b=7Dh display 6
IO[15 : 8]=00000111b=07h display 7
IO[15:8]=01111111b=7Fh display 8

IO[15:8]=01101111b=6Fh display 9

IO[15:8]=01110111b=77h display A
IO[15:8]=01111100b=7Ch display B
IO[15:8]=01011000b=58h display C
IO[15:8]=01011110b=5Eh display D
IO[15:8]=01111001b=79 display E
IO[15:8]=01110001b=71h display F

Experiment procedures:

(1)Read PCI-IO interface card IO base address

(2)This function is in IO_ BANK 1, so base address adds 10

(3)IOIO[42 : 40] is in the sixth byte, IO [15 : 8] is in the second byte
(4)Open Debug Mode to write directly

(5)Use instruction “-O (‘address) (data)” output

(6)First set all IO to be output port , then transmit data.

Example:

Suppose that base 1O address is A400h, which is the first IO byte of IO BANK 1,
then the 10 address of IO [42 : 40] is A415h, IO address of IO [15 : 8] is A411h,
displaying 0~9 numbers as follows:

-O A418 00 \all IO BANK 1 are output ports

-O A415 00 \the first seven-segment LED display

-O A411 3F \display 0

-O A411 06 \display 1

-O A411 5B \display 2

-O A411 4F \display 3

-O A411 66 \display 4

-O A411 6D \display 5

-O A411 7D \display 6

-O A411 07 \display 7

-O A411 7F \display 8

-O A411 6F \display 9

173

When the experiment is in output port mode, the outputting of input setting -o
A418 00 can be omitted.

7.2 Seven-segment display experiment (MASM)

Experiment code:

Continue 7.1 seven-segment display experiment (Debug Mode), use MASA to
enable single seven-segment LED display to display numbers 0~9.

MASM program code:

. MODEL SMALL
.386
. STACK

. DATA

I0_PORTO EQU 0A411H;io_bank I io-8~15
I0_PORTI EQU 0A415H;io_bank I io-40~47
OUT_DISABLED EQU 0A408H;io_bank 0
I0_PORTOD EQU 0A400H;io_bank 0
I0_PORTID EQU 0A404H;io_bank 0

. CODE
BEGIN:
PUSH DS
MOV AX, 0
PUSH AX
MOV AX,@DATA
MOV DS,AX

DISP_BEGIN:
MOV DX,IO_PORT1 ; The first seven-segment code on
MOV AX,0000H ;0000_0000

ouT DX,AX

174

CALL COUNT_7SEG
CALL WAIT IS

MOV AH,0BH ;press any key to end the program
INT 21H ;interrupt vector 21h

CMP AL,0FFH

INZ DISP BEGIN

IMP EXIT ;end of the program
COUNT _7SEG: ; display 0~9 numbers

MOV DX,I0_PORTO ; display O

MOV AX,003FH ;0011 1111

OouT DX,AX

CALL WAIT 1S

MOV DX,I0_PORTO ; display 1
MOV AX,0006H ;0000 0110
OouT DX,AX

CALL WAIT 1S

MOV DX,I0_PORTO ; display 2
MOV AX,005BH ;0101 1011
OouT DX,AX

CALL WAIT 1S

MOV DX,I0_PORTO ;display 3
MOV AX,004FH ;0100 1111
OouT DX,AX

CALL WAIT 1S

MOV DX,I0_PORTO ; display 4

MOV AX,0066H ;0110_0110
ouT DX,AX

175

CALL
MOV
MOV
OUT
CALL
MOV
MOV
OUT
CALL
MOV
MOV
OUT
CALL
MOV
MOV
OUT
CALL
MOV
MOV
OUT
CALL
RET

WAIT_1S:

MOV
WAIT_LOOP:

WAIT 1S
DX,I0_PORTO
AX,006DH
DX,AX

WAIT 1S
DX,I0_PORTO
AX,007DH
DX,AX

WAIT 1S
DX,I0_PORTO
AX,0007H
DX,AX

WAIT 1S
DX,I0_PORTO
AX,007FH
DX,AX

WAIT 1S
DX,I0_PORTO
AX,006FH

DX,AX

WAIT 1S

BX,0007FH

; display 5
;0110 _1101

; display 6
;0111 1101

; display 7
;0000 0111

; display 8
;0111 1111

;display 9
;0110 1111

176

CALL WAIT_IMS

DEC BX

CMP BX,0000H

JBE WAIT _1S_EXIT

LOOP WAIT LOOP
WAIT_1S_EXIT:

RET

WAIT_1MS:
MOV CX,03FFFH
WAIT _LOOPI:
MOV BX,BX
MOV BX,BX
MOV BX,BX
MOV BX,BX
MOV BX,BX
MOV BX,BX
MOV BX,BX
LOOP WAIT LOOPI
RET

EXIT:
MOV DX,0UT _DISABLED ;clear all settings
MOV AX,0000H
OouT DX,AX
MOV DX,I0_PORTOD
MOV EAX,00000000H
OouT DX,EAX
MOV DX,I0_PORTI1D
MOV AX,0000H
OouT DX,AX
MOV AH,4CH
INT 21H
END BEGIN

Due to the high executing speed of assembly languages, if it is found that the
numbers are displayed too fast, you yourself can add more waiting time
(WAIT _19).

177

7.3 Seven-segment display experiment (VC/C++)

Experiment purpose: Continue 7.1 seven-segment display experiment (Debug

Mode),use VC/C++ to

display numbers 0~9.
VC/C++ program code

// Set all 10 BANK 1 to be output //
RegValue = 0x0000;
rc=PlxIoPortWrite(

hDevice,
port + 0x18,
BitSize32,
&RegValue);

enable sing seven-segment LED display to

// Set the seven-segment LED on the extreme right //

RegValue = 0x00000000;
rc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);
// display”0”//
RegValue = 0x00003F00;
rc=PlxIoPortWrite(
hDevice,
port + 0x10,
BitSize32,
&RegValue);
/ display”1”//
RegValue = 0x00000600;
rc=PlxIoPortWrite(
hDevice,
port + 0x10,
BitSize32,
&RegValue);
// display”2”//

178

RegValue = 0x00005B00;
rc=PlxIoPortWrite(
hDevice,
port + 0x10,
BitSize32,
&RegValue);
/[display 3"/
RegValue = 0x00004F00;
rc=PlxIoPortWrite(
hDevice,
port + 0x10,
BitSize32,
&RegValue);
/[display “4”//
RegValue = 0x00006600;
rc=PlxIoPortWrite(
hDevice,
port + 0x10,
BitSize32,
&RegValue);
/[display 5/
RegValue = 0x00006D00;
rc=PlxIoPortWrite(
hDevice,
port + 0x10,
BitSize32,
&RegValue);
/[display "6/
RegValue = 0x00007D00;
rc=PlxIoPortWrite(
hDevice,
port + 0x10,
BitSize32,
&RegValue);
/[display 7/
RegValue = 0x00000700;
rc=PlxIoPortWrite(

hDevice,

179

port + 0x10,
BitSize32,
&RegValue);
/[display 8/
RegValue = 0x00007F00;
rc=PlxIoPortWrite(
hDevice,
port + 0x10,
BitSize32,
&RegValue);
/[display 9/
RegValue = 0x00006F00;
rc=PlxIoPortWrite(
hDevice,
port + 0x10,
BitSize32,
&RegValue);

7.4 Drive multi-sets seven-segment LED display experiment (MASM):

Experiment purpose: Enable multi-sets seven-segment LED display to display
0~9 numbers by writing MASA program.

MASM program codes

.MODEL SMALL

386

STACK

DATA

I0_PORTO EQU O0A411H ; io bank I io-8~15
I0_PORTI EQU 0A415H ; io bank I i0-40~47
OUT_DISABLED EQU 0A408H ; io bank 0
I0_PORTOD EQU 0A400H ; io bank 0
I0_PORTID EQU 0A404H ; io bank 0

180

.CODE

BEGIN:
PUSH
MOV
PUSH
MOV
MOV

DISP_BEGIN:

MOV
MOV
ouT
CALL
CALL

MOV
MOV
ouT
CALL
CALL

MOV
MOV
ouT
CALL
CALL

MOV
MOV
ouT
CALL
CALL

MOV
MOV

DS
AX,0

AX
AX,@DATA
DS,AX

DX,IO_PORTI
AX,0000H
DX,AX
COUNT _7SEG
WAIT_1S

DX,IO_PORTI
AX,0001H
DX,AX
COUNT _7SEG
WAIT 1S

DX,IO_PORTI
AX,0002H
DX,AX
COUNT _7SEG
WAIT 1S

DX,IO_PORTI
AX,0003H
DX,AX
COUNT _7SEG
WAIT 1S

DX, I0_PORTI
AX, 0004H

; the first seven-segment code on

;0000_0000

; the second seven-segment code on

;0000_0001

; the third seven-segment code on

;0000_0010

; the fourth seven-segment code on

;0000_0011

; the fifth 7-segment code on
;0000 0100

181

ouT
CALL
CALL

MOV
MOV
ouT
CALL
CALL

MOV
INT
CMP
INZ

JMP

COUNT _7SEG:
MOV
MOV
OUT
CALL

MOV
MOV
ouT
CALL

MOV
MOV
ouT
CALL

MOV
MOV

DX, AX
COUNT_7SEG
WAIT 1S

DX,IO_PORTI
AX,0005H
DX,AX
COUNT _7SEG
WAIT 1S

AH,0BH
21H

AL,0FFH
DISP_BEGIN

EXIT

DX,I0_PORTO
AX,003FH
DX,AX
WAIT 1S

DX,I0_PORTO
AX,0006H
DX,AX
WAIT 1S

DX,I0_PORTO
AX,005BH
DX,AX
WAIT 1S

DX,I0_PORTO
AX,004FH

; The sixth seven-segment code on

;0000_0101

;Press any key to end the program

; Interrupt vector 21h

;end of the program
;display 0~9 number

;display O
;0011 1111

;display 1
;0000 0110

;display 2
;0101 1011

display 3
;0100 1111

182

ouT
CALL

MOV
MOV
ouT
CALL

MOV
MOV
ouT
CALL

MOV
MOV
ouT
CALL

MOV
MOV
ouT
CALL

MOV
MOV
ouT
CALL

MOV
MOV
ouT
CALL

RET

WAIT_1S:

MOV
WAIT_LOOP:

DX,AX
WAIT 1S

DX,I0_PORTO
AX,0066H
DX,AX
WAIT 1S

DX,I0_PORTO
AX,006DH
DX,AX
WAIT 1S

DX,I0_PORTO
AX,007DH
DX,AX
WAIT 1S

DX,I0_PORTO
AX,0007H
DX,AX
WAIT 1S

DX,I0_PORTO
AX,007FH
DX,AX
WAIT 1S

DX,I0_PORTO
AX,006FH
DX,AX
WAIT 1S

BX,0007FH

;display 4
;0110 _0110

;display 5
;0110 1101

;display 6
;0111 1101

;display 7
;0000 0111

display 8
;0111 1111

;display 9
;0110 1111

183

WAIT_1S_EXIT:

CALL
DEC
CMP
JBE
LOOP

RET

WAIT_1MS:

MOV

WAIT _LOOPI:

EXIT:

MOV
MOV
MOV
MOV
MOV
MOV
MOV
LOOP
RET

MOV
MOV
ouT
MOV
MOV
ouT
MOV
MOV
ouT

MOV
INT
END

WAIT_1MS
BX

BX,0000H
WAIT _1S_EXIT
WAIT_LOOP

CX,03FFFH

BX,BX
BX,BX
BX,BX
BX,BX
BX,BX
BX,BX
BX,BX

WAIT _LOOP1

DX,0UT_DISABLED
AX,0000H

DX,AX
DX,I0_PORTOD
EAX,00000000H
DX,EAX
DX,I0_PORT1D
AX,0000H

DX,AX

AH,4CH
21H
BEGIN

184

;clear all settings

7.5 Drive multi-sets seven-segment LED display experiment (VC/C++)

Experiment purpose: Write VC/C++ program to enable several group of

seven-segment LED displays to display 0~9 numbers.

VC/C++ program code
/I Set the first seven-segment LED display on the right //
RegValue = 0x00000000;
rc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);

/ Set the second seven-segment LED display on the right //
RegValue = 0x00000001;
rc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);

// Set the third seven-segment LED display on the right //
RegValue = 0x00000002;
rc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);

// Set the fourth seven-segment LED display on the right//
RegValue = 0x00000003;
rc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);

185

/I Set the fifth seven-segment LED display on the right //

RegValue = 0x00000004;
rc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);

/I Set the sixth seven-segment LED display on the right //
RegValue = 0x00000005;
rc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);

7-6 Buzzer experiment (Debug Mode & MASM)

Experiment purpose: Let the buzzer emit a sound with Debug Mode and MASM.
Experiment module: As is shown in Figure 7-1-6 is the buzzer and drive circuit on
PCI-LAB.

Figure 7-6-1 experiment modules

186

Part list:

Buzzer:

one KSS 1206
NPN-BIT :

one 8050
Resistance:

one 10Q)

two 1k Q)

Principle of experiment: The starting output signal is low, drive this signal to high,

then to low, so that a sound can be emitted.

Circuit diagram : (as is shown in Figure 7-6-2)
BUZZER

Rl qn 5P
ol A A

B4 BLZIZER

1 (=31

BUFFER_CTRL et :
R1Z 1K &5
1K

2 FR o

Figure 7-6-2 Circuit diagram

Experiment procedures: (1) Read PCI-IO interface card 10 base address.
(2) This function is in [O_BANK 1, so base address adds one.
(3) IO [38] 1s in the fifth byte.
(4) Open Debug Mode to write directly.
(5) Use instruction “-O (address) (data)” output.
(6) First set IO used to be output port, then transmit data.

Example:

-0 A418 00

-0 A414 00

-0 A414 40

-0 A414 00
MASM program code

.MODEL SMALL

187

.386
.STACK

.DATA

10_PORTI
OUT _DISABLED
10_PORTOD
10_PORTID

.CODE

BEGIN:
PUSH
MOV
PUSH
MOV
MOV

DISP_BEGIN:

MOV
MOV
ouT
CALL
MOV
MOV
ouT
CALL

MOV
INT
CMP
INZ

JMP

WAIT_1MS:

EQU i0-32~39
EQU
EQU

EQU

0A414H ;
0A408H ;

0A400H ;

0A404H ;

io_bank 1
io_bank 0

io_bank 0

io_bank 0

DS
AX,0

AX
AX,@DATA
DS,AX

DX,I0O_PORTI
AX,00H
DX,AX
WAIT_1MS
DX,I0O_PORTI
AX,40H
DX,AX
WAIT_1MS

AH,0BH
21H

AL,0FFH
DISP_BEGIN

EXIT end of the program

188

press any key to end the program

MOV CX,03FFFH
WAIT _LOOPI:
MOV BX,BX
MOV BX,BX
MOV BX,BX
MOV BX,BX
MOV BX,BX
MOV BX,BX
MOV BX,BX
LOOP WAIT LOOPI
RET

EXIT:
MOV DX,0UT _DISABLED ;clear all settings
MOV AX,0000H
OouT DX,AX
MOV DX,I0_PORTOD
MOV EAX,00000000H
OouT DX,EAX
MOV DX,I0_PORTI1D
MOV AX,0000H
OouT DX,AX

MOV AH,4CH

INT 21H
END BEGIN

7.7 Buzzer experiment (VC/C++)
Experiment purpose: Using VC/C++ to enable the buzzer to emit a sound.
VC/C++ program code
/Now//
RegValue = 0x0000;

rc=PlxIoPortWrite(

hDevice,

189

port + 0x14,
BitSize32,
&RegValue);
//high//
RegValue = 0x0040;
rc=PlxIoPortWrite(

hDevice,
port + 0x14,
BitSize32,
&RegValue);

/Tt 1s required to output low-high-low in sequence continuously to have sound//

7.8 Pushbutton switches input experiment (Debug Mode & MASM)

Experiment purpose: Practising pressing pushbutton switch and output its result
with LED display.

Experiment module: as is shown in Figure 7-8-1 below.

Figure 7-8-1 Pusﬁbﬁﬁdn switché.s rho-cl_ulé-
Part list:

eight pushbutton switches
Resistance

190

one 10k () resistance network
logic IC :

one 74L.S244
Capacitance:

one 0.1uF

Circuit diagram: as is shown in Figures 7-8-2 and 7-8-3 below.

[T
s

fooceos

Uiz
SW_0 11024
SW_0 = 2 141 Il o024
sw_1 s 142 172 [TP 1025
sw_2 ‘r—g‘,. = 1A3 w3 1 T of 026
SW3 =W rrm BLG) v —op 027
SW_4 =y 241 21 TP 1028
SW_S L 5n2 vz e 110249
SW_E = 283 Y3 T 11030
sw_T 2] ong 2v4 1031
16
10_BANK_ 10 BANK 2 26
OS2
VCC oL
Pzd
CB12
| 0.1uF 50V
=

Figure 7-8-3 Data latch circuit

Principle of experiment: Read the data of IO port
SW_1 0000 0001 O1lh
SW_ 2 0000 0010 02h
SW_ 3 0000 0100 04h
SW 4 0000 1000 O8h
SW_5 0001 0000 10h

191

SW_6 0010 0000 20h
SW_7 0100 0000 40h
SW_8 1000 0000 80h

Experiment procedure: (1)Set 10 port to output mode.
(2)read the data of IO BANK2 IO PORT4

Sample:
-0 A428 DO Set to be output mode
-1 A423
<display result>
-0 A428 00

MASM program code:

.MODEL SMALL

.386

.STACK

.DATA

OUT _DISABLE EQU 0A418H
I0_PORTO EQU 0A410H
I0_PORT]1 EQU 0A414H
I0_PORT2 EQU 0A412H
I0_PORT3 EQU 0A413H
OUT _DISABLEA EQU 0A428H
I0_PORTOA EQU 0A420H
I0_PORTIA EQU 0A424H
I0_PORT2A EQU 0A423H
OUT _DISABLED EQU 0A408H
I0_PORTOD EQU 0A400H
I0_PORTID EQU 0A404H
I0_PORT2D EQU 0A402H
TEST_UNIT DB 10H

MAT ROW DB 01H
MAT _COL DB 00H
MAT_COUNT DB 00H

192

TEMP DW OH

TEMP_LOOP DW OH
LCD_TEMP DW OH
TEMP_LCDI DW OH
TEMP_LCD2 DD OH
.CODE
BEGIN:

PUSH DS

MOV AX,0

PUSH AX

MOV AX,@DATA
MOV DS,AX

PUSH_BOTTOM:
MOV DX, OUT_DISABLEA ; Set /0 16~31 to INPUT

MOV AX, 00DOH
ouT DX,AX

MOV TEMP,0FFH

BUT BEGIN:
MOV DX,I0O_PORTI1A ; Set the F column of MATRIX TO to display

MOV AX,000FH
ouT DX,AX

MOV DX,IO_PORT2A

TEST _LOOP:
IN AX,DX ;Read back PUSH_BOTTON value

XOR AH,AH

MOV DX, IO PORTOA ;Display PUSH BOTTON in the bottom column of Matrix
OouT DX,AX

CALL WAIT_IMS

CMP AX, 00FFH ; ended when all one.
1z PUSH_EXIT
MOV AH, 0BH ; press any key to end the program

193

INT
CMP
INZ
IMP

PUSH_EXIT:
CALL

MAT COLA
MOV
MOV
ouUT
CALL
RET

MAT ROWA:
MOV
ouUT
CALL
RET

MAT _COU:
MOV
MOV
ouUT

MAT _A:
MOV
MOV
ouUT
CALL
INC
CMP
JE
IMP

MAT_AEXIT:
RET
IMP

WAIT_3S:
MOV

21H

AL, OFFH
BUT_BEGIN
EXIT

WAIT 3S

DX, I0_PORT0A
EAX, 0000FFFFH
DX, EAX
WAIT 1S

DX, I0_PORTIA
DX, AX
WAIT 1S

DX, I0_PORT0A
EAX, 0000FFFFH
DX, EAX

DX, I0_PORTIA
AL, MAT COUNT
DX, AX
WAIT_1MS
MAT COUNT
MAT _COUNT, 10H
MAT AEXIT
MAT A

EXIT

TEMP_LOOP, 07H

194

; PUSH BOTTOM end of program
: MATRIX COMMAND

WAIT 3S_LOOP:
CALL WAIT 2S
DEC TEMP_LOOP
CMP TEMP_LOOP, 00H
JBE WAIT 3S_EXIT
IMP WAIT_3S_LOOP
WAIT 3S_EXIT:
RET

WAIT 2S:
CALL WAIT IS
CALL WAIT IS
CALL WAIT IS
CALL WAIT IS
CALL WAIT IS
CALL WAIT IS

RET
WAIT _1S:

MOV BX, 0007FH
WAIT_LOOP:

CALL WAIT_IMS

DEC BX

CMP BX, 0000H

JBE WAIT _1S_EXIT

LOOP WAIT LOOP
WAIT_1S_EXIT:

RET

WAIT_1MS:
MOV CX, 03FFFH

WAIT _LOOPI:
MOV BX, BX
MOV BX, BX
MOV BX, BX
MOV BX, BX
MOV BX, BX
MOV BX, BX
MOV BX, BX

195

LOOP WAIT_LOOP1
RET

WAIT 2MS:
MOV CX, 07FFH
WAIT LOOP2:
MOV BX, BX
MOV BX, BX
MOV BX, BX
MOV BX, BX
MOV BX, BX
MOV BX, BX
MOV BX, BX
LOOP WAIT _LOOP2
RET
EXIT:
MOV DX, OUT DISABLED ; clear all settings
MOV AX, 0000H
OouT DX, AX
MOV DX, I0_PORTOD
MOV EAX, 00000000H
OouT DX, EAX
MOV DX, I0_PORTI1D
MOV AX, 0000H
OouT DX, AX

MOV AH, 4CH
INT 21H
END BEGIN
7.9 Pushbutton switch input experiment (VC/C++)
Experiment purpose: Complete the section 7.8 experiment by means of VC/C++.

VC/C++ program code

//set 10 needed to be input //
RegValue = 0x00DO0;

196

Arc=PlxIoPortWrite (
hDevice, Port + 0x28,
BitSize32,
&RegValue);

/Iset 8 LED to return to 0//
RegValue = 0x0000;
rc=PlxIoPortWrite(

hDevice,
port + 0x20,
BitSize32,
&RegValue);

//Read input value//
rc=PlxIoPortRead(
hDevice,
port + 0x23,
BitSize32,
&RegValue);

//output to LED//
rc=PlxIoPortWrite(
hDevice,
port + 0x20,
BitSize32,
&RegValue);

197

Chapter 8 Motor and resistance heater

Table 8-0-1 contains the comparison between the step motor and DC motor,

regarding the basic principles of step motor and DC motor. It can be found in relevant

literature related to motor mechanics, so we do not describe it in detail in this manual.

Table 8-0-1 Comparison between step motor and DC motor

Step motor (open circuit control)

DC motor (closed-circuit control)

Step angle Depends on the motor Vary with rotary coder and circuit
Maximum | About 3000 rpm in case of 200 step
6000 rpm
speed motor

Variable, maximum repeating speed is

Variable, maximum repeating

Start, stop speed is
proportional to inertia, friction and the
and Proportional to inertia, friction and
ambient temperature of load. Resonance
Repeat the ambient temperature of the
frequency is not stable in cases of low
speed load. Resonance gains of the
torque.
system are limited.
Depends on the design of motor without
Precision Depends on servo circuit.
accumulated errors.
Cost Open circuit control is cheaper. High prices
Depends on the feedback circuit
Still toque Large torque
method.
System
Depends on the life of bearing. Depends on the life of brush.
reliability

Load inertia

Smaller inertia is better.

Smaller inertia is better.

Single step

response

Prone to vibrate

Less prone to vibrate

198

8.1 DC motor experiment (Debug Mode & MASM)
Experiment purpose: Testing the operating and stopping of DC fan.

Experiment module: Figure 8-1-1 below shows DC fan module for the experiment.

Figure 8-1-1 DC fan modules

Part list:

one DC fan
NPN-BJT :

one 8050
Capacitance:

one 1kQ)

one 10k ()
Digital logic IC :

one 74L.S244
Capacitance:

one 0.1uF

Circuit diagram: consisting the two Figures below: 8-1-2 and 8-1-3

199

12V
=]

R2
1K

1
2
3

3PIN 180° 2mmWAFER

FAN_OUTPUT

SPFAN_OUTPUT

o

?ﬁ
1K
o
8050 1 b ran_on
o R3
10K

X/

FAN Circuilt

Figure 8-1-2 Fan switch circuit

U1
Y |
039 2 141 171 ;‘2 FAN ON
FAN OUTPUT 3 Sd 72 12 /D46
F& 143 1Y3 J—“—){
1A4 1y =
= o 2y FP—
= . oyn |
w—lad op3 273 |—
W a4 2v4 f— e
10 BANK_1 .
10 BANK_1 pp——————— ld 1 ar
vee o0——18g o CB1
TALS244 | 0. TuFS0Y
=

Figure 8-1-3 DC fan modulelO latch circuit

Principle of experiment: FAN ON high, the fan works, FAN ON low, the fan stops

working

Experiment procedures:
(1) Read PCI-IO interface IO base address.
(2) This function is in [0 BANK 1, so base address adds 1.
(3) I[39] is the fifth byte.
(4) Open Debug Mode to write directly
(5) Use instruction “-O (address) (data)”
(6) First set the 10 used to output port, then transmit data.

Sample:
-0 A414 80 1000 0000 The fan works
-0 A41400 0000 0000 The fan stops

MASM program code:

200

.MODEL SMALL

386
STACK
. DATA
10_PORTI
OUT _DISABLED
10_PORTOD
10_PORTID
.CODE
BEGIN:
PUSH
MOV
PUSH
MOV
MOV
DISP_BEGIN:
MOV
MOV
ouUT
MOV
INT
CMP
INZ
IMP
EXIT:
MOV
MOV
OouUT
MOV
MOV

EQU 0A414H; io_bank 1 i0-32~39
EQU 0A408H; io_bank 0

EQU 0A400H; io_bank 0

EQU 0A404H; io_bank 0

DS
AX,0

AX
AX,@DATA
DS,AX

DX,IO_PORT1 ;fan on
AX,80H ;10000000

DX,AX

AH,0BH ;Press any key to end the program
21H ;interrupt vector 21h

AL,0FFH
DISP BEGIN

EXIT ;end of the program

DX,0UT _DISABLED ;clear all settings
AX,0000H

DX,AX

DX,I0_PORTOD

EAX,00000000H

201

ouT DX,EAX

MOV DX,I0_PORT1D
MOV AX,0000H

ouT DX,AX

MOV AH,4CH

INT 21H

END BEGIN

8.2 DC motor experiment (VC/C++)

Experiment purpose: Write programs with VC/C++ to drive DC fan motor.

VC/C++ program code:

//turn on the fan//
RegValue = 0x0080;
rc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);
//turn off the fan//
RegValue = 0x0000;
rc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);

//set fan input//
RegValue = 0x0000;
rc=PlxIoPortWrite(
hDevice,
port + 0x18,
BitSize32,
&RegValue);

//read fan input//

202

rc=PlxIoPortRead(
hDevice,
port + 0x15,
BitSize32,
&RegValue);

8.3 Step motor experiment (Debug Mode)

Experiment purpose: Use Debug Mode to drive step motor.

Experiment module: Figure 8-3-1 below shows step motor module for the experiment.

Figure 8-3-1 step motor modules

Part list
a four phase step motor
Digital logic IC:
one 74L.S244
Current drive IC:
one ULN2003

203

Resistance:
one 2.2k)

Capacitance:
1 0.1uF

Circuit diagram: Figure 8-3-2and 8-3-3 are step motor drive circuit.
According to the excitation phase of different step motors, drive with 1-2-3-4 phase

respectively to achieve forward and reverse.

RP1 2 9K BRI
L
EEERE 2y
[
_— &
u2 RED . il
U1
2 18 STEP_DR4 1 15 ELL I-IL % &
1043 rm i fMY T STER DRI 1a ar B BB O 4 -
11040 1A2 1y2 B QB L 3 =
& 14 =TEF DRS 3 14 | | ORLNAR
11041 1A3 13 STLFDRT IC ac b LI 2 i
11042 A 1aa 1v4 =L — 441D ap p L] ELoE 1 oy
e 21 [- I QE S—
b PV 2v2 H—= IF oF pli—x ’
IET byt WP e o i o B 6PIN 18012mmWAFER
el ona 2va R—sc :
P20 il]
| BANK 2 ﬂ GND COM
10_BANK_2 >—c 16 CHi
veee—4q 26 O.AuF/BY UNZoes
T4LS244 _— {3
Figure 8-3-2 Step motor drive circuits 1
RP1 22K BRISP
i 444 “2v
[
g i
- U2 BED 8 1
u1
S 2 1 STEP DRa i " A -
11043 3 “ 1a1 1v1 P —errrm A oa plb JERLCE 4
11040 142 1¥2 B oB P 3 i
< i 14 STEP DRZ 14 1| BB
11041 g rm Bl 13 =3 TTEF TRT “c Qc 013 1 BLACTK 2 t
11042 1A4 14 = 21 ao . 1 o
vt o 2v1 = ru | e pl— —
HLJE 22 e J_Ks : 7 [ar nﬂ—xnm BPIN 180/ 2mmWAFER
283 2Y3 vee U1 e} G
e P 2v4 [H— _
P20 8 9
I0_BANK 2 GND - COM
10_BANK 2 Jp———rts 1 1 o
voo @——q 20 T canav Ui
7415244 —_— e

Figure 8-3-2 Step motor drive circuits 2

Principal of experiment: Output signal from A425h port

1040 —1043 are the first through the fourth phases of the step motor
respectively.

0001 the first phase of step motor

0010 the second phase of step motor

0100 the third phase of step motor

1000 the fourth phase of step motor

Example:
-0 A425 01

204

-O A425 02
-O A425 04
-O A425 08

8.4 Step motor experiment (MASM)

Experiment purpose: Write programs with MASA to make the step motor to forward

Or Teverse.
Forward:

.MODEL SMALL

386
STACK
DATA
I0_PORTI EQU 0A425H; io bank 2 i0-40~47
OUT_DISABLED EQU 0A408H:; io bank 0
I0_PORTOD EQU 0A400H; io bank 0
I0_PORTID EQU 0A404H; io bank 0
.CODE
BEGIN:

PUSH DS

MOV AX,0

PUSH AX

MOV AX@DATA

MOV DS,AX
DISP_BEGIN:

MOV DX,I0O_PORTI 1
MOV AX,01H :0000_0001
ouUT DX,AX

CALL WAIT IS

205

CALL
MOV
MOV
ouT
CALL
CALL
MOV
MOV
ouT
CALL
CALL
MOV
MOV
ouT
CALL
CALL

MOV
INT
CMP
INZ

JMP

WAIT_1S:
MOV

WAIT_LOOP:
CALL
DEC
CMP
JBE
LOOP

WAIT_1S_EXIT:

RET

WAIT_1MS:
MOV

WAIT 1S
DX,IO_PORTI
AX,08H

DX,AX

WAIT 1S

WAIT 1S
DX,IO_PORTI
AX,04H

DX,AX

WAIT 1S

WAIT 1S
DX,IO_PORTI
AX,02H

DX,AX

WAIT 1S

WAIT 1S

AH,0BH
21H

AL,0FFH
DISP_BEGIN

EXIT

BX,0007FH

WAIT_1MS
BX

BX,0000H
WAIT _1S_EXIT
WAIT_LOOP

CX,03FFFH

4
;0000_1000

3
;0000_0100

2

;0000 0010

;Press Any key to end the program

;end of the program

206

WAIT _LOOPI:
MOV BX,BX
MOV BX,BX
MOV BX,BX
MOV BX,BX
MOV BX,BX
MOV BX,BX
MOV BX,BX
LOOP WAIT LOOPI

RET
EXIT:
MOV DX,0UT_DISABLED ;clear all settings
MOV AX,0000H
OuT DX,AX
MOV DX,IO_PORTOD
MOV EAX,00000000H
OuUT DX,EAX
MOV DX,IO_PORTI1D
MOV AX,0000H
OuUT DX,AX
MOV AH,4CH
INT 21H
END BEGIN
Reverse:

.MODEL SMALL

386
STACK

DATA

I0_PORTI EQU 0A425H; io bank 2 i0-40~47
OUT_DISABLED EQU 0A408H:; io bank 0
I0_PORTOD EQU 0A400H; io bank 0

207

10_PORTID

.CODE

BEGIN:
PUSH
MOV
PUSH
MOV
MOV

DISP_BEGIN:

MOV
MOV
ouT
CALL
MOV
MOV
ouT
CALL
MOV
MOV
ouT
CALL
MOV
MOV
ouT
CALL

MOV
INT
CMP
INZ

JMP

EQU

DS
AX,0

AX
AX,@DATA
DS,AX

DX,IO_PORTI
AX,01H
DX,AX
WAIT 1S
DX,I0O_PORTI
AX,02H
DX,AX
WAIT 1S
DX,I0_PORTI
AX,04H
DX,AX
WAIT 1S
DX,IO_PORTI
AX,08H
DX,AX
WAIT 1S

AH,0BH
21H

AL,0FFH
DISP_BEGIN

EXIT

0A404H ; io bank 0

;1
;0000_0001

2
;0000_0010

3
;0000_0100

4

;0000_1000

;Press Any key to end the program

;end of the program

208

WAIT_1S:

MOV

WAIT _LOOP:

WAIT_1S_EXIT:

CALL
DEC
CMP
JBE
LOOP

RET

WAIT_1MS:

MOV

WAIT _LOOPI:

EXIT:

MOV
MOV
MOV
MOV
MOV
MOV
MOV
LOOP
RET

MOV
MOV
ouT
MOV
MOV
ouT
MOV
MOV
ouT

MOV
INT

BX,0007FH

WAIT_1MS
BX

BX,0000H
WAIT _1S_EXIT
WAIT_LOOP

CX,03FFFH

BX,BX
BX,BX
BX,BX
BX,BX
BX,BX
BX,BX
BX,BX

WAIT _LOOP1

DX,0UT_DISABLED
AX,0000H

DX,AX
DX,I0_PORTOD
EAX,00000000H
DX,EAX
DX,I0_PORT1D
AX,0000H

DX,AX

AH,4CH
21H

209

;clear all settings

END BEGIN

8.5 Step motor experiment (VC/C++)

Experiment purpose: Program with VC/C++ program languages to make the step
motor to forward or reverse.

Forward:

//Set all 10 Port to be output//
RegValue = 0x0000;
rc=PlxIoPortWrite(

hDevice,
port + 0x11,
BitSize32,
&RegValue);
/I Reverse action (engineering plate) //
RegValue = 0x0001;
rc=PlxIoPortWrite(
hDevice,
port + 0x25,
BitSize32,
&RegValue);
RegValue = 0x0008;
rc=PlxIoPortWrite(
hDevice,
port + 0x25,
BitSize32,
&RegValue);
RegValue = 0x0004;
rc=PlxIoPortWrite(
hDevice,
port + 0x25,
BitSize32,
&RegValue);
RegValue = 0x0002;
rc=PlxIoPortWrite(

210

hDevice,
port + 0x25,
BitSize32,
&RegValue);

Reverse:

/Reverse action (engineering plate)//

RegValue = 0x0001;

rc=PlxIoPortWrite(
hDevice,
port + 0x25,
BitSize32,
&RegValue);
RegValue = 0x0002;
rc=PlxIoPortWrite(
hDevice,
port + 0x25,
BitSize32,
&RegValue);
RegValue = 0x0004;
rc=PlxIoPortWrite(
hDevice,
port + 0x25,
BitSize32,
&RegValue);
RegValue = 0x0008;
rc=PlxIoPortWrite(
hDevice,
port + 0x25,
BitSize32,
&RegValue);

8.6 Resistance heater experiment

Experiment purpose: enable resistance heater to heat

211

Note: please do not heat for more than 5 minutes or cooperate with DC fan to provide
coolant.

Experiment module: As is shown in Figure 8-6-1.

w
=
Lol
<

| o
T
e |
- 1B
oS
T
o
==

Figure 8-6-1 Resistance heaters

Part list:
Resistance:

47C) 10W cement resistance (heater)
three 1k Q)
NPN _BIJT:
two 8050

Circuit diagram:

212

W P

Figure 8-6-2 Circuit Diagram

Principal of experiment: Provide current to resistance heater so that it can produce

heat energy.

Samples:

-O A41510 Heater ON
-OA41500 Heater OFF

MASM program code:

. MODEL SMALL
.386
. STACK

. DATA

OUT _DISABLE EQU 0A418H
I0_PORT]1 EQU 0A415H
OUT _DISABLED EQU 0A408H
I0_PORTOD EQU 0A400H
I0_PORTID EQU 0A404H

.CODE

BEGIN:
PUSH DS

213

MOV AX, 0
PUSH AX
MOV AX, @DATA
MOV DS, AX
DISP_BEGIN:
MOV DX, OUT DISABLE
MOV AX, 0010H
OuUT DX, AX
MOV DX, I0_PORT1
MOV AX, 10H
OuUT DX, AX
MOV AH, 0BH
INT 21H
CMP AL, OFFH
INZ DISP BEGIN
IMP EXIT
EXIT:
MOV DX, OUT_DISABLED
MOV AX, 0000H
OuUT DX, AX
MOV DX, I0_PORTOD
MOV EAX, 00000000H
OuT DX, EAX
MOV DX, I0_PORT1D
MOV AX, 0000H
OuT DX, AX
MOV AH, 4CH
INT 21H
END BEGIN
VC/C++ program code:
//heating//

214

; heater on

; 0001_0000

; Press any key to end the program

; end of the program

; clear all settings

RegValue = 0x0010;
arc=PlxIoPortWrite(
hDevice,
port + 0x15,
BitSize32,
&RegValue);

//no heating//
RegValue = 0x0000;
rc=PlxIoPortWrite(
hDevice,
port + 0x15,
BitSize32,
&RegValue);

8.7 Temperature sensor and DC motor upstream signal

The temperature sensor works with resistance heater in 8.6, and the values for
the temperature sensed must be converted into digital signals through A/D converter,
which is a little complicated. Figure 8-7-1 below shows its circuit diagram. DC motor
fan circuit diagram is shown in Figure 8-7-3 below. It can be seen that one set of
output line is FAN OUTPUT signal, the reader can analyze the fan speed with this
part of signal.

The temperature sensing part uses LM335 as temperature sensing element, while
variable resistance mainly adjusts this element double bias voltage to improve its
accuracy, and amplifies output to AD converter circuit using LM324 current, the
unused OP AMP is pin-grounded as shown in Figure 8-7-2. When AD converter is
separately used, this module must be removed to avoid the interferences of this

circuit.

215

=12

WioT
1 o
w1
10 E
" uz 7
LMIEs 4 w1 - e
H' 108
4 hh“‘h.,__ i EEMSOR OUT AD B0 w1
i > ¥
E E LAEZY
T T - =
Figure 8-7-1 Temperature sensing circuit
Wioo
wo
1
LTZE g :-:
i-
$ (R IT 2p-tuy
VGG
+ 12V
o
R2
J5 1K
1
< FAN OUTPUT
3 — S FAN_OUTPUT
3PIN 180° 2mmWAFER “q R 1K
Lo} 1 pr.
8050 o] A & Fan_oN
o R3
10K

Figure 8-7-3 DC fan speed

216

Chapter 9 Dot matrix, keyboard and LCD

Dot matrix, keyboard scan and LCD are more difficult experiment modules, dot
matrix is 16X16 red LED module, which is capable of carrying out different dot
matrix experiments such as 4X4 -~ 8X8 and 16X16. The keyboard input is the

commonly seen 4X4 scan input keyboard model, LCD module is a double row 16 bits

character LCD module. The following is the experiment of the three modules.
9.1 Dot matrix output experiment (Debug Mode & MASM)

Experiment purpose: Make the rows and columns of dot matrix shine respectively.

Experiment module: As is shown in 9-1-1 below.

Figure 9-1-1 16X16 dot matrix module
Circuit Diagram: Figure 9-1-2 and 9-1-3 are row selection circuits, 16 columns can be

selected from 4 bits. Figure 9-1-4 controls 16 rows with 2 sets of IO PORT,

forming this experiment circuit.

217

RP31
10K BR/9P

RPZ2A
LAt

1K 4RBP

WCC m vee oz

P14 fars RP28
1 A AN

<B1 cB2
0.1uF/50V I 0 1uFi50\v 1K 4RBF
=

VGG RP2C
a

=
S

11 S N £
1A 1
ru M 1K 4R8P
e . 13 | 5] & _n—l

13— ;
HO3g—To 3 4R el T RP220
110335 v

b

G OEP
SIS
[SI=
£
[

B

T4LSOT 1K 4R8P

Loadd 1035 4

g
=]
3l

;.
28
5
<
E

Y8 uz
b | I o= e RP23A
T4 5138 i 1 A A A2

1K 4RBP

RP238

€ar 741507 dh A
= K 4RBP

RP23C
AL

1K 4RBF

RP23D

A A AL
K 4RBF

Figure 9-1-2 Column circuit diagram

RP30
10K BRAGP
Lo

RP24B
A A A

1K 4RBP

RP24C
S

1K 4R/BP

14 U3
13

RF24D

o car|F

2A 2y AL
1K 4REP

11
i0

b |

10 BANK 2 3B

&l

ROl

I3
EElek ||
3333
w
%

ke

L of RP25A
T4LS138 FALSOT 1 A 2

1K 4R8P

vee m
P14 RP258
VCC m 3 A AN

F16 CB3
OAUF/E0V 1K 4R8P
=

CB4
0.1uF/50V
.

RF25C
PP

1K 4RBP

RP25D

Vv
1K 4R8P

Figure 9-1-3 Column circuit diagram

218

RP28
22K BRAP

=

uig
g EE15
1100 3 21 141 1y 2 s on b 1 2 CoLD
101 3 ra b ivz 2 2 s o P AT COL
1102 £ 1a3 13 & “ic P SAAS coL2
1403 ¢ 7] A Tva = = D Qb VNV COL3
1104 241 2v1 2 |E QE T
105 $ 131 5 ava L 2 IF oF 1004
106 2 12 2a3 2v3 [16 as Wm ; -
7 204 2Y4 — L4
|_—5— eND com P—ovee P SacoLs
10 BANK_2 >)—ﬁq€ 1G L S NATE—C0LE
26 —ULNNUH ars COLT
TALS244 100 SR08F
VCC uino uz2o
P20
CB10 RP27 _RP18
| 0.1uFBOV 22K BRI 2 CRiE
= WJ_H COL9
COL10
17 bAoA —SS ol
100 2R/EP
Ui ' _|__L RP19
= 2 p
! = COoL12
o 9% o] a1 1v1 2 AE—ShcoL13
1108 J0—Try £ 1A2 12 HE "AHE—¥CoL14
1101 T 1A3 1v3 M wAAE—S coLis
1101 A 1ng 1v4 ;)
O EEH 4 g L2 100 24R/BP
1101 89— L 241 2v1 (=2
101 D=7z L oz 2v2 £ 4 .
101995 12 243 2y3 |2 1A o4 pli—H
110159 204 2v4 — B os pi———
Hic ac s
10_BANK_2 »—dg 16 i ap plia
26 rals oE pli—x
; IF aF pl—<
T4LS244 I
— 16 o6 pll—x
i =11 Sdenp com F——avee
CB11
| 0.1uF/50v = OLrz003

Figure 9-1-4 Row circuit diagram

219

ROWT

ROWT

W W
ROWT ao—rmrorm ROW? do—mmme
ROWE d¢—TowWE ROWE 2—Fows
ROWS 93—y ROWS 39—y
ROW& 39— ROW4 99—
ROW3 $9—pame ROWS3
ROW2 — ROW2 -
ROWH r ROWA1
ROWO0 > pispy ROWOP DISP2
o |4l HxB MATRIXDOT LED o | Bx8 MATRIXDOT LED
== Ea b= B Ba b B B o] =
— i N @ — oY W e m
zzzzz=z=z2 Zzzzz==2
560508508 558060808
ErXr i oo EXd ol e o
— O o U0 ke OO — O e) D e o
paEEDn DT TEEEKoE
lsfslskslsksksls] 00000000
00000000 00000000
SENEREEE EHNENEEE
COLO Syt coLs CDS
coL1 L coLg
coL2 COL10
COL3 99— coLi1 =
COL& Jé—rrrs COL12 2—rorTs
COLS 22—7mTs COL13 p—roria
COLS 2—Trry COL12 J—TorTs
coLT %% coL1s 3
ROW15 3% ﬁmg ROW15 3% Egm,?
ROW14 ROW14
* oW e ROWTS
ROW13 TN ROW13 & ROWTe
ROWI2 o ROW12 S TEE
ROW11 T ROW11
ROWID % ROWH10
ROWS ' ROWS
RO Digpy ROWS DISP4
Addsl 1)) eematriooT LED Ao dd ||)] e maTRIXOOT LED
— DA U0 e s e B i R |
=SS5 =S=s53% SS=Zsss=
880008808 000008380
i oo EXd il o
— O 0w UG e Ay B e R
Eoedd o dc Oc & EXdd ol & o
CEEERERE 388338333
CANEREEE cHNEREE &
cousgSa cous 508
coL1 » ! coLg X
coL2 €oL10
R o S
Ls 2005 L2 J—TorT
COLS db—rryry COL13 Jd—rryrTe
COLE ooty COL1: 2—TorTs
COLT 9 coLis S5

Figure 9-1-5 Dot matrix connection diagram

Principle of experiment: Column data port 10 00~IO15 Bank 2

Row data port 10 32~I0 35 Bank 2

Experiment procedure: First open 10 port to output mode.

220

Define the row and column of output.

Output respectively and close 10 port upon completion.

0A418H
0A410H
0A414H
0A412H
0A413H
0A428H
0A420H
0A424H
0A423H
0A408H
0A400H
0A404H
0A402H
10H
01H
00H
00H
OH
OH
OH
OH
OH

sl sk sk i sk sl sk sk sk sk sk sl sk sk sk i s sl i sk sk i sk sk s sk sk i sk sk sk sk sk i sk sl sk sk sk i sk sk st sk sk i soske sk sk skoskok skoskok
s

MASM Program code:
.MODEL SMALL
.386
. STACK
. DATA
OUT _DISABLE EQU
10_PORTO EQU
10 _PORTI EQU
10 _PORT2 EQU
10 _PORT3 EQU
OUT_DISABLEA EQU
10_PORTOA EQU
10 PORTIA EQU
10 PORT2A EQU
OUT_DISABLED EQU
10 _PORTOD EQU
10 _PORTI1D EQU
10 _PORT2D EQU
TEST UNIT DB
MAT ROW DB
MAT COL DB
MAT COUNT DB
TEMP DWwW
TEMP_LOOP DW
LCD _TEMP DwW
TEMP LCDI1 DwW
TEMP_LCD2 DD
. CODE
BEGIN:

PUSH DS

MOV AX, 0

PUSH AX

221

MOV AX, @DATA

MOV DS, AX
MARTIX:

MOV DX, OUT DISABLEA

MOV AX,0010H
impedance.

OouT DX, AX

CALL MAT COU

CALL MAT COU

CALL MAT COU

CALL MAT COU

CALL MAT COU

CALL MAT COU

CALL MAT COU

CALL MAT COU

CALL MAT COU

MOV TEST UNIT, 10H

MOV EAX, 00000001H
MARTIX A:

MOV DX, I0_PORTO0A

OouT DX, EAX

CALL WAIT 1S

PUSH EAX
ROW_LOOP:

MOV AL, MAT ROW

MOV DX, IO PORTI1A

OouT DX, AX

CALL WAIT _1IMS

INC MAT ROW

CMP MAT ROW, 10H

JE MATRIX B

IMP ROW_LOOP

222

; Matrix test program

;Set 1/016~1/019& 1/00~1/0O7 to be high

; MATRIX scan all on

; Control COL display

MATRIX B:
POP EAX
SHL EAX, 1
DEC TEST_UNIT
CMP TEST_UNIT, 0000H
JBE MAT_EXIT
JMP MATRIX A

MAT_EXIT:
MOV AL, MAT COL

CALL MAT ROWA

CALL MAT COLA

INC MAT_COL
CMP MAT COL, 10H
JE MATRIX_END

JMP MAT_EXIT

MATRIX END: ;End of matrix display
MOV DX, I0_PORTO0A
MOV EAX, 00000000H
OouT DX, EAX
MOV DX, I0 PORTI1A
MOV AX, 0000H
OouT DX, AX
MAT COLA: ;MATRIX COMMAND
MOV DX, I0_PORTO0A
MOV EAX, 0000FFFFH
OouT DX, EAX
CALL WAIT 1S
RET

MAT ROWA:

MOV DX, I0_PORTIA
OouUT DX, AX
CALL WAIT IS

223

RET

MAT _COU:
MOV DX, I0_PORT0A
MOV EAX, 0000FFFFH
OouUT DX, EAX

MAT _A:
MOV DX, I0_PORTIA
MOV AL, MAT COUNT
ouUT DX, AX
CALL WAIT_IMS
INC MAT COUNT
CMP MAT COUNT, 10H
JE MAT AEXIT
IMP MAT A

MAT AEXIT:
RET
IMP EXIT

WAIT _3S:

MOV TEMP_LOOP, 07H
WAIT 3S_LOOP:

CALL WAIT 2S

DEC TEMP_LOOP

CMP TEMP_LOOP, 00H

JBE WAIT 3S_EXIT

IMP WAIT_3S_LOOP
WAIT 3S_EXIT:

RET

WAIT 2S:

CALL WAIT IS
CALL WAIT IS
CALL WAIT IS
CALL WAIT IS
CALL WAIT IS
CALL WAIT IS
RET

224

WAIT_1S:

MOV BX,0007FH

WAIT _LOOP:

CALL WAIT_IMS
DEC BX

CMP BX,0000H

JBE WAIT _1S_EXIT
LOOP WAIT LOOP

WAIT_1S_EXIT:

RET

WAIT_1MS:

MOV CX, 03FFFH

WAIT _LOOPI:

MOV BX, BX
MOV BX, BX
MOV BX, BX
MOV BX, BX
MOV BX, BX
MOV BX, BX
MOV BX, BX
LOOP WAIT_LOOP1
RET

WAIT 2MS:

MOV CX, 07FFH

WAIT _LOOP2:

EXIT:

MOV BX, BX
MOV BX, BX
MOV BX, BX
MOV BX, BX
MOV BX, BX
MOV BX, BX
MOV BX, BX
LOOP WAIT_LOOP2
RET

MOV DX, OUT_DISABLED

225

; clear all settings

MOV AX, 0000H

ouT DX, AX

MOV DX, I0O_PORTOD
MOV EAX, 00000000H
ouT DX, EAX

MOV DX, I0O_PORTID
MOV AX, 0000H

ouT DX, AX

MOV AH, 4CH
INT 21H
END BEGIN

9.2 Dot matrix output experiment (VC/C++)

Experiment purpose: Drive 16X16 dot matrix with VC/C++

VC/C++ Program code:

//Set all 10 Port to output
RegValue = 0x0000;
rc=PlxIoPortWrite(

hDevice,
port + 0x28,
BitSize32,
&RegValue);
//Select the first row
RegValue = 0x0000;
rc=PlxIoPortWrite(
hDevice,
port + 0x24,
BitSize32,
&RegValue);
//The eighth one on the left on
RegValue = 0x00FF; //0000_0000 1111 1111
rc=PlxIoPortWrite(
hDevice,

port + 0x20,

226

BitSize32,
&RegValue);
//the eighth one on the right on
RegValue = 0xFF00; /1111 1111 _0000_0000
rc=PlxIoPortWrite(
hDevice,
port + 0x20,
BitSize32,
&RegValue);
//the eighth one on the left on
RegValue = 0x00FF; /1111 _1111
rc=PlxIoPortWrite(
hDevice,
port + 0x21, //Change output port
BitSize32,
&RegValue);
//All on
RegValue = OxFFFF; /1111 1111 1111 1111
rc=PlxIoPortWrite(
hDevice,
port + 0x20,
BitSize32,
&RegValue);
//Select the second row
RegValue = 0x0001;
rc=PlxIoPortWrite(
hDevice,
port + 0x24,
BitSize32,
&RegValue);
//Select the third row
RegValue = 0x0002;
rc=PlxIoPortWrite(
hDevice,
port + 0x24,
BitSize32,
&RegValue);

//Select the fourth row

227

RegValue = 0x0003;
rc=PlxIoPortWrite(
hDevice,
port + 0x24,
BitSize32,
&RegValue);
//Select the fifth row
RegValue = 0x0004;
rc=PlxIoPortWrite(
hDevice,
port + 0x24,
BitSize32,
&RegValue);
//Select the sixth row
RegValue = 0x0005;
rc=PlxIoPortWrite(
hDevice,
port + 0x24,
BitSize32,
&RegValue);
// Select the seventh row
RegValue = 0x0006;
rc=PlxIoPortWrite(
hDevice,
port + 0x24,
BitSize32,
&RegValue);
// Select the 8™ row
RegValue = 0x0007,;
rc=PlxIoPortWrite(
hDevice,
port + 0x24,
BitSize32,
&RegValue);
// Select the 9™ row
RegValue = 0x0008;
rc=PlxIoPortWrite(

hDevice,

228

port + 0x24,
BitSize32,
&RegValue);
//Select the 10™ row
RegValue = 0x0009;
rc=PlxIoPortWrite(
hDevice,
port + 0x24,
BitSize32,
&RegValue);
//Select the 11™ row
RegValue = 0x000a;
rc=PlxIoPortWrite(
hDevice,
port + 0x24,
BitSize32,
&RegValue);
//Select the 12" row
RegValue = 0x000b;
rc=PlxIoPortWrite(
hDevice,
port + 0x24,
BitSize32,
&RegValue);
//Select the 13th row
RegValue = 0x000c;
rc=PlxIoPortWrite(
hDevice,
port + 0x24,
BitSize32,
&RegValue);
//Select the 14" row
RegValue = 0x000d;
rc=PlxIoPortWrite(
hDevice,
port + 0x24,
BitSize32,
&RegValue);

229

//Select the 15" row
RegValue = 0x000e;
rc=PlxIoPortWrite(
hDevice,
port + 0x24,
BitSize32,
&RegValue);
//Select the 16" row
RegValue = 0x000f;
rc=PlxIoPortWrite(
hDevice,
port + 0x24,
BitSize32,
&RegValue);

230

9.3 4 X 4 Keyboard input experiment (Debug Mode & MASM)

Experiment purpose: Pushbutton switches input experiment, practicing scan input.

Experiment module: As is shown in Figure 9-3-1 below.

Figure 9-3-1 Keyboard experiment module

Part list:
Logic IC 74LS244 X1
Resistor network 10K(Q2 X 1
Diode IN4148 X 4
Capacitance 0.1u X 1

Circuit diagram: As is shown in the Figures 9-3-2 and 9-3-3 below.

231

Er SELT

2z RERE
By BRENEEETE
P TEEEE
FREE R e
ooon
BER

[JE=IE]
(-]
]

BER

o I—l
=] rEmAR G o 2 W TR L

LLLL
e
e
;

B
B

.

......

Figure 9-3-3 Keyboard circuit diagram

Principle of experiment:

In common circuit designs, many pushbuttons are often used, especially when it
is required to input plenty of data, keyboards are the best choice. When we want to
form a keyboard circuit, as is shown in the above Figures 9-3-2 and 9-3-3, sixteen 1/O
are required to connect each switch to output ports directly. Arrange all pushbuttons in
the form of matrix, therefore 16 pushbutton can form 4X4 matrix circuit.

To facilitate identification, fix the coordinate of keyboard positions with rows
and columns, the traverse keys are marked with the first row, the second row, etc,
while the longitudinal keys are marked with the first column, the second column, etc.
Scan signal output 10 _16~1019 Bank 1
Read signal input 10 20~1023 Bank 1

Experiment procedures: Open IO port with -o A418 c0 to enable it to have an input

function.

Output scan signal to IO_16~10 19

Receive signals input by IO 20~IO0 23

end the program to close 10O port by means of -o A418 00.
MASM program code:

232

.MODEL SMALL

.386
.STACK
.DATA
OUT _DISABLE EQU 0A418H
I0_PORTO EQU 0A410H
I0_PORT]1 EQU 0A414H
I0_PORT2 EQU 0A412H
I0_PORT3 EQU 0A413H
OUT _DISABLEA EQU 0A428H
I0_PORTOA EQU 0A420H
I0_PORTI1A EQU 0A424H
I0_PORT2A EQU 0A423H
OUT _DISABLED EQU 0A408H
I0_PORTOD EQU 0A400H
I0_PORTID EQU 0A404H
I0_PORT2D EQU 0A402H
TEST_UNIT DB 10H
MAT ROW DB 01H
MAT _COL DB 00H
MAT_COUNT DB 00H
TEMP DW OH
TEMP_LOOP DW OH
LCD_TEMP DW OH
TEMP_LCDI DW OH
TEMP_LCD2 DD OH
R
.CODE
BEGIN:

PUSH DS

MOV AX,0

PUSH AX

MOV AX,@DATA
MOV DS,AX
KEY_ SCAN:
MOV DX,0UT_DISABLE

233

MOV
impedance.
OouT
MOV
MOV
OouT
KEY BEGIN:

CALL

CALL

CALL

CALL

MOV
INT
CMP
INZ

IMP

KEY_DBO:
MOV
CALL

KEY DBI:
MOV
CALL

KEY_ DB2:
MOV
CALL

KEY DB3:
MOV
CALL

AX,0010H

DX,AX

DX,I0O_PORTI

AX,0000H

DX,AX

KEY_ STARTI1

KEY_START2

KEY_START3

KEY_START4

AH,0BH

21H

AL,0FFH

KEY BEGIN

EXIT

AX,00003FO0H

KEY_ DISPLAY

AX,00000600H
KEY_ DISPLAY

AX,00005B00H
KEY_ DISPLAY

AX,00004F00H
KEY_ DISPLAY

;set 1/016~1/019& 1/00~1/07 to high

; Keyboard scan 0~3

; Keyboard scan 4~7

; Keyboard scan 8~B

;Keyboard scan C~F

;press any key to stop the program.

;end of main program

;Display numbers

234

KEY DB4:
MOV AX,00006600H
CALL KEY DISPLAY

KEY_ DBS:
MOV AX,00006D00H
CALL KEY DISPLAY

KEY_DB6:
MOV AX, 00007D00H
CALL KEY DISPLAY

KEY DB7:
MOV AX, 00000700H
CALL KEY DISPLAY

KEY_DBS:
MOV AX, 00007F00H
CALL KEY DISPLAY

KEY_DB9:
MOV AX, 00006F00H
CALL KEY DISPLAY

KEY DBA:
MOV AX, 00007700H
CALL KEY DISPLAY

KEY DBB:
MOV AX, 00007COOH
CALL KEY DISPLAY

KEY DBC:
MOV AX, 00005800H

CALL KEY_ DISPLAY

KEY DBD:
MOV AX, 00005E00H

235

CALL KEY_ DISPLAY

KEY DBE:
MOV AX, 00007900H
CALL KEY DISPLAY

KEY_ DBF:
MOV AX, 00007100H
CALL KEY DISPLAY
RET
R —
KEY_ DISPLAY: KEY COMMAND
MOV DX, I0_PORTO
ouUT DX, AX
CALL WAIT IS
IMP KEY BEGIN
RET

KEY STARTI:
MOV DX, I0_PORTO
MOV EAX, 00E00000H
ouUT DX, EAX

MOV DX, IO_PORT2

IN AX, DX
CMP AX,0EEH press “1 “, “l “is displayed seven-segment code
1z KEY DBI

CALL WAIT _2MS

CMP AX,0EDH press “2 “, “2 “is displayed seven-segment
code

1z KEY DB2

CALL WAIT 2MS

CMP AX,0EBH press “3 ¢, “3 “is displayed seven-segment code

Iz KEY_DB3
CALL WAIT _2MS

236

code

CMP

Iz
CALL
RET

KEY_ START2:

code

code

code

code

MOV
MOV
ouT

MOV
IN

CMP

V4
CALL

CMP

Iz
CALL

CMP

Iz
CALL

CMP

V4

CALL
RET

KEY_ START3:

MOV

AX,0E7TH ; press “C

KEY DBC
WAIT 2MS

DX, I0_PORTO
EAX, 00D00000H
DX, EAX

DX, I0_PORT2
AX, DX

AX,0DEH press

KEY DB4
WAIT 2MS

AX,0DDH ; press

KEY_DBS
WAIT 2MS

AX,0DBH ; press

KEY DB6
WAIT 2MS

AX,0D7H ; press

KEY_DBD
WAIT 2MS

DX, I0_PORTO

237

PR
47,

P
D -,

“C “is displayed seven-segment

“D

“is displayed seven-segment

“is displayed seven-segment

“is displayed seven-segment

“is displayed seven-segment

MOV
ouT

MOV
IN

CMP
code

1z

CALL

CMP
code

1z

CALL

CMP
code

1z

CALL

CMP
code

1z

CALL

RET

KEY START4:
MOV
MOV
ouUT

MOV
IN

CMP

code

Iz

EAX, 00B00000H
DX, EAX

DX, I0_PORT2
AX, DX

AX,0BEH

KEY DB7
WAIT 2MS

AX,0BDH

KEY_DBS
WAIT 2MS

AX,0BBH

KEY DB9
WAIT 2MS

AX,0B7H

KEY _DBE
WAIT 2MS

DX,I0_PORTO
EAX, 00700000H
DX, EAX

DX, I0_PORT2
AX, DX

AX,07EH

KEY_DBA

; press “7

; press “8

; press “9 ¢,

press E °,

;press “A “,

238

“7 “is displayed seven-segment

“8 “is displayed seven-segment

“9 “is displayed seven-segment

“E “is displayed seven-segment

“A “is displayed seven-segment

CALL WAIT _2MS

CMP AX,07DH ;press “0
code

Iz KEY DBO

CALL WAIT 2MS

CMP AX,07BH ;press “B
code

JZ KEY DBB

CALL WAIT 2MS

CMP AX,077TH ;press “F ¢, “F °
code

JZ KEY DBF

CALL WAIT 2MS

RET
WAIT 3S:

MOV TEMP_LOOP, 07H
WAIT 3S_LOOP:

CALL WAIT 2S

DEC TEMP_LOOP

CMP TEMP_LOOP, 00H

JBE WAIT 3S_EXIT

IMP WAIT_3S_LOOP
WAIT 3S_EXIT:

RET

WAIT 2S:
CALL WAIT IS
CALL WAIT IS
CALL WAIT IS
CALL WAIT IS
CALL WAIT IS
CALL WAIT IS
RET

WAIT _1S:
MOV BX, 0007FH

239

“0 “is displayed seven-segment

“B “is displayed seven-segment

is displayed on seven-segment

WAIT_LOOP:
CALL WAIT_IMS
DEC BX
CMP BX, 0000H
JBE WAIT _1S_EXIT
LOOP WAIT LOOP
WAIT_1S_EXIT:
RET

WAIT_1MS:
MOV CX, 03FFFH
WAIT _LOOPI:
MOV BX, BX
MOV BX, BX
MOV BX, BX
MOV BX, BX
MOV BX, BX
MOV BX, BX
MOV BX, BX
LOOP WAIT LOOPI
RET

WAIT 2MS:
MOV CX, 07FFH

WAIT LOOP2:
MOV BX, BX
MOV BX, BX
MOV BX, BX
MOV BX, BX
MOV BX, BX
MOV BX, BX
MOV BX, BX
LOOP WAIT _LOOP2
RET

EXIT:
MOV DX, OUT _DISABLED; clear all settings.
MOV AX, 0000H
OouT DX, AX

240

MOV DX, I0O_PORTOD
MOV EAX, 00000000H
ouT DX, EAX

MOV DX, I0O_PORTID
MOV AX, 0000H

ouT DX, AX

MOV AH, 4CH
INT 21H
END BEGIN

9.4 4 X 4 keyboard input experiment (VC/C++)

Experiment purpose: To enable keyboard input by writing programs with VC/C++ and

outputs to the seven-segment LED.

VC/C++ program code:

//set 10 Port
RegValue = 0x0010;
rc=PlxIoPortWrite(
hDevice,
port + 0x18,
BitSize32,
&RegValue);
//Scan the first row.
RegValue = 0x0010;
rc=PlxIoPortWrite(
hDevice,
port + 0x12,
BitSize32,
&RegValue);
// Fetch the upstream value
rc=PlxIoPortRead(
hDevice,
port + 0x12,
BitSize32,

241

&RegValue);
//Scan the second row
RegValue = 0x0020;
rc=PlxIoPortWrite(
hDevice,
port + 0x12,
BitSize32,
&RegValue);
// Fetch the upstream value
rc=PlxIoPortRead(
hDevice,
port + 0x12,
BitSize32,
&RegValue);
//Scan the third row
RegValue = 0x0040;
rc=PlxIoPortWrite(
hDevice,
port + 0x12,
BitSize32,
&RegValue);
//Fetch the upstream value
rc=PlxIoPortRead(
hDevice,
port + 0x12,
BitSize32,
&RegValue);
//Scan the fourth row.
RegValue = 0x0080;
rc=PlxIoPortWrite(
hDevice,
port + 0x12,
BitSize32,
&RegValue);
//Fetch the upstream value
rc=PlxIoPortRead(
hDevice,

port + 0x12,

242

BitSize32,
&RegValue);

9.5LCD

Exercises module: Shown in Figure 9-5-1 is the LCD display board used in this

exercise.

- R

T & s LTI e H @

. - l.—- = i
,.--_-------_u""‘ -7 L
.

T %L 209 ®BE = » ——.—_‘ - ': =)
: C4 C2 < y és c3 2

Figure 9-5-1 LCD practice module

Circuit diagram: The user himself should refer to PCI_LAB.pdf file in circuit diagram
folder in the disk.

243

BEIL 108 EFOE

it
o —

Ui
LEn
A2 141 v [A W0 ECT_EM
IR 162 1vz =8 = ¥ LED EEL
I 153 vz [l vz e T8
RIS 15 14 =L 1y = ¥a D8

RIS E v = LD RS —_—
BT o 7 | Dv_AE TR
s) =va |2 BUZIER_CTRL .

RO TR 2 T s

CEIE
=R [o)

e

Figure 9-5-2 module switching circuit

'-.'?C

Rz
AT0R
i
3 O RS
5 oEM
oI ¥ o
o o og - L=
23 kb LR oL
0O oF

WD

Figure 9-5-3 LCD enable and read/write end
There are two types of LCDs: fonts and drawing. Different character fonts are
burned inside the fonts LCD (arithmetic symbols, Arabic numerals, capital lowercase

English letters, Japanese), the user writes the control codes (ASCII CODE) of the

244

characters to be displayed into LCD, the fonts will be displayed in the display screen.
LCD on common fax machine is font LCD. All the dots on drawing LCD use ON or
OFF control to display data or graphs, LCD used on common notebooks or laptops
are drawing LCD. The control of the former is relatively simple, so font LCD (CM
1602222) is selected, now we will proceed to describe this type of LCD, as follows:

LCD outside drawing and Pins

This LCD is double column 16 character LCD with 14 Pins, which is divided
into data signal lines (DB0O ~ DB7) and control signal lines (RS, R/W, E), while the
other 3 three Pins are power control lines (Vss, Vdd, Vo). The functions of the Pins

are described as follows:

DB3 ~ DBO (Low-order Data Bus)
These four lines are low 4 bits data lines, used for transmitting data. When the

LCD is connected to a 4 bits CPU, these four signal lines are disconnected.

DB7 ~ DB4 (High-order Data Bus)

These 4 signal lines are high 4 bits data lines, used for transmitting data. When
LCD is connected to 4 bits CPU, these four signal lines must be connected to a data
line (D3 ~ DO) of the controller

RS (Register Select)

RS is a signal line that selects instruction register or data register. When RS=1,
DR is selected. Conversely, when RS=0, IR is selected. After selecting register, write
into or read from, so when R/V_V=1, data is read from LCD. R/W signal line is
usually used in conjunction with the RS signal line.

E (Enable)

This Enable signal line is used to enable LCD, whether data can be written
into/read from LCD depends on Pin E. That Pin E is high or low will not enable data
to be written into or read from LCD, which can only be enabled when level signals
from low—high—low are generated.

Vo (Power Supply)
Vpp is the power cord connected to +5V.
Vss (Power Supply)
Vs is the power cord that is grounded
V, (Power Supply)
V, is the power cord that adjusts voltage, controlling the brightness of the LCD.

245

Internal structure diagram
There are more then 10 block diagrams inside LCD, as follows:
1. Registers
2. Busy Flag
3. Address Counter
4. Display Data RAM
5. Code Generator RAM
6. Code Generator ROM
7. Timing Generator
8. Cursor/Blink Converter
9. Parallel to Serial Converter
10. Bias Voltage Generator
11. LCD Driver
12. LCD Panel

Register (R)

There are 2 registers inside LCD module: instruction register (IR for short)
and data register (DR for short). Instruction register is used to store instructions
that control LED, such as Display Clear and Cursor Shift, etc. And a data register
is used to store display data to be written into/read from DD RAM or CG RAM.
After writing external data into the data register, the LCD will automatically write
the data of the DR into DD RAM or CG RAM. To choose IR or DR depends on
RS signal level, when RS=0, select DR, and when RS =1, IR is selected.

Busy flag (BF)

This flag is used to indicate whether LCD is working during internal
operation, namely whether it is ready to receive external data. When BF=I, it
means LCD is during internal operation, now LCD will not accept any
instructions from the outside until BF=0. After executing current instructions,
LCD will automatically clear busy flag to be 0, that is, BF=0.

Address counter (AC)

Address counter is used to generate the addresses required by display data
memory and character generator memory. When setting the address instructions of
DD RAM or CG RAM to be written into instructions register, select the addresses
of DD RAM or CG RAM to be stored in AC so that write into/read out data can be
stored in/read from DD RAMO or CG RAM that AC points to. When data is

246

written into/read from DD RAM or CG RAM, AC may automatically add or
subtract one. The contents of AC corresponds to data line DB0O ~ DB6.

Display data memory (DD RAM)
Display data memory is used to store the display data of LCD, with capacity
of 80*8 bit, it can store 80 8-bit character codes. The address of DD RAM is the

contents of AC, usually expressed in Hexadecimal.

Character generator only memory (CG ROM)

CG ROM inside LCD can generate 160 different kinds of 5*7 dot matrix
fonts. Shown in table 9-5-1 are the dot matrix fonts, and it can be seen that the
control codes for these fonts are nearly the same as ASCII CODE. To display the
fonts in CG ROM, it is only necessary to write the control codes of the fonts into
the display memory (DD RAM).

247

Table 9-5-1 font codes

e =1En] S — %5 ol
w0001 | (2] '1I:|-|E!.E|'=I -] ?a.'lf-léq
w010 | (3) "2ZBEEBbr r-1"'!J.=d'|E=EI
we0D11 | C1) #3':5!:-5 d r:'i'EE-“
wooton| & | |5 [D T[T -.. Il"'l"'l.rlﬂ
woo| o | [F[DEUeU = AF =1y
w0110 | (F) E:|E I-.-I'F'-.n' ? :EPE
oo [*[PEWEMW | [FIFF[?gn
w000 | (1) B HXhx A E[T |
01001 | (2) TN L]g ':IJI.J".!"H
wwton || || [T £ |Z I dhnll-|]|F
sttt | || |@ I'_":.-[:]':: J AT EO* R
wotos| @] |3 % e L] | #2234+ M
woeoc1101 | (8) _|=|ﬂ|JI"||} alA™N [E T
oo 110 | () o |2 M E1LE dRllE’

w1111 | (21 .-"'?l:l_l:l{' “..II:.J::IE ﬁ[

Character generator memory (CG RAM)

CG RAM IN inside LCD is used to store the user-defined 5*7 dot matrix
fonts; at most 8 fonts can be stored. To display the fonts in CG RAM, the control

codes displayed in the row in the extreme left of table 9-5-1 must be written into

display memory (DD RAM).

Timing generator (TG)

Timing generator generates the timing signals required by DD RAM, CG
RAM and CG ROM. With proper timing signal control, no interference may occur

when externally accessing DD RAM data and reading data display.

Parallel to Serial Converter

This converting circuit can convert parallel data read from CG ROM or CG

RAM into serial data for the use of a display driver.

248

Cursor/Blink Controller
This circuit controls the character blink on DD RAM address and whether

the cursor appears

Bias Voltage Generator

Bias voltage circuit is used to provide the voltage necessary to drive the
LCD.

LCD Driver
This circuit produces signals necessary to drive 5*7 dot matrix after receiving

the display data, time signal and bias voltage.

LCD Panel
LCD front panel is a dot matrix display screen, which can be divided into 6
types of specifications such as a single/double column 16 characters,

single/double column 20 characters, single/double column 40 characters, etc.

LCD instruction set

Table 9-5-2 is the instruction set that controls LCD, including 11 types. We can
learn from the table of the functions of the instructions and the time needed to execute
them. Some of the instructions are operating modes that set the LED. Some are
addressing internal DD RAM or CG RAM, while the remainders are used to write
into/read from data from DD RAM or CG RAM. For the external circuit to input
control LED, whether LCD is in a busy status should be check first, if BF=1, it means
that LCD is in a busy status, until BF=0.

Display Clear
This command can clear all the contents of DD RAM to be 20H and the contents
of address counter to be 0.

Display/Cursor Home
This command can clear the contents of AC to be 0 without affecting the
contents of DD RAM.

Enter Mode Set

I/D: When this bit is used to display data write into/read from DD RAM or CG
RAM, the contents of AC is +1 or —1.

249

S: When this bit can only control data write into DD RAM rather than CG RAM,

the entire display is whether shift is necessary.

Display ON/OFF
D: This bit can control the ON/OFF function of the display.
C: This bit can control whether the cursor will display on LCD display screen.
B: This bit can control whether the display character blinks.

Display/Cursor Shift
This command can control individual shift of the cursor or the simultaneous shift

of the cursor and display.

Function Set

Is used to set data length and display format. DL bit in command filed is used to
set data length, when DL=1, the data length is 8 bit; when DL=0, the data length is 4
bits. Bit N in the field is used to select single column or double column display, when

N=1, it is double column display; when N=0, it is a single column display.

CG RAM Address Set
This command can set CG RAM Address.

DD RAM Address Set
This instruction is used to set DD RAM Address.

Busy Flag/Address Counter Read
This read instruction can be used to judge whether the LCD is in a busy status or
not and to read the contents of the address counter.

This instruction is used to write display data into the CG RAM or DD RAM.

This instruction is used to read data in CG RAM or DD RAM.

250

Table 9-5-2 LCD instruction set

_ Instruction Code Executed
Instruction DESCRIPTION Timet fose
RS |rRw|DB7|DR6|OBS |DB4 | DB |DE2|DE1|DRO =270KHz)
Clear Display i I I il Write “20H" to DDRAM and set i
1] 1] 1] 0 1] 1] 3 5
4| i ' |DDRAM address to “00H " from Ac |23
Set DDRAM address to “00H" from
GRS AL AC and return cursor to its original
olojojojojojofo] Position if shifted. 1.53mS
The contents of DDRAM are not
changed.
Entry Mode Set |) S P : Assign cursor moving direction and ;
Rl 2|4) G R enable the shift of entire display. 39uS
: : Set display (D), cursor(C), and
Display On/Off olojolo]olo|1|D]c|e Blinkingofcursor(B) ON/OFF control | 39uS
Control bit -
Cursor or Set cursor moving and display shifts
Display ojojo]ojol1|SC|RL cursor bit, and the direction, without | 39uS
Shift changing of DDRAM data.
Sets interface data length
. . " (DL:8-BIT/4-BIT}), number of display
Funstion Het o Rk VIRE| N |F lines(N:2-line/1-line) and, display font 5op3
type (F:5x11dots/5x8 dots).
Set CGRAM . = o P +|Set CGRAM address in address
il 1| o | 0| 1 |acs|acs |aca|acz|ace |aco e 39uS
Set DDRAM : ; . -|Set DDRAM address in address
Address 0| o | 1 |ace|acs [aca [aca [acz|act Jaco countar. 39uS
Whether during internal operation or
Read Busy : :
Flag and y o | 1 | ar lace lacs laca laca lacalact |aco MOt can be known by reading BF. 0uS
niddipas The contents of address counter can
i also be read.
Write Data to ~ } o |Write data into internal RAM .
RAM 1|0 |D7|D6|Ds| 04| D3| 02| 01|00 (DDRAM / CGRAM) 4308
Read Data B . . . |Reads data from internal RAM
from RAM 11 |Dr|De[De|D4| D3 D201 D0 pORAM/ CGRAM). 43uS

9.6 LCD(MASM)

Experiment purpose: Write programs with MASM to enable LCD to display English

characters like A~\.

MASM program code:

. MODEL SMALL

.386
. STACK

. DATA

OUT _DISABLE
10_PORTO
10_PORTI
I0_PORT2

EQU
EQU
EQU
EQU

0A418H
0A410H
0A414H
0A412H

251

I0_PORT3 EQU 0A413H

OUT_DISABLED EQU 0A408H
10 _PORTOD EQU 0A400H
10 _PORTI1D EQU 0A404H
10 _PORT2D EQU 0A402H
TEST UNIT DB 10H
TEMP DW OH
TEMP_LOOP DwW OH
LCD _TEMP DwW OH
TEMP_ LCDI1 DW OH
TEMP_LCD2 DD OH
. CODE
BEGIN:

PUSH DS

MOV AX, 0

PUSH AX

MOV AX, @DATA
MOV DS, AX

MOV DX, OUT DISABLE
MOV AX,0010H ; set 1/016~1/019& 1/00~I/0O7 to high
impedance

ouT DX, AX

LCD DISPLAY: ;LCD_DISPLAY testing program
MOV EBX, 00000038H ; clear LCD screen
CALL COMMAND

MOV EBX, 00000001H
CALL COMMAND

MOV EBX, 0000000EH
CALL COMMAND
MOV DX, OUT DISABLE
MOV AX,0010H ;set /016~1/019 to high impedance
OouT DX, AX
LCD DISPLAY I:

252

MOV DX,IO_PORT1 ;sWR is LOW
MOV AX, 0004H
ouT DX, AX

MOV EBX, 00000038H ; SET mode
CALL COMMAND

MOV EBX, 00000001H ; clear the screen
CALL COMMAND

MOV EBX, 0000000FH ; move the cursor to the first place
CALL COMMAND

MOV TEMP_LCD1, 0010H
MOV TEMP_LCD2, 0041H
LCD DISPLAY 2:
MOV EBX, TEMP_LCD2 ; display the characters of A~P. in

sequence

CALL WRITE_ COMMAND
INC TEMP_LCD2
DEC TEMP_LCDI1
CMP TEMP_LCDI1, 0000H
JBE LCD DISPLAY 3
IMP LCD_DISPLAY 2
LCD DISPLAY 3:
MOV EBX, 000000COH ; new line
CALL COMMAND

MOV TEMP_LCD1, 0010H

MOV TEMP_LCD2, 0051H
LCD DISPLAY 4:

MOV EBX, TEMP_LCD2 ;display the characters of Q~\ in
sequence

CALL WRITE_ COMMAND

INC TEMP_LCD2

DEC TEMP_LCDI1

CMP TEMP_LCDI1, 0000H

253

JBE
JMP
COMMAND:
MOV
MOV
ouT

MOV
MOV
ouT

MOV
MOV
ouT

MOV
MOV
ouT
CALL
CALL
RET

EXIT
LCD_DISPLAY 4

DX,I0O_PORTI
AX, 0005H
DX, AX

DX,I0_PORTO
EAX, EBX
DX, EAX

DX, I0_PORTI
AX,0004H
DX,AX

DX,I0O_PORTI
AX,0010H
DX,AX
WAIT 1S
WAIT 1S

WRITE_COMMAND:

MOV
MOV
ouT

MOV
MOV
ouT

MOV
MOV
ouT

MOV
MOV
ouT

DX,IO_PORTI
AX,0000H
DX,AX

DX,I0O_PORTI
AX,0014H
DX,AX

DX,IO_PORTI
AX,0015H
DX,AX

DX,I0_PORTO
EAX,EBX
DX,EAX

254

;LCD_DISPLAY COMMAND
;WR is LOW, EN is HIGH

;feed into 01H

:EN is LOW

:RS and WR are HIGH

;LCD write characters

MOV DX,I0_PORT1
MOV AX,0014H
ouT DX,AX

MOV DX,I0_PORT1
MOV AX,0000H
ouT DX,AX

CALL WAIT_IMS

MOV DX,I0_PORTI

MOV AX,0010H

ouUT DX,AX

CALL WAIT IS

RET

IMP EXIT
WAIT _3S:

MOV TEMP_LOOP,07H
WAIT _3S_LOOP:

CALL WAIT 2S

DEC TEMP_LOOP

CMP TEMP_LOOP,00H

JBE WAIT 3S_EXIT

IMP WAIT_3S_LOOP
WAIT 3S_EXIT:

RET

WAIT 2S:
CALL WAIT IS
CALL WAIT IS
CALL WAIT IS
CALL WAIT IS
CALL WAIT IS
CALL WAIT IS
RET

WAIT _1S:
MOV BX,0007FH

WAIT_LOOP:

255

CALL

DEC
CMP
JBE

LOOP
WAIT_1S_EXIT:

RET

WAIT_1MS:
MOV

WAIT _LOOPI:
MOV
MOV
MOV
MOV
MOV
MOV
MOV

LOOP

RET

WAIT 2MS:
MOV

WAIT _LOOP2:
MOV
MOV
MOV
MOV
MOV
MOV
MOV

LOOP

RET
EXIT:

MOV

MOV

ouT

MOV

WAIT_1MS

BX

BX,0000H

WAIT _1S_EXIT

WAIT_LOOP

CX,03FFFH

BX,BX
BX,BX
BX,BX
BX,BX
BX,BX
BX,BX
BX,BX

WAIT _LOOP1

CX,07FFH

BX,BX
BX,BX
BX,BX
BX,BX
BX,BX
BX,BX
BX,BX

WAIT_LOOP2

DX,0UT_DISABLED
AX,0000H

DX,AX
DX,I0_PORTOD

256

;clear all settings

MOV EAX,00000000H
ouT DX,EAX

MOV DX,I0_PORT1D
MOV AX,0000H

ouT DX,AX

MOV AH,4CH
INT 21H
END BEGIN

9.7 LCD (VC/C++)

VC/C++ program code:
(LCD returns to zero)
//Set all 10 Port
RegValue = 0x0010;
rc=PlxIoPortWrite(
hDevice,
port + 0x18,
BitSize32,
&RegValue);
//Set output to LCD
RegValue = 0x0005; 0000_0101
rc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);
//output information to LCD
RegValue = 0x0038;
rc=PlxIoPortWrite(
hDevice,
port + 0x10,
BitSize32,
&RegValue);
// disable LCD unit
RegValue = 0x0004;

257

rc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);
//LCD_RS is high
RegValue = 0x0010;
rc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);
//Set output to LCD
RegValue = 0x0005; 0000_0101
rc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);
//output information to LCD
RegValue = 0x0001;
rc=PlxIoPortWrite(
hDevice,
port + 0x10,
BitSize32,
&RegValue);
//Disable LCD unit
RegValue = 0x0004;
rc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);
//LCD_RS is high
RegValue = 0x0010;
rc=PlxIoPortWrite(
hDevice,

port + 0x14,

258

BitSize32,
&RegValue);
//Set output to LCD
RegValue = 0x0005; 0000_0101
rc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);
//output information to LCD
RegValue = 0x0000;
rc=PlxIoPortWrite(
hDevice,
port + 0x10,
BitSize32,
&RegValue);
//disable LCD unit
RegValue = 0x0004;
rc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);
//LCD_Rs is high
RegValue = 0x0010;
rc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);
//set all 10 Port
RegValue = 0x0010;
rc=PlxIoPortWrite(
hDevice,
port + 0x18,
BitSize32,
&RegValue);

259

(Move the cursor to the first place)
//set the output to LCD
RegValue = 0x0005; 0000_0101
arc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);
//output information to LCD
RegValue = 0x000f;
rc=PlxIoPortWrite(
hDevice,
port + 0x10,
BitSize32,
&RegValue);
//disable LCD unit.
RegValue = 0x0004;
rc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);
//LCD_RS is high
RegValue = 0x0010;
rc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);

(newline)
//set the output to LCD

RegValue = 0x0005; 0000_0101

rc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);

260

//output information to LCD
RegValue = 0x00c0;
rc=PlxIoPortWrite(

hDevice,
port + 0x10,
BitSize32,
&RegValue);

//Disable LCD unit
RegValue = 0x0004;
rc=PlxIoPortWrite(

hDevice,
port + 0x14,
BitSize32,
&RegValue);

//LCD_RS is high
RegValue = 0x0010;
rc=PlxIoPortWrite(

hDevice,
port + 0x14,
BitSize32,
&RegValue);

(Write into instructions)
RegValue = 0x0000;
rc=PlxIoPortWrite(

hDevice,

port + 0x14,

BitSize32,

&RegValue);
RegValue = 0x0014;
rc=PlxIoPortWrite(

hDevice,

port + 0x14,

BitSize32,

&RegValue);
RegValue = 0x0015;
rc=PlxIoPortWrite(

hDevice,

261

port + 0x14,
BitSize32,
&RegValue);
RegValue = 0x0000; Value to be outputted
rc=PlxIoPortWrite(
hDevice,
port + 0x10,
BitSize32,
&RegValue);
RegValue = 0x0014;
rc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);
RegValue = 0x0000;
rc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);
RegValue = 0x0010;
rc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);

9.8 8254 timer and counter

Experiment purpose: Write programs to enable 8254 to produce square wave output in

mode 3.

MASM program codes:

. MODEL SMALL
.386

262

. STACK

. DATA
P54C0 EQU 0A400H ;count 0 bit address of 82C54
P54CR EQU 0A403H ; control port bit address of 82C54
MO054 EQU 16H ; count 0 is mode=3, only load LSB, binary counter
;0001 0110
. CODE
BEGIN:
PUSH DS
MOV AX, 0
PUSH AX

MOV AX, @DATA
MOV DS, AX

MOV DX, P54CR
MOV AL, M054
OouT DX, AL ;write into the control port.
MOV DX,P54C0
MOV AX,250
ouT DX,AL ;Load counter value 250, and the output is 10MHz/250
; MOV AL,AH
; OouT DX,AL
EXIT:
MOV AH,4CH
INT 21H
END BEGIN

VC/C++ Program code:

//Load mode setting//
RegValue = 0x0016;
rc=PlxIoPortWrite(
hDevice,
port + 0x03,
BitSize32,
&RegValue);

263

//Set counter values //
RegValue = 0x0250;
rc=PlxIoPortWrite(

hDevice,
port + 0x00,
BitSize32,
&RegValue);

264

Article 5 Advanced combined languages and C/C++

program language samples

D/A converter is an important device for computer experiments. Because the
programming for this type of device is not easy, the readers can study the
specifications of chips in the disc in this book on his/her own to write programs. The

related circuit diagram is shown in Figure 5-0-1 below.

\| 8 F [
=z i a. ~
| o
1508 VS
U1E |
e = B 2 won ==
:._q‘-_\. x o] TR |- SE——
o 0 WE B 060 rti——e o
'l . s -
RE 1|:l:' C,Lhnd :HI H‘-’-:I
o miT P 2 TR DE7 [t —
AD B 5 .
:“r':r:; \ Am w1 B a B R DE3 Wyo e
e S VRN
- _r‘_mu :E: H.ﬂ_i
e 7]
" IEFH-? :EE H.ﬂ :E
LAY i
: i L. CESRD b =T Hﬂ_gr
1 ATVCECA
- Wi
- _‘E
: cEiE
LT | LR
7 oo e ouTe | ke
Cal] —{ 031 FFEA f— DA ST
LY 1 P | * e
1 0e Dez REFA SR T
1 7 3
%10 o |mes oum D
A] s Das FFEH _l':_]": DA OUTE
a7ee X —{ma: mErE - MWy, U
OO oay
o6_CE =g oz mon el
) W MR DGEND
Db A £ nicagmncs =i
L E.l: ﬂg =

Figure 5-0-1 PCI_LAB experiment board A/D and D/A module circuit diagram

265

Chapter 10 Digital/analog converter

D/A converter is an essential element to the control and application of the PC.
The four characteristics that require attention for common D/A converters are as
follows:

(1) Revolution

(2) Linearity

(3) Setting time

(4) Accuracy

The advantages and disadvantages of D/A converters are related to the above
four characteristics. Generally speaking, the higher the resolution is, the better the
linearity, and the ones that have faster setting time and higher accuracy have better

functions. The following is the description of the above characteristics:

(1) Revolution

The resolution of a D/A converter depends on the number of binary bits and the
relationships between the two can be expressed by the following equation. In which n
is the bit numbers of the converter, the number of ladders that can be produced by a n
bit D/A converter is 2"-1.

D/A converter DACO0808 is an 8 bit digital-to-analog converter, whose resolution
is 1/256, which can produce 256 ladder waves; each ladder is equal to the increment
of one LSB, namely 1/256. The larger the number of binary bits for the converter, the
smaller the conversion error is; conversely, the higher the resolution is, the larger the
conversion error. Currently the bit numbers of D/A converters are divided into four
types: 8, 10, 12, 16, due to the higher resolution of 12, 16 bits DAC, their prices are

higher; therefore, they are often used in more accurate control and experiments.

(2) Linearity

The second characteristic of D/A converter is Linearity. Linearity usually refer s
to the same amount of changes by analog output signals when a convert starts from
entering bits from low potential (0000 0000) to gradually changing to “all the input
bits are high potential (1111 1111). As long as the maximum error of the D/A
converter does not exceed =+ 1/2 of the value of lowest sub-bit, namely + 1/2 LSB, it
is normal. The specifications of D/A converters currently available on the market are

mostly equal to or more than =+ 1/2 LSB.

266

(3) Setting time

The third characteristic of D/A converter is setting time. Setting time is the time
the digital information starts to convert to obtain a stable output value (final value
+ 1/2 LSB) after it is input. Generally speaking, the shorter the setting, the better,
indicating that its response is good and the switching speed is fast.
The length of setting time is related to the changes of bits. When the input bit is
switched from low potential status to high potential status, the setting time required is
longer. Contrastingly, when the input bit is switched from high potential status to low

potential status, the required setting time is relatively shorter.

(4) Accuracy

The accuracy of a D/A converter is determined by the difference between the
actual output and ideal output. The smaller the difference is, the higher the accuracy.
Accuracy can be divided into two types: absolute accuracy and relative accuracy.
Absolute accuracy refers to the extent to which the actual output value is close to the
ideal output value, while relative accuracy refers to the extent to which the actual
output value is close to the ideal full-scale output value. Full-scale output value is the
corresponding output value when the input bits of the D/A converter are all of high

potential. Usually accuracy is expressed in percentages.

VC/C++ Sample program
(D/A output selection)
RegValue = 0x0026; A 0010 0110
rc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);
RegValue = 0x0006; B 0000 0110
rc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);
(Writ-in information)
RegValue = 0x0000; Encountering written data
rc=PlxIoPortWrite(

hDevice,

267

port + 0x10,
BitSize32,
&RegValue);
(I0_PORT setting)
RegValue = 0x0010;
rc=PlxIoPortWrite(
hDevice,
port + 0x18,
BitSize32,
&RegValue);

P.S. Program code should be aligned with references to D/A chips, just like
VC/C++ program codes of liquid crystal display so that output form D/A converter
can be effective.

268

Chapter 11 Analog/digital converter.

The device that converts analog signals into digital signal is called A/D converter,
and there are many converting methods, such as integration method, successive
approximation method, parallel method, integration methods and counter methods.

The characteristics of A/D converter are similar to that of D/A converter.
However, there are still some differences, generally its characteristics can be roughly
divided into four types. Before using A/D converter, the user should first refer to its
characteristic so as to use it in interface designs effectively.

(1) Analog input voltage

(2) Resolution

(3) Switching time

(4) Digital output format

The above characteristics are described as follows.

Analog input voltage

Usually A/D converter can accept limited analog input voltage, so, before using,
you have to know the limitations of input to A/D converter analog voltage. Otherwise,
the converter may be damaged. Part of the A/D converters allows only univocal input
voltage, namely the input voltage is either positive voltage or negative voltage.
Some A/D converter can allow dual polar input voltage, namely the input voltage can
be either positive or negative. Due to the different specifications of A/D converters,
the proper values should be obtained from the information handbooks provided by the
manufacturers. The common typical voltage values are: 0~+10V, 0~-10V, +5V~-5V
etc.

Resolution

The resolution factor of A/D converter is similar to that of D/A converter,
determining the binary bits outputted by converter, which is 1/2" of resolution, of
which n is the number of bit number. Usually the larger the number of bits the
converter is, the better the resolution. In case of different maximum output voltage,
the output level is also different.

Converting time

The time from AD convert’s starting to convert analog input voltage to producing

stable digital data is called conversion time. A shorter conversion time usually means

269

a faster converting speed. Generally, the higher the resolution is, the slower the
converting speed. To make the converting speed faster, the A/D converter price may
be higher.

Digital output format

To be used in various different systems, A/D converter gas output code of the
following formats; unipolar binary code, unipolar BCD code, offset binary code, one’s
complement and two’s complement are available for choosing. Which kind of input
code will be selected depends on the needs of actual lines. When the input ranges of
A/D converters are all positive values or negative values, then binary code and reverse
binary code are usually selected. When the input ranges of the A/D converter can be

either positive or negative(dual-polar), offset binary code is usually selected.

VC/C++ sample program:

(A/D input)
RegValue = 0x000b; 0000 1011
rc=PlxIoPortWrite(
hDevice,
port + 0x14,
BitSize32,
&RegValue);
(read out information) The value of RegValue is the data fetched
rc=PlxIoPortRead(
hDevice,
port + 0x10,
BitSize32,
&RegValue);
(I0_PORT setting)
RegValue = 0x0010;
rc=PlxIoPortWrite(
hDevice,
port + 0x18,
BitSize32,
&RegValue);

270

P.S. Program code should be aligned with references to A/D chips, just like VC/C++
program codes of liquid crystal display so that input form A/D converter can be

effective.

271

Chapter 12 Project and 10-Port setting program

This PCI-IO interface panel can use 192 IO, which is presented by each 48 IO of
four IO BANK. Planned with eight IO as an IO PORT, you can go straight to the
self-made IO experiment board. With the experiment outward-pull module
self-developed by the lab of our university as shown in Figure 12-0 below. The IO of
PCI-IO board can be externally connected to the self-designed circuit, and LEE-PU

electronics also have similar products.

Figure 12-0 Externally connected module self-manufactured by this lab.

As for special case manufacturing, since it is necessary to set the output or input
of I0_PORT, program codes are provided here for the reader to use. Related output
/input information can be obtained by opening this test file with notebook and the

program codes are as follows.

#include <stdio.h>

#include "PlxApi.h"

#include "PciRegs.h"

#include "PlxInit.h" //add different Include File based on the needs of an

individual program)

272

int main() //main program //

{
U8 Revision,code;
FILE *f;
uUle6 i
U32 ChipType;
U32 LocalAddress=0;
S8 DeviceSelected;
HANDLE hDevice;

RETURN_CODE IC;
DEVICE LOCATION Device;

IOP_SPACE IopSpace;
U32 port,pp,RegValue;
U32 buffer[64]; /I define the parameter, increase upon

lack of parameters by yourself//

DeviceSelected = SelectDevice(&Device); //Select interface card//
rc = PIxPciDeviceOpen(&Device, &hDevice); //PCI-IO opening card
action //

port=PIxPciConfigRegisterRead(
Device.BusNumber,
Device.SlotNumber,
CFG_BAR3,
&rc); //read base address//
buffer[0] = 0x00000000;

port = port & ~(1<<0); //return-to-zero and reset action //

PIxChipTypeGet(hDevice, &ChipType, &Revision); //10 Port setting //
TopSpace = IopSpace0;
IopSpace = IopSpacel;

RegValue = 0x00;

pp=0x00;

f=fopen("test","w");

1=0x00;

for(i=0x00;1<0x49;)

273

printf("\n BASE %x 8".1);
fprintf(f,"\n BASE %x 8",1);

for(RegValue=0x00;RegValue<0x100;)

{

printf("\n setting0 %x",RegValue);
fprintf(f,"\n setting %x",RegValue);
rc=PlxIoPortWrite(

hDevice,

port + 0x08 +i,

BitSize32,

&RegValue);
for(pp=0x00;pp<0x06;pp=pp+0x01)
{

rc=PlxIoPortRead(

hDevice,

port + pp,

BitSize32,

&code);

printf("\n bank0 code %x",code);
fprintf(f,"\n bank0 code %x",code);
h
pp=0x10;
for(pp=0x10;pp<0x16;pp=pp+0x01)
{
rc=PlxIoPortRead(

hDevice,

port + pp,

BitSize32,

&code);

printf("\n bank1 code %x",code);
fprintf(f,"\n bank1 code %x",code);
h
pp=0x20;
for(pp=0x20;pp<0x26;pp=pp+0x01)
{
rc=PlxIoPortRead(

hDevice,

274

port + pp,
BitSize32,

&code);
printf("\n bank2 code %x",code);
fprintf(f,"\n bank2 code %x",code);
h
pp=0x30;
for(pp=0x30;pp<0x36;pp=pp+0x01)
{
rc=PlxIoPortRead(
hDevice,
port + pp,
BitSize32,
&code);
printf("\n bank3 code %x",code);
fprintf(f,"\n bank3 code %x",code);
h
pp=0x40;
for(pp=0x40;pp<0x46;pp=pp+0x01)
{
rc=PlxIoPortRead(
hDevice,
port + pp,
BitSize32,
&code);
printf("\n bank4 code %x",code);
fprintf(f,"\n bank4 code %x",code);

}
RegValue=RegValue+0x01;

}

i=i+0x10;

}

fclose(f);

return 1;

}

This program first sets the setting of IO BANK, then executes the setting of
0x08, fills the values from 0x00h to OxFFh into the setting port, fetches the output or
input status of IO _PORT in various IO BANK, then executes the setting of 0x18,

275

0x28, 0x38, 0x48. In executing this program, IO combinations meeting various

demands can be found, allowing the use of the 32 bit output or input status.

276

