
Table of Contents

Article 1 Principle of Interface ..3

Chapter 1 Brief Introduction of Computer and ISA Interface4
1.1 PC XT/AT brief introduction ...4
1.2 PC XT/AT I/O address and memory configuration5
1.3 Brief introduction of PC XT/AT interrupt concept9
1.4 Brief introduction of chips like 8255/8254..13
1.5 ISA interface brief introduction ...15
1.6 Summary of computer in recent years ...19
1.7 Recent computer structure ...21
1.8 Brief introduction of related interface..26
1.9 Operation rules applied to computer bits ...30
Exercises: ...33

Chapter 2 PCI interface..34
2.1 PCI (Peripheral Component Interconnect) brief introduction34
2.2 PCI connector and pin..37
2.3 PCI interface pin definition..42
2.4 PCI instructions..46
2.5 Configuration address port and configuration transaction.....................47
2.6 Configuration cache ...54
2.7 Read transmission ..60
2.8 Write transfer ...65
Exercises ..70

Article 2 PCI-IO/LAB hardware description.......................................72
Chapter 3 PCI-IO/LAB hardware ..73

3.1 PCI-IO hardware..73
3.2 PCI-LAB hardware ..86

Chapter 4 Brief introduction of related chips ..91
4.1 PLX9050/9052 chip ...91
4.2 Serial RRPROM...96
4.3 8254 timing/counting chip ...103

Article 3 PCI interface experiment software hardware basic setting
...114

Chapter 5 PCI_LAB/IO software setting and description115
5.1 PCI experiment board hardware building ..115
5.2 PCI-IO drive program setting ..117

5.3 IO address of PCI-IO interface card ..123
5.4 Configuration cache ...127
5.5 Use PCI-IO in Debug mode...129
5.6 MASM assembly language setting ..130
5.7 Visual C/C++ standard original setting..131
5.8 Visual C/C++ 6.0 initial environment setting STEP by STEP.............136

Chapter 6 Program language description...153
6.1 Debug mode instructions ...153
6.2 MASM description...154
6.3 MASM instruction ...155
6.4 PCI-IOin C/C++ program language instructions157
6.5 IO definition port of LEAP PCI-IO/LAB ..162
6.6 Visual C/C++ simple program compiling description165

Article 4 Basic PCI-LAB experiment examples.................................167
Chapter 7 Simple I/O experiment ..168

7.1 Seven-segment display experiment (DEBUG Mode).........................170
7.2 Seven-segment display experiment (MASM)......................................174
7.3 Seven-segment display experiment (VC/C++)178
7.4 Drive multi-sets seven-segment LED display experiment (MASM):.180
7.5 Drive multi-sets seven-segment LED display experiment (VC/C++) .185
7-6 Buzzer experiment (Debug Mode & MASM).....................................186
7.7 Buzzer experiment (VC/C++)...189
7.8 Pushbutton switches input experiment (Debug Mode & MASM).......190
7.9 Pushbutton switch input experiment (VC/C++)196

Chapter 8 Motor and resistance heater...198
8.1 DC motor experiment (Debug Mode & MASM)199
8.2 DC motor experiment (VC/C++)..202
8.3 Step motor experiment (Debug Mode) ..203
8.4 Step motor experiment (MASM) ..205
8.5 Step motor experiment (VC/C++) ..210
8.6 Resistance heater experiment...211
8.7 Temperature sensor and DC motor upstream signal215

Chapter 9 Dot matrix, keyboard and LCD...217
9.1 Dot matrix output experiment (Debug Mode & MASM)....................217
9.2 Dot matrix output experiment (VC/C++) ...226
9.3 4 X 4 Keyboard input experiment (Debug Mode & MASM)..............231
9.5 LCD..243
9.6 LCD(MASM)...251

 1

9.7 LCD (VC/C++) ...257
9.8 8254 timer and counter ..262

Article 5 Advanced combined languages and C/C++ program
language samples...265

Chapter 10 Digital/analog converter..266
Chapter 11 Analog/digital converter. ...269
Chapter 12 Project and IO-Port setting program ...272

 2

Article 1 Principle of Interface
With the rapid development of computer technology, peripheral equipment and

interface technology has also developed very quickly. The ISA interface of the
so-called computer interface technology PC XT/AT, have not been manufactured
since 2000. Computer motherboards with ISA interface are also no longer seen on the
market, while PCI have already became a main interface for internal transmission of
computer. Although computer host machine still have new types, the slow speed
interface and AGP graphic interface, its main structure is unable to break away from
PCI interface. In the future, speedier interface technologies will be developed based
on this interface technology.

The so-called PCI interface has existed in computer system for more than ten
years, however, people are still mostly familiar with the interface technology of ISA,
which have been put into use for over 20 years and are appreciably different from PCI
interface in bandwidth, frequency, related circuit design and research. This article will
describe current computer structure and the principle of ISA interface, including a
brief introduction of PC XT/AT and ISA, related I/O address configuration,
interruption methods, introduction of ISA interface-related chips and their principles
of operating. However, for in-depth discussion of the ISA interface, please refer to
books associated with designs and applications of PC XT/AT and ISA interface first,
and then proceed to discuss the PCI interface.

The chips mentioned in this book are all embodied in the chip specifications
folder in the disk attached to this book, which can be used by the reader for references.
This book mainly focuses on principles and practices of PCI interface, describes the
basic principle of ISA interface in brief only for the reader to know the evolution of
computer interface, thus to understand the related principle of PCI interface.
Meanwhile, for practice and experiments of related ISA, please refer to interface
books published in the market.

 3

Chapter 1 Brief Introduction of Computer and ISA Interface

 The development of ISA interface begins with PC XT/AT, so far, it has gone
through decades of development and evolution. In the past, interface textbook
practices were based on this. However, in recent years, due to the rapid development
of semi-conductor and computer technology, the IAS interface is no longer the
mainstream, and is gradually replaced by a more speedy computer interface. In spite
of this, interface-related basic knowledge is still limited to ISA interface, far lagging
behind current interface technology. This chapter describes the basic principle of the
ISA interface, which can provide a basis and comparison for PCI interface and move
ahead to build the conception of interface.

1.1 PC XT/AT brief introduction

The personal computer or the so-called PC, which is the standard for personal
computer established by IBM in the 1980s, belongs to an open system framework;
and based on this standard, many manufacturers produced compatible personal
computers, which greatly increased its popularity. Basic PC system uses INTEL X86
series CPU as operating core, initially it should work with X87 series floating-point
unit to enhance its operating ability; after 80486 series, floating-point units are
already included in the CPU, making its unnecessary to improve operating ability via
selection. Several 8 bit extension slots are provided on PC XT motherboard for the
use of related extension cards; however, in addition to several 8 bits extension slots on
PC AT motherboard, another segment of the 8 bits extension slot is added, increasing
the data bus to the standard of 16 bits. The above-mentioned extension slots are
commonly known as ISA bus, after which, more compatible 32 bits buses have
emerged, and finally, the PCI bus has became the mainstream.

Figure 1-1-1 shows the basic PC system block diagram, in which internal
exchange power supply provides electricity demands for the motherboard, on which
are placed the microprocessor (CPU), memory (RAM/ROM), keyboard and speaker
interface, counter, interruption controller and dynamic access memory (DMA)
controller, via the extension slots, a few more interface cards, functions such display
and serial communication can be added.

 4

CPU Cache memory Main memory

Peripheral Bus control

Slow Additional

Processor bus

System bus

Figure 1-1-1 Basic PC system block diagram

1.2 PC XT/AT I/O address and memory configuration

PC XT/AT data input and output are achieved by defining output and input ports.
The address scope of CPU is 00000H~0FFFFH, between which there are 65536
output/input ports available for use. However, PC XT/AT system only uses 1024 ports
between 0000H~03FFH. Moreover, these 1024 ports are divided into two parts, with
A9/SA9 address line as the dividing line: when A9/SA9 is low, 512 ports between
address 0000H~01FFH can be used, these ports are provided for the system
motherboard to use; and when A9/SA9 is high, 512 ports between address
0200H~03FFH can be used, these ports are provided for related interface cards to use.
Table 1-3-1 shows the I/O address configuration of PC XT/AT.

The maximum memory that can be addressed for PC XT is 1MB, while the
maximum memory that can be addressed for PC AT is 16 MB, there is little difference
between the two parts: 00000H~FFFFFH, the part that exceeds 1 MB is extended
memory, which is the basis of today’s computer memory. Table 1-2-2 shows the basic
memory configuration diagram.

 5

Table 1-2-1 I/O address configuration
PC XT
Address used (hexadecimal) Description
0000H~000FH
0020H~0021H
0040H~0043H
0060H~0063H
0080H~0083H
00A0H~00BFH
00C0H~01FFH
0200H
0201H
0202H~0277H
0278H~027FH
0280H~02F7H
02F8H~02FFH
0300H~031FH
0320H~033FH
0338H~0377H
0378H~037FH
0380H~03AFH
03B0H~03BFH
03C0H~03CFH
03D0H~03DFH
03E0H~03EFH
03F0H~03F7H
03F8H~03FFH

8237A DMA
8259A interrupt controller
8253 timer
8255A peripheral interface controller
DMA page controller
NMI mask bit
Reserved
Reserved
Pc game control interface card
Reserved
The second print port interface card
Reserved
The second serial port interface card
Reserved
PC XT hard drive
Reserved
Print port interface card
Reserved
Single color and print port interface card
Reserved
Color graphics interface card
Reserved
5 1/4 inch drive interface card
Serial port interface card

 6

PC AT
Address used (hexadecimal) Description
0000H~001FH
0020H~003FH
0040H~005FH
0060H~006FH
0070H~007FH
0080H~009FH
00A0H~00BFH
00C0H~00DFH
00F0H
00F1H
00F8H~00FFH
01F0H~01F8H
0200H~0207H
0278H~027FH
02F8H~02FFH
0300H~031FH
0360H~036FH
0378H~037FH
0380H~038FH

03A0H~03AFH

03B0H~03BFH

03C0H~03CFH
03D0H~03DFH
03E0H~03E7H
03F8H~03FFH

DMA controller 1 (8237A-5)
Interrupt controller 1 (8259A,main)
Timer 8254
8042 keyboard controller
Real-time clock and NMI mask register
DMA page register (74LS612)
Interrupt controller 2 (8259A)
DMA controller 2 (8237A-5)
Clear mathematics auxiliary processor
Reset mathematics auxiliary processor
Mathematics auxiliary processor
Hard drive control card
Computer game control game
Parallel printer control card2
Serial transmission control card 2
Prototyping card,
Reserved
Parallel printer control card 1
SDLC, binary synchronous

communication 2
SDLC, binary synchronous

communication 1
Single color display interface card and

printer control
Enhanced color drawing control care
Color drawing control card
Drive control card
Serial transmission control card 1

 7

Table 1-2-2 Memory configurations
PC XT
Address
(hexadecimal)

Function Description

0000~3FFF 128~256K system version, RAM System basic memory
40000~9FFFF Memory extension card plugged

into system intension slot
Intension memory

A0000~AFFFF Reserved
B0000~B3FFF Single color image display
B4000~B7FFF Reserved
B8000~BBFFF Color / graphic image displayed

(only 16K is used)
BC000~BFFFF Reserved

Use of interface cards
compatible with PC / XT

C0000~C7FFF Reserved
C8000~CBFFF Hard disk drive interface card
CC000~EFFFF Reserved

Extension and control of
192K ROM

F0000~F3FFF Reserved
F4000~F5FFF Empty sockets left on the system

board

F6000~FDFFF BASIC interpreter
FE000~FFFFF BIOS

 8

PC AT
Address
(hexadecimal)

Function Description

000000H~07FFFFH System board memory 512KB Memory on the
motherboard is 512 KB in total

080000H~09FFFFH Memory extension board Extend memory to 640K
0A0000H~0BFFFFH Display buffer Buffer zone of character and

painting
0C0000H~0DFFFFH Output/input read only

extension area
Use of interface card
output/input program

0E0000H~0EFFFFH Read only memory area
reserved by the system

Reserved for the user to extend.

0F0000H~0FFFFFH (BIOS) System basic
input/output program area

System’s start-up self-test,
interrupt service program
storage area (BIOS)

100000H~FDFFFFH Maximum memory area Extending 15 MB memory
FE0000H~FEFFFFH System memory reserved area Reserved for the user to extend.
FF0000H~FFFFFFH Basic I/O system program area System’s start-up self-test,

interrupt service program
storage area (BIOS)

1.3 Brief introduction of PC XT/AT interrupt concept

PC XT/AT computer system I/O service can be divided into 3 types: POLLING,
INTERRUPT and DMA; to carry out I/O service by means of POLLING, the overall
system efficiency is the worst, because its system CPU needs to continuously check
related peripherals, causing the system to waste a lot of time on I/O checks; to carry
out I/O service by means of INTERRUPT, the system efficiency is high, interrupt
request is sent by I/O device to the system, in comparison with the POLLING method,
it can reduce the time for CPU needed to check related peripherals; and to carry out
I/O service by means of DMA in order to make use of DMA. When interruption
occurs, I/O device sends out DMA request, allowing I/O device to exchange data with
system memory directly and the data need not be read and written by CPU, thus the
overall transmission efficiency is the highest.

As for practice, interruption types can be divided into software interrupts and
hardware interrupts. Also PC XT/AT can use 256 interrupts in total and use the
method of interrupt vector to facilitate processing-interrupt vector from the computer
is achieved by assigning a memory block, which is the so-called interrupt vector table;

 9

the interrupt vector table is located in the memory absolute address scope
0000:0000H~0000:03FFH, each interrupt vector can allocate 4 memory addresses, so
that the first address of each interrupt is interrupt vector multiplies 4. Software
interrupt is to achieve the goal of interrupt by using INT instruction, still needs to
refer to and use the contents of the interrupt vector table, which is quite convenient in
practice. PC XT/AT hardware interrupts handle peripheral interrupt request signal
with one or two 8259, while peripheral devices informs the system to interrupt by
means of hardware implementation. Table 1-3-1 shows the functions of PC XT/AT
hardware interrupt request; table 1-3-2 describes the function of hardware direct
memory access; and table 1-3-3 lists bit configuration currently used for common X86
series platforms.

Table 1-3-1 Function description of hardware interrupt request

PC XT PC AT Interrupt
signal
(interrupt
group)

Vector
value

Function Vector value Function

IRQ0 (1) 8 System
counter

8(08H) System counter

IRQ1 (1) 9 Keyboard 9(09H) Keyboard
IRQ2 (1) 10 Reserved The second 8259
IRQ3 (1) 11 COM2 11(0BH) COM2
IRQ4 (1) 12 COM1 12(0CH) COM1
IRQ5 (1) 13 HDD 13(0DH) LPT2
IRQ6 (1) 14 FDD 14(0EH) FDD
IRQ7 (1) 15 LPT 15(0FH) LPT1
IRQ8 (2) 70(46H) RTC
IRQ9 (2) 71(47H) Point to IRQ2
IRQ10 (2) 72(48H) Reserved
IRQ11 (2) 73(49H) Reserved
IRQ12 (2) 74(4AH) Reserved
IRQ13 (2) 75(4BH) Floating-point unit
IRQ14 (2) 76(4CH) HDD
IRQ15 (2)

Unused

77(4DH) Reserved
Interrupt priority sequence 0>1>2(8>9>10>11>12>13>14>15)>3>4>5>6>7

 10

Table 1-3-2 Hardware direct memory access function
Channel number (DMA
controller groups)

Function

0 (1) DRAM update
1 (1) The secondary DMA controller
2 (1) Use of floppy disk
3 (1) Open to use
4 (2) Connected to the first group of DMA controller
5 (2) Open to use
6 (2) Open to use
7 (2) Open to use
Priority sequence 0>1 (4>5>6>7) >2>3

 11

Table 1-3-3 Current I/O address configuration
Name of I/O system or peripheral interface I/O address

(group)
DMA Controller 00h~0Fh (1)

C0h~DFh (2)
Programmable Interrupt Controller 20h, 21h (1)

A0h, A1h (2)
Programmable counter (Programmable Interval Timer) 40h~43h (1)

44h~47h (2)
Keyboard Controller 60h~64h
Programmable Option Controller 90h~96h
Floating-point auxiliary operation processor (Math Co-Processor,
X87)

F0h~FFh

Secondary IDE interface 170h~177h
Primary IDE interface card 1F0h~1F7h
GAME I/O joystick interface (Game Port) 200h~201h
Sound Card interface 220h~22Fh
PnP Configuration Register 279h, A79h
 (Serial Port 4 interface 2E8h~2EFh
Serial Port 2 interface 2F8h~2FFh
MIDI interface (Midi Port) 330h, 331h
Parallel Port interface 378h~37Ah
Single color graphic display interface (MDA/MGA) 3B0h~3BFh
Color graphic display interface (EGA/VGA) 3C0h~3CFh
Display cache (CGA/CRT) 3D4h~3D9h
Serial Port 3 interface 3E8h~3EFh
Floppy Diskette interface 3F0h~3F7h
Enhanced IDE interface 3F6h, 3F7h
Serial Port 1 interface 3F8h~3FFh
PCIconfiguration address cache (PCI Configuration
Register/Address)

0CF8h

PCIconfiguration data read/write port (PCI Configuration
Register/Data)

0CFCh

 12

1.4 Brief introduction of chips like 8255/8254
For PC XT/AT conventional ISA interfaces, chips like 8255 and 8254 play very

important roles. 8255 is a 40 pin programmable peripheral interface chip, which can
achieve very control functions through program language software planning; this chip
has 24 I/O bits, and is generally divided into three 8 bits I/O ports: A, B, C, or divided
into two 12 bits I/O groups: A, B, whereby group A is made up of A port and upper
half 4 bits on C port, while group B is made up of B port and lower half 4 bits on port
C. The I/O mode of this chip can be divided into 3 types: mode 0, mode 1 and mode 2,
port A can operate the above 3 modes, port B can only operate mode 0 and mode 1,
and operating mode is determined by controlling the control field of register. 8254 is a
24 pin programmable timer/counter chip, can be used to solve timing control
problems, inside which there are 3 independent 16 bit counting-backward counters,
which can handle binary and decimal counting, yet its operating mode can be planned
into 6 modes such as mode 0 to 5; chip planning action is carried out by controlling
the control field of the cache. Figure 1-4-1 shows the external pin diagram and
internal structure diagram of 8255 and 8254.

Other ISA interface related chips include 8259 of interrupt control chip,
keyboard and display interface chip 8279 and communication element 8251,etc. 8259
is a 28 pin programmable interrupt controller, which can handle the priority Sequence
of 8 groups of 8 interrupt requests; PC XT uses a 8259 chip, while PC AT connects
two 8259 chips in series, which is connected to the auxiliary 8259 interrupt controller
via main 8259 interrupt controller IRQ2, solving the problem of interrupt controller
compatibility and extension; request input can be interrupted by connecting several
groups of 8259 extension in series. For the uses of ISA interface-related chips, they
can be further discussed in books about PC XT/AT.

As with ISA interface operation, when used under peripheral chips like 8255, 8259,
etc. It is necessary to set the action mode of peripheral chips, plan the operating
modes of chips by defining control characters so as to write the relevant control
programs. Table 1-4-1 shows the I/O addresses of relevant chips.

 13

d

1-4-1 ISA related c address

 1-4-1 825 and in cture Figure

5, 8254 pin ternal stru iagrams

Table interface- hip I/O
Chip Function Address Description

PPI_PA 0x300 8255 A port address
PPI_PB 0x301 8255 B port address
PPI_PC s 0x302 8255 C port addres

8255

W address PPI_C 0x303 8255 control character
D79 0x310 8279 data address 8279
C79 0x311 8279 control address
C0_54 0x320 8254 counter 0 address
C1_54 0x321 8254 counter 1 address
C2_54 ress 0x322 8254 counter 2 add

8254

4 C3_5 0x323 8254 control address
D51 0x330 8251 data address 8251
C51 0x331 8251 control address

 14

1.5 ISA interface brief introduction
Table 1-5-1 is the ISA interface pin diagram, including the definition of another 8

bits extension pins. The signal pins are described by dividing into 4 types: table 1-5-2
escribes data bus, table 1-5-3 describes address bus, and table 1-5-4 describes control

etch of ISA interface card, describing the definition of interface card A/B sides.

Figure 1-5-1 Sketch of ISA interface card appearance

d
bus, while the remaining power portion is described in 1-5-5. Figure 1-5-1 is the
sk

Component side

XT/AT（A31~A1） AT（18~C1）

Topover layer

XT/AT（B1~B31） AT（D1~D18）

 15

Table 1-5-1 ISA interface pins
PC AT PC XT PC XT PC AT
I/O Signal I/O Signal

Pin Slot Pin
Signal I/O Signal I/O

G GND G GND B1 A1 -I/OCHCK I -I/OCHCK I
O RESET O RESET B2 A2 D7 I/O SD7 I/O
P +5 P +5 B3 A3 D6 I/O SD6 I/O
I IRQ9 I IRQ2 B4 A4 D5 I/O SD5 I/O
P -5 P -5 B5 A5 D4 I/O SD4 I/O
I DRQ2 I DRQ2 B6 A6 D3 I/O SD3 I/O
P -12 P -12 B7 A7 D2 I/O SD2 I/O
I OWS I NON B8 A8 D1 I/O SD1 I/O
P +12 P +12 B9 A9 D0 I/O SD0 I/O
G GND G GND B10 A10 -I/OCHRDY I -I/OCHRDY I
O -SMEMW O -MEMW B11 A11 AEN O AEN O
O -SMEMR O -MEMR B12 A12 A19 I/O SA19 I/O
I/O -IOW I/O -IOW B13 A13 A18 I/O SA18 I/O
I/O -IOR I/O -IOR B14 A14 A17 I/O SA17 I/O
O -DACK3 O -DACK3 B15 A15 A16 I/O SA16 I/O
I DRQ3 I DRQ3 B16 A16 A15 I/O SA15 I/O
O -DACK1 O -DACK1 B17 A17 A14 I/O SA14 I/O
I DRQ1 I DRQ1 B18 A18 A13 I/O SA13 I/O
I/O -REFRESH I/O -DACK0 B19 A19 A12 I/O SA12 I/O
O CLK O CLK B20 A20 A11 I/O SA11 I/O
I IRQ7 I IRQ7 B21 A21 A10 I/O SA10 I/O
I IRQ6 I IRQ6 B22 A22 A9 I/O SA9 I/O
I IRQ5 I IRQ5 B23 A23 A8 I/O SA8 I/O
I IRQ4 I IRQ4 B24 A24 A7 I/O SA7 I/O
I IRQ3 I IRQ3 B25 A25 A6 I/O SA6 I/O
O -DACK2 O -DACK2 B26 A26 A5 I/O SA5 I/O
O T/C O T/C B27 A27 A4 I/O SA4 I/O
O ALE O ALE B28 A28 A3 I/O SA3 I/O
P +5 P +5 B29 A29 A2 I/O SA2 I/O
O OSC O OSC B30 A30 A1 I/O SA1 I/O
G GND G GND B31

A31 A0 I/O SA0 I/O

 16

PC AT (ONLY) PC AT (ONLY)
I/O Signal

Pins Slots Pins
Signal I/O

I -MEMCS16 D1 C1 SBHE I/O
I -I/OCS16 D2 C2 LA23 I/O
I IRQ10 D3 C3 LA22 I/O
I IRQ11 D4 C4 LA21 I/O
I IRQ12 D5 C5 LA20 I/O
I IRQ15 D6 C6 LA19 I/O
I IRQ14 D7 C7 LA18 I/O
O -DACK0 D8 C8 LA17 I/O
I DRQ0 D9 C9 -MEMR I/O
O -DACK5 D10 C10 -MEMW I/O
I DRQ5 D11 C11 SD8 I/O
O -DACK6 D12 C12 SD9 I/O
I DRQ6 D13 C13 SD10 I/O
O -DACK7 D14 C14 SD11 I/O
I DRQ7 D15 C15 SD12 I/O
P +5 D16 C16 SD13 I/O
I -MASTER D17 C17 SD14 I/O
G GND D18

C18 SD15 I/O
P: power G: ground I: input O:output

Table 1-5-2 data bus
Pin signal Pin signal description Transmission

direction
SD0~sD7 Low byte Bi-directional

transmission
SD8~sD15 High byte Bi-directional

transmission

Table1-5-3 address bus
Pin signal Pin signal description Transmission

direction
19~0 sAsA PC XT base address bus Bi-directional

Transmission
23~17 LALA PC At high byte addressing signal Bi-directional

Transmission

 17

Table 1-5-4 control buses
Signal group Pin signal Pin signal description Transmission

direction
RESET System reset, power on, system

starts
Output

ALE Address signal locking Output
AEN DMA and CPU cycle mode Output

Output sMEMR
MEMR

Memory read
Bi-directional
Output sMEMW

MEMW
Memory write

Bi-directional

 I/O read Bi-directionalIOR
IOW I/O write Bi-directional

16CSMEM
(O/C, T/S) memory data
transmission instruction

Input

16/ CSOI I/O data transmission Input

sBHE High byte transmission start-up Bi-directional

System control
signals

REFRESH DRAM regeneration instruction Bi-directional
OSC Extension slot clock Output Clock control

signal CLK OSC/3, 1/3 system clock Output
RDYCHOI / Make CPU access slow Input Asynchronous

control signal OWS Place system access memory into
waiting status

Input

IRQ Hardware interrupt signal Input Interrupt request
signal CKCHOI / Parity check error detecting Input

DRQ Direct memory access signal Input

DACK Response signal sent by DMA Output
DMAcontrol
signal

CT / TERMINAL COUNT Output
Double processor
coordination

MASTER Multi-processor bus coordination Input

 18

Table 1-5-5 power signals
Voltage
value

+5V -5V +12V -12V GND

Output
voltage
specification

4.75V~5.25V
%5±

-4.75V~-5.25V
%5±

11.4V~12.6v
%5±

-10.8V~13.2V
%10±

Output
current
specification

<15A <0.5A <5A <0.3A -----

1.6 Summary of computer in recent years

In recent years, computers have been breaking away from traditional structure by
means of Legacy Free PCs. New generations of computers are designed with
brand-new specifications; and in conjunction with newly defined hardware/software
interface specifications, a new generation of personal computers have been
manufactured. As seen from the motherboard platform layout, free of the constraints
of traditional structures in the past and with ISA bus, ISA extension slots discarded, it
supports only the latest, self-detecting/setting bus and interface specifications, such as
PCI, AGP, USB, SM, Bus, etc; besides, sound card, modem interface cards are also
gradually replaced by AMR or CNR interface.

Since Intel advocated USB, so far, most of the motherboards have a built-in USB
interface, and USB devices are becoming popular gradually; currently the most
popular motherboard is USB1.1 interface, even USB2.0 began to become popular so
that traditional medium or low speed interface such as serial ports, parallel ports,
joystick and PS/2 interface cards have been gradually abandoned. In addition to the
USB interface, PCI interface, AGP display interface card or IEEE1394 interface are
enough for common users to use. Table 1-6-1 describes the differences between
“traditional” and “new generation” computers.

 19

CPU（0）

Front side bus（HOST）

North Bridge

PCI bus（PCI）

ISAbus（ISA）

South
Bridge

SUPER

I/O

System
BIOS

AGP

Graphic
accelerator

Video BIOS

Video memory

IO APIC

（multiprocessor）

IRQ

Main

Memory

Cache CPU 1

IDE

FDD

PRINTER
PORT

PS/2 COM

PCI

Peripheral
hardware

ISA

Peripheral
hardware

Figure 1-6-1 computer system structure diagrams

 20

Nowadays, computer technology is developing very quickly and there are many
chip manufacturers, so the chips are largely identical in terms of specifications and
functions, however, there are still some differences in design details. Generally
speaking, the structures of today’s personal computers are described synoptically with
X86 system. Figure 1-6-1 shows the X86 system structure with single/double CPUs.
The difference between single and double CPUs lies in the structure of multi-mission
hardware environment, so double CPUs need IO-APIC to manage interrupt. Host/PCI
is commonly called the North Bridge, connects main processor bus and PCI bus.
PCI-to-ISA Bridge is commonly called the South Bridge, connects PCI bus and ISA
(or LPC) bus, usually integrating Interrupt Controller, IDE Controller, USB Host
Controller, and DMA Controller, the South and North Bridges chipset. Today, many
chipsets have replaced PCI interface to the South Bridge end.

Table 1-6-1 the difference between traditional computer and new generation of
computers

 Legacy PC (traditional
PC)

Legacy Free PC

Shape design Fixed format, dull Diversified
Main host dimension ATX, MicorATX MicorATX, FlexATX
ISABus, ISASlot
PCI Bus
AGP Bus
USB Bus

Yes (via LPC)
Yes
Yes (not a must)
Yes (a must)

None (fully
abandoned)
Yes
Yes (not a must)
Yes (a must)

Serial Port COM1＆COM2
Infrared Port (IR)
Parallel Port (LPT1)
Game I/O

Yes
Yes (not a must)
Yes
Yes

None (completely a
must)
Yes (not a must)
None (fully
abandoned)
None (fully
abandoned)

The function USB device can
directly start up the computer

Yes (not a must) Yes (a must)

1.7 Recent computer structure

The configuration of memory and I/O address for recent computers was nearly
completed in the era of 80386, except for some large main hosts, the configuration of
memory is largely the same as that of PC AT, and the maximum memory limitation is

 21

determined by the chipset. In theory, the maximum memory capacity that can be
addressed on computers is 4GB, and basic I/O address is similar to the I/O address of
PC AT.

Generally speaking, X86 system can use address line drives, access memory
addresses or I/O port drive, there are only 16 I/O ports, so from 00000h~0FFFFh, I/O
ports is 216. In common ISA interface system, only 210ports (0000h~03FFh) are used,
while PCI interfacees use I/O ports over 0400h. PCI interface cards used in this
practice are driven by I/O ports.

Also, X86 system designs 256 interrupt vectors from INT 01h to INT Fifth
respectively, each vector contains 4 bytes; under real models, the memory address of
interrupt vector tables are addressed between 0000: 0000 and 0000: 03FFh, using the
1KB memory space in the forefront. Table 1-7-1 shows the lists of interrupt vector
numbers, which is related with the writing of assembly languages.

 22

Table 1-7-1 Interrupt vectors numbers lists
Interrupt
number

Property The description of interruption meaning

INT 00h (Error) CPU Divide Error
INT 01h (Hardware) CPU Single Step
INT 02h (Hardware) NMI (Non Mask able Interrupt)
INT 03h (Hardware) Break Point code (instruction break point, instruction code

0CCh)
INT 04h (Error) CPU Overflow (Data overflow break)
INT 05h (Software)

(Error)
BIOS process, press Print screen button’s print service
program interface
BOUND Range Exceed

INT 06h (Error) Invalid Op Code
INT 07h (Error) Floating Point Processor/FPU Not Available
INT 08h (Hardware) IRQ0－System Timer (system timer interrupt)

INT 8 is generated every 1/18.2 second, used to carry out
the work of system timing

INT 09h (Hardware)
(Error)

IRQ1－Keyboard Interrupt
Processor Extension Protection ERROR (block selection
extension directional error)

INT 0Ah (Hardware)
(Error)

IRQ2－Connected to the auxiliary program of IRQ8~15
Invalid Task State Segment (TSS), Invalid Task State
Segment error

INT 0Bh (Hardware)
(Error)

IRQ3－COM2 (secondary serial port)
Segment not present (actual memory corresponding to the
segment not present)

INT 0Ch (Hardware)
(Error)

IRQ4－COM1 (Primary serial port)
CPU Stack Fault, (CPU stack processing fault)

INT 0Dh (Hardware)
(Error)

IRQ5－LPT2 (secondary print port), now it is reserved for
PnP system configuration
GENERAL PROTECTION VIOLATION
CPU produces protection violation error

INT 0Eh (Hardware)
(Error)

IRQ6－Floppy Diskette read/write interrupt
PAGEFAULT Switch page fault

INT 0Fh (Hardware) IRQ7－LPT1 primary print port
INT 10h (Software) Screen I/O interface, switch character/graphics mode.

Providing display/paint scroll service
INT 11h (Software) PC peripheral equipment check

 23

INT 11h (Software) Data/address alignment check error, occurring to CPU
above 486

INT 12h (Software)
(Error)

Sending back PC main memory size check
MACHINE CHECK EXCEPTION

INT 13h (Software) Disk I/O interface (services such as floppy diskette, hard
disk read/write, format)

INT 14h (Software) Serial Port Communication port interrupt service routine
INT 15h (Software) Cassette interface service program, AT extension interrupt

service call, numerous programs
INT 16h (Software) Keyboard read service program
INT 17h (Software) Print service program
INT 18h (Software) ROM BASIC entry point address, network card Diskette

Start-up interception point
INT 19h (Software) Entry point of starting up the operating system
INT 1Ah (Software) BIOS time interface/CMOS Real-time Clock battery clock

interface
INT 1Bh (Software) Interrupt entry point handling program of CTRL BREAK

for BIOS
INT 1Ch (Software) User timing interrupt, process auxiliary program call from

INT 8
INT 1Dh (Hardware) Video interface card address table
INT 1Eh Floppy diskette parameter address table
INT 1Fh Character dot matrix fonts table address (ASC80h ~ 0FFh)
INT 20h MS-DOS end program execution
INT 21h (Software) MS-DOS API
INT 22h (Software) MS-DOS program ends jump address
INT 23h (Software) MS-DOS program presses the interrupt entry point of

CTRL BREAK
INT 24h (Software) MS-DOS Fatal Error Handler
INT 25h (Software) DOS Absolute Read
INT 26h (Software) DOS Absolute Write
INT 27h (Software) Permanent memory interface in. COM file
INT 28h (Software) System call of DOS idle state
INT 29h (Software) DOS Console Output
INT 2Ah (Software) Network software interface layer, Net BIOS
INT
2Bh~2Dh

(Software) Reserved and unused

 24

INT 2Eh (Software) Transmit command queue parameters to DOS command
interpreter

INT 2Fh (Software) Multiplex Interrupt Multiplex system Interrupt
CD-ROM, HIMEM.SYS (XMS), Windows＆DPMI Check

INT 30h (Software) Reserved and unused
INT 31h (Software) DOS protection mode
INT 32h (Software) Reserved and unused
INT 33h (Software) Mouse interrupt service
INT 34h~3Eh (Software) Used for floating-point unit
INT 3Fh (Software) Overlay Manager
INT 40h (Software) Disk interrupt service program
INT 41h Primary hard disk parameter address table
INT 42h (Software) INT 10h display service
INT 43h Dot matrix fonts data table address
INT 44h Dot matrix fonts data table address
INT 45h (Software) Reserved and unused
INT 46h Secondary hard disk parameter address table
INT 47h~49h (Software) Reserved and unused
INT 4Ah (Software) CMOS/RTC Alarm Interrupt
INT 4Bh~64h (Software) Reserved and unused
INT 65h (Software) Audio call service program
INT 66h (Software) Reserved and unused
INT 67h (Software) LIMEMS service
INT 68h~6Fh (Software) Reserved and unused
INT 70h (Hardware) IRQ8 CMOS/RTC Time Interrupt
INT 71h Hardware IRQ9 (pointing to IRQ2－INT 0Ah)
INT 72h Hardware IRQ10 (PnP)
INT 73h Hardware IRQ11 (PnP)
INT 74h Hardware IRQ12 (PS/2, USB)
INT 75h Hardware IRQ13 (Co-Processor – X87)
INT 76h Hardware IRQ14 (Primary IDE)
INT 77h Hardware IRQ15 (Secondary IDE)
INT 78h~7Fh (Software) Reserved and unused
INT 80h~Efh (Software) BASIC interpretation program
INT F0h~FFh (Software) Reserved and unused
(Software): services of software call; (hardware): IRQ hardware interruption;
(error): error detection

 25

1.8 Brief introduction of related interface

Nowadays, computer systems are developing very quickly and specifications of
CPU, memory, peripheral hardware and motherboard chipset are likewise expanding
rapidly and varied. However, transmission specifications and interfaces are not easy to
change. Interfaces commonly seen on common personal computers include the SM
Bus, USB, IEEE1394, IDE, AGP and PCI, etc, while AC97, LPC and SCSI are rarely
seen. In the following paragraphs, we will briefly describe interfaces such as AC97,
SM Bus, USB, LPC, while AGP, SCSI, IEEE1394 will not be described.

AC’97 (Audio Codec 97)

AC97 is Analog Component 97 (for short AC97), which was introduced by
Intel96 when developing NSP MULTI-MEDIA; its latest version is V2.1 (issued on
May 22nd, 1998), and became the later CNR 1.0 specification through subsequent
extension. AC 97 mainly include analog/digital conversion circuit functions such as
computer platforms (motherboard), sound card chip, modem transmission chips,
which are divided into Analog Codec and Digital Codec; pure Digital Codec is placed
on motherboard, while Analog Codec is located on Riser Card of extension slot.
Signals are controlled and transmitted by motherboards (chipsets) with AC-Link,
which can reduce the interference from high frequency signals of the motherboard and
improve the sound quality of built-in audio chip motherboard. This extension slot is
called the AMR slot.

Another characteristic of AC97 is that it can enable low pin and low cost Analog
Codec designed in compliance with AC97 specifications, through the increasingly
powerful operating abilities of CPU, to simulate 16 bit sound blaster level recording,
playing sound and MIDI sound play function. Modem Codec in conformity with AC
97 simulates the basic 56Kbps modem function of V90 specification by means of
software, or the two can be integrated into AMC (Audio/Modem Codec) of
audio/modem transmission. As with the mixer, it can be outputted from traditional
speaker Lineout, and buzzers on the motherboard can be omitted.

Most of the motherboards manufactured recently conform to AC 97
specifications, attaining a set of simple and cheap sound card or 56 Kbps modem
functions by opening BIOS, which is enough for users who only type the words,
merely surfs the net or places little emphasis on acoustic-optic effects, however,
opening the Audio or Modem functions of AC97 can consume the execution
efficiency and resources of the CPU, when installing high operating efficiency and
sound quality sound card or external modems, motherboards in conformity with AC
97 specifications will automatically detect external sound cards or modems.

 26

Meanwhile, close the AMC elements on the motherboard, and let the hardware sound
card/modem to take over.

SM Bus (System Management Bus)

SM Bus (System Management Bus) is the bus contact interface of the two
signal lines designed following I2C protocol, which is a low speed interface
(80KHz~400KHz) for setting of the detection, positioning, reading and writing
parameters of peripheral parts in compliance with SM Bus.

Normally, computer motherboards have built-in SM Bus control circuits (SM Bus
Controller) inside south bridge chipsets. The motherboard can, via SM Bus. Detect
DRAM and automatically grab timing parameters (SPD) and read the parameters of
hardware monitoring chips, monitor CPU, operating temperature and voltage of
motherboard and motor speed (RPM) of coolant fan, etc. And, the motherboard of
notebook computer detects the electrifical power index of the battery and the
possibility to independently close or restart peripheral devices, parts via the SM Bus,
temporarily closes peripheral devices and parts power supplies that are not used
currently via the SM Bus through ACPI protocol when the entire system needs to
enter power saving status to optimize power management.

USB (Universal Serial Bus)

USB is the computer peripheral bus standard jointly developed by computer and
communication industry manufacturer such as Compaq, IBM, DEC, NEC, Intel,
Microsoft and Northern Telecom, which is a so-called general-purpose serial bus. X86
motherboard was introduced in 1997. In 1999, Apple iMac also adopted USB,
speeding the popularity of USB peripheral devices.

USB bus provides extension ability to medium and low speed peripheral devices.
Peripheral devices such as keyboard, mouse, joystick, speaker, microphone, modem,
cinematograph, through USB interface designs, can be directly connected or removed
by means of hot-plugs; computers and OS may automatically detect and
enable/disable the device to achieve the objectives of Plug and Play. USB has strong
expansion abilities, capable of connecting at most 127 sets of peripheral devices
(including USB HUB), the connection distance of each hub to device runs to 5 meters,
and USB connector has a special design, which makes it very convenient to install or
remove. USBv1.0/1.1 provides maximally 12 Mbps(=1.5MB/s) transmission rate; so
far, the motherboards meet the specifications of version 1.1 and the newly approved
version 2.0 increased transmission rate to 480Mbps (=60MB/s) , what is more,
relevant interface cards, peripheral devices and motherboards have already achieved

 27

this function and become the supporting item of future chipsets.
Hardware specification mainly includes Universal HCI (Universal Host

Controller Interface) developed by Intel and Open HCI (Open Host Controller
Interface) designed and opened by COMPAQ, common USB peripheral devices
support these two protocols, with the differences between the two shown in table
1-8-1 below.

Table 1-8-1 USB device hardware specification comparisons

Specifications
Different items

UHCI (Universal Host
Controller Interface

OHCI (Open Host
Controller Interface)

First published Jan 15th 1996 Nov 22nd 1995
Manufacturer (IP
source)

Intel, exclusive intellectual
property

Compaq (Compaq), open
intellectual property

Chipset manufacturer Intel, VIA Ali, SiS
Setting characteristic

Circuit implementation is
easy; the cost is low and
easy to integrate, however
the efficiency is poor in
case of mass transmission

The design of the circuit is
complicated, however, it will
not affect the CPU and bus
efficiency.

Control/addressing
mode

IO base (IO Port) Memory address

Due to the complicated driving methods of USB, normally, USB devices are

controlled by operating systems and loaded into drive program so as to be driven and
used; in recent years, some BIOSs also support USB control programs and evolve
with devices such as USB keyboard, USB floppy diskette, hard disk and drive,
provide basic USB device drive and read functions, are capable of start-up using USB
keyboard, mouse, USB floppy diskette, hard disk, and even USB CD-ROM, and have
even acquired the ability of the USB Device Boot.

IEEE-1394

IEEE-1394 can support high data transmission rate equipment, such as digital

video equipment, high performance consumer electronics and PC equipment.
IEEE-1394 has heat exchange and Plug-and-Play characteristic. Its equivalent
structure provides a method to connect more than two pieces of equipment without
the need for a special adapter and complicated settings. Its current transmission rate

 28

can reach 400Mbps, much faster than the speeds of serial, parallel, USB, and even
PCIs. The IEEE-1394A specification of the standard can support transmission rates of
100, 200, 400Mbps. With the continued development of the standard, new generations
of specification-IEEE-1394B will be able to support transmission rates up to
800Mbps. Actually, new generations of products that work at 800Mbps have emerged,
and equipment with transmission rates of 1600Mbp will be delivered to the market
soon as well. In addition to speed, real reciprocal interface is the key advantage of
IEEE-1394. IEEE-1394 is a module made up of physical layer interface equipment
and link level controller. It is very difficult to integrate analog and digital technologies,
and with transmission rate striding toward 800Mbps, chip designs will face more
challenges. Due to the different number of ports supported, some 100Mbps, single
TQFP packaging IEEE-1394 chips have only 48 pins, while some have up to 100 pins,
capable of supporting 800Mbps and /or more ports, therefore products with
IEEE-1394 standards in the market include video editing board, camera, video set-top
box, VCR and PC. IEEE-1394 is becoming a PC industrial standard. Consequently,
this makes some new multi-media applications possible.

LPC (Low Pin Count) Interface

Published by Intel on Sep 29th, 1997, LPC (Low Pin Count interface) was the
new interface specification used to replace ISA Bus. As with control I/O interface
such as old ISA extension slot/interface card, ROM BIOS chip, south bridge chip
must retain one ISA Bus connecting Super I/O chip to control traditional peripheral
devices. Traditional ISA Bus clock falls between 7.159 (14.318MHz Frequency
Divider) and ~8.33MHz (PCI clock divides 4); in theory, peak transmission value is
16MB/s (actually it is less than 7 MB/s), but ISA Bus is largely different from PCI
Bus in terms of electrical characteristics, signal definition methods, south bridge chips,
super I/O chips need to spend more pins to process and clock/line designs of the
motherboard also appear to be complicated.

As with LPC interface definition, separate and decode the old ISA address/data
and change to the shared decoding methods of PCI address/data signal so that the
number of signal lines is greatly reduced and the working clock is synchronously
driven by the PCI bus. The improved LPC interface likewise maintains maximum
transmission value at about 16MB/s and the number of signal pins is significantly
reduced to 25~30. Both Super I/O chips and Flash chips designed with LPC interface
can enjoy the benefits of reduced number of pin and smaller sizes, also , the design of
the motherboard may be simplified, which is the purpose of LPC－Low Pin Count.
Figure 1-8-2 below compares the differences between ISA and LPC.

In case traditional ISA extension slots must be added, 33MHz, 4bit signal of LPC

 29

interface is converted into 8MHz, 16bit signal via PCI/ISA bridge chip of LPC
interface and connected to ISA interface card. If ISA bridge chip is converted with
PCI, it will lead to increases in motherboard design areas and costs, also, the south
bridge needs to sacrifice the driving ability of a set of PCI extension slots to drive this
single ISA extension slot and its devices. In specification PC99, it was suggested that
ISA extension slots and the ISA Bus be abandoned and fully replaced with PCI
extension slots and LPC interface. The PC2001 specification presented the concept of
Legacy Free PC, whereby all peripheral devices are connected and extended via USB
and only four types of interface cards remain: PCI, AGP and CNR/ACR; Super I/O,
IR, floppy diskette interface still exist and the I/O methods of control are fully
identical, without obvious differences in the writing of software.

Table 1-8-2: Difference between ISA and LPC

 ISA LPC
Data width 16bit 4bit
Operating
frequency

8.33MHz 33.3MHz＊1

Addressing
space

224=16MB 232=4GB

Max
transmission
bandwidth

16MB/s 16MB/s

1.9 Operation rules applied to computer bits

For computer interfaces, the definition of byte and different scale rules must be
first understood. The definition of bytes is as follows: a byte is equal to 8 bits (1-Byte
= 8-Bits); a word is equal to 2 bytes (1-Word = 2-Bytes), that is, equal to 16 bits; and
a double word is equal to 4 bytes (1-DoubleWord = 4-Bytes), name equal to 32-Bits,
and so on, QuadWord is 64 bits.

For different scale rules, binary, decimal and hexadecimal are the commonly
seen ones. Binary is expressed as Bin, or the English letter b is added to the mantissa,
for instance: “0000 1101b”, “0010b”, “10b” etc. Decimal is mostly expressed as dec.
mostly it is omitted, or letter “d” is added to the end to facilitate identification, for
example: “29d”, “3729d”, “4d, etc: and hexadecimal is expressed as hex, or “h” is
added after the numbers for easier identification, for instance: “9C6Ah”, “4Ah”, “Eh”
etc.

Different scale rules can be interchanged. Take 0100 1010b as example for
binary, when converted into hexadecimal, it is 0*27+ 1*26+ 0*25+ 0*24+ 1*23+ 0*22+

 30

1*21+0*20 = 74d”; and because 24=16, with four bits as a group, it can be converted
into hexadecimal 0100b = 4d = 4h, 1010b = 10d = Ah”, so it is ”4Ah” for
hexadecimal. To convert decimal number ”74d” into binary, first divide 74 by2, the
resulting quotient is 37, and the arithmetical compliment is 0, the arithmetical
compliment obtained is the constant of 20; then divide 37 by 2, the quotient obtained
is 18, arithmetical compliment is the constant of 21, and so on, the constant of 22 is 0,
the constant of 23 is 1, the constant of 24 is 0,and now the quotient obtained is 2, then
divided by 2 again, the quotient is 1, the arithmetical compliment is 0, now the
arithmetical compliment obtained is the constant of 25 , the quotient is the constant of
26. In summing up, the converted value is 100 1010b. And for decimal/hexadecimal
conversion, we first convert the decimal into binary to compensate 100 1010b” bits to
be 0100 1010b”, then convert, or convert directly in the manner similar to
decimal/binary conversion, divide 16 by 74 to obtain arithmetical compliment and
quotient, the quotient is the constant of 160 and the arithmetical compliment is the
constant of 161.

This is because the hexadecimal expresses the numbers more then 10 with table
1-6-1 below, while the conversion result is “4Ah”. Hexadecimal/binary conversion is
made as shown in table 1-6-2 below. Take “4Ah” as an example. When it is
converted from hexadecimal to decimal, it becomes “4*161+ 10*160 = 74”.

Those are the three main scale rules in this book, for conversion between
different scale rules, please carryout more operational exercises. As PC XT/AT ISA
interface mentioned previously is only briefly covered in this chapter, please refer to
the many books with in-depth research and discussion of this to acquire more
knowledge about computer interfaces. With the rapid development of computers in
recent years, the powerful plug and play peripheral equipment and operating system
software’s have combined to make it easier for users to use computers; consequently,
the previous difficulty in setting hardware and software is overcome. In the next
chapter, we will discuss the trends of PCs since the year 2000.

 31

Table 1.6.1 Table of definition of hexadecimal numbers
Decimal 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0
Hexadecimal 1 2 3 4 5 6 7 8 9 A B C D E F 0

Table 1.6.2 Comparison table of hexadecimal/binary conversion
Binary Hexadecimal Binary Hexadecimal
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F
1000 8 0000 0

 32

Exercises:

1.Convert the following binary numbers into decimal numbers.
“00011101”,”1011”,”11”,”11100111”

2.Convert the following binary numbers into hexadecimal numbers
“01011011”,”1101”,”10”,”11000101”

3.Convert the following decimal numbers into binary numbers.
“1024”,”512”,”255”,”65535”,”100”,”4096”,”80”

4.Convert the following decimal numbers into hexadecimal numbers.
 “1024”,”512”,”255”,”65535”,”100”,”4096”,”80”

5.Convert the following hexadecimal numbers into binary numbers.
“Abh”,”D1h”,”00FAh”,”10h”,”80h”

6.Convert the following hexadecimal numbers into decimal numbers
 “Abh”,”D1h”,”00FAh”,”10h”,”80h”

7.Refer to books on ISA interface, have a try at describing the definitions of ISA pins.

8. Have a try at describing binary addition operation and multiplication

9. Have a try at describing the hexadecimal addition operation.

10. Refer to books on ISA interface, have a try at describing the structure of relevant
chips and principle of actions.

 33

Chapter 2 PCI interface

PCI interfaces have many specifications. In this chapter, we will discuss basic

principles such as PCI interface signal types, signal pin definitions and instruction sets
and transmission modes, etc. The address of this interface is shared with the data bus,
in any transmission mode, address signal is transmitted in advance of the data signal,
additionally, the signal timing control is very important. For PCI interface-related
knowledge, the descriptions in this book are simply fundamental without discussing
advanced theory and extended specifications. Table 2-0-1 roughly illustrates the
specifications and evolution of PCI interfaces.

Table 2-0-1 Specifications and evolution of PCI interfaces.
Operating
frequency

33MHz 33 MHz 66 MHz 133 MHz 266 MHz 533 MHz

Working
bits

32bits 64bits 64bits 64bits 64bits 64bits

Peak
transmission

133MB/s 266 MB/s 533 MB/s 1066 MB/s 2133 MB/s ----

Commercial Yes Yes Yes Yes No No
U160
advanced
SCSI card,
1Giga
network
card

U160/U320
advanced
SCSI card

 Examples of
applications

Audio
card,
network
card, U2W
SCSIcard,
I/O
extension
card

U160
advanced
SCSI card,
1Giga
network
card

PCI-X

2.1 PCI (Peripheral Component Interconnect) brief introduction

Intel developed the PCI bus to ensure the compatibility of different special
processor’s area bus architectures. The earliest PCI specification published is version
1.0, which became effective on June 2nd, 1992. Rev 2.0 became effective in April
1993. Rev 2.1 was published in the first quarter of 1995. The latest version 2.2 was
completed on Dec 18th, 1998 and became effective in Feb 1999.

Devices on the PCI bus can access each other or the system memory very
quickly and can be accessed by the processor at speeds close to that of its built-in bus.
The transmission of all PCI bus reads and writes can be executed by means of burst,
which is superior to interfaces such as ISA and VESA in efficiency, with bus master

 34

deciding the length of burst. At the beginning of data transaction, starting addresses
and transaction types are assigned to target. However, the target is not informed of its
transmission length. When a master is prepared from transmitting data, it will inform
the target whether this data is the last batch. The transaction is completed when the
last batch of data is transmitted. Table 2-1-1 illustrates the characteristics of PCI
interface.

PCI devices can be divided into three types: Target/Slave, PCI Master and
Initiator. In normal computer systems, PCI master and initiator are considered as the
same device, and both can control PCI bus. The North Bridge of the system usually
plays the role of initiator, when there is SCSI interface card that can be turned off
(with read only memory) on PCI bus, this interface card can have the actions of PCI
master, and can also control this bus. So when the interface cards of bus-related PCI
Master function chips have only PCI Master in the system, it must be PCI Initiator.

Typical PCI devices contain a peripheral device adapter packaged in an IC or

integrated into a PCI extension card, with commonly seen examples such as network
cards, display cards or SCSI cards. After PCI specifications are devised, still many
manufacturers continue to use the old devices incompatible with PCI as interface’s
connected to system motherboard PCI bus, these devices can be used on PCI bus by
using Programmable Logic Arrays.

Again, display interface (AGP) can be seen as the extension of PCI interface,
mainly provides high bandwidth for the graphic interfaces to use. So far, its product
specification has evolved from the early AGP1.0 (1×/2×) to today’s AGP3.0 (8×) and
the transmission speed has also increased from 32 bits to 256 bits. As with AGP
interfaces, they are only used in graphic interfaces and classified as PCI peripherals;
however, this is not discussed in this book.

 35

Table 2-1-1 PCI interface characteristics
 Characteristics Description
Irrelevant with processor Element designed by PCI bus is PCI-specific, separating

device design from processor.
At most 80 PCI functions
for each PCI bus

Normal PCI bus supports about 10 electricity loads, each
device is considered as a load, each device can contain at
most 8 PCI functions.

At most 256 PCI bus Providing at most 256 PCI bus supports.
Low power consumption Reduce system design that wastes power as possible as

practicable, operate with 0MHz in idle state.
Burst transmission can be
executed in all read/write
transmission

32 bits PCI bus supports read/write transmission of peak
transmission rate of 133Mbytes per second. The peak
transmission rate of 64 bits PCI is 266Mbytes per second.
And the maximum transmission rate of 64 bits, 66MHz PCI
bus can reach 533Mbytes per second.

Bus speed The highest PCI bus speed supported by Rev 2.0
specification is 33MHz., while 66MHz bus operation is
added to Rev 2.1.

64 bits bus width Complete 64 bits extension definition
Access time 60ns (When initiator or Master of PCI bus is writing PCI

Target and bus clock is 33MHz).
Parallel bus operation Bridge supports complete bus parallel, processor, PCI bus

and extension bus can be used at the same time.
Support bus master Complete bus master support allows peer-to-peer PCI bus

access, access, via PCI-to-PCI and extension bus bridge, it
accesses main memory extension bus device. PCI master
can access the target of lower level PCI bus in the system.

Hidden bus arbitration PCI bus arbitration is required when multiple groups of bus
masters are transmitting on PCI bus.

Low pin counts Reduce the use of bus signal pins, functional PCI target
uses only 47 pins, initiator uses only 49 pins

Check of transaction
integrality

Parity check with address, instructions and data.

Automatic configuration With specification that supports automatic device detecting
and configuration bit-level Configuration Register.

The thoroughness of
software

When the software drive program is communicating with
PCI device or devices associated with its extension bus, the
same instruction sets and status definitions can be used.

 36

2.2 PCI connector and pin
For the PCI interfaces used, the sketch of PCI interface signal group is shown in

Figure 2-2-1, connector specification description is shown in Figure 2-2-2, while the
configuration of signal pins is shown in Figure 2-2-1, with the definition of each
signal described in the following section.

Generally speaking, PCI pins are divided into required pins and optional pins, as
shown in Figure 2-2-1. The required pins include data and address bus pins
(AD[31:0]), interface control pins (FRAME#, TRDY#, IRDY#, etc.), error signal pins
(PERR#, SERR#), etc. Each PCI peripheral must have this type of pins; optional pins
include 64 bits extension pins, LOCK#, interrupt pins (INT#[3:0]), JTAG insect; this
type of pins can be selected as required. Figure 2-2-2 shows the specification of 32
bits PCI interface slots; on the left of the figure is the rear baffle of computer. Form
observing normal motherboard, we can learn that most of them use PCI slots of 5V
specification, this slot can use general or 5V specification PCI interface cards; 64 bits
PCI slots are mostly 3 V specification. However, these types of slot and interface
cards are rarely seen.

And 64 bits connectors are the extension of basic interface and are listed in
Figure 2-2-1. Attention should be paid to B49 pin, which is ground signal when
operating at 3.3V/33MHz and M66EN when operating at 3.3V/66MHz; there should
be a pull-up resistor on the system board and small capacitor need to be connected to
interface cards to remove electrical coupling.

 37

Figure 2-2-1 PCI signal groups

 38

5V 32bits

3.3V 32bits

General interface card
Figure 2-2-2 PCI 32 bits connector specification

Table 2-2-1 Pin configuration

5V interface card 3.3V interface card
General interface
card Pins

A side B side A side B side A side B side

Remark

1 -12V TRST# -12V TRST# -12V TRST#
Baffle
head

2 TCK +12V TCK +12V TCK +12V
3 GND TMS GND TMS GND TMS
4 TDO TDI TDO TDI TDO TDI
5 +5V +5V +5V +5V +5V +5V
6 +5V INT#A +5V INT#A +5V INT#A
7 INT#B INT#C INT#B INT#C INT#B INT#C
8 INT#D +5V INT#D +5V INT#D +5V
9 PRSNT#1 Reserved PRSNT#1 Reserved PRSNT#1 Reserved
10 Reserved +5V Reserved +3.3V Reserved +Vi/o
11 PRSNT#2 Reserved PRSNT#2 Reserved PRSNT#2 Reserved
12 GND GND
13 GND GND

KEY 3.3V_KEY

14 Reserved +3.3Vaux Reserved +3.3Vaux Reserved +3.3Vaux
15 GND RST# GND RST# GND RST#
16 CLK +5V CLK +3.3V CLK +Vi/o
17 GND GNT# GND GNT# GND GNT#
18 REQ# GND REQ# GND REQ# GND
19 +5V PME# +3.3V PME# +Vi/o PME#
20 AD [31] AD [30] AD [31] AD [30] AD [31] AD [30]

 39

AD [29] +3.3V AD [29] 21 +3.3V AD [29] +3.3V
22 GND AD [28] GND AD [28] GND AD [28]
23 AD [27] AD [26] AD [27] AD [26] AD [27] AD [26]
24 AD [25] GND AD [25] GND AD [25] GND
25 +3.3V AD [24] +3.3V AD [24] +3.3V AD [24]
26 C/BE#[3] IDSEL C/BE#[3] IDSEL C/BE#[3] IDSEL
27 AD [23] +3.3V AD [23] +3.3V AD [23] +3.3V
28 GND AD [22] GND AD [22] GND AD [22]
29 AD [21] AD [20] AD [21] AD [20] AD [21] AD [20]
30 AD [19] GND AD [19] GND AD [19] GND
31 +3.3V AD [18] +3.3V AD [18] +3.3V AD [18]
32 AD [17] AD [16] AD [16] AD [17] AD [16] AD [17]

+3.3V C/BE#[2]33 C/BE#[2] +3.3V C/BE#[2] +3.3V
34 GND FRAME# GND FRAME# GND FRAME#

IRDY# GND IRDY# GND 35 IRDY# GND
36 +3.3V TRDY# +3.3V TRDY# +3.3V TRDY#
37 DEVSEL# GND DEVSEL# GND DEVSEL# GND
38 GND STOP# GND STOP# GND STOP#
39 LOCK# +3.3V LOCK# +3.3V LOCK# +3.3V
40 PERR# Reserved PERR# Reserved PERR# Reserved
41 +3.3V Reserved +3.3V Reserved +3.3V Reserved
42 SERR# GND SERR# GND SERR# GND
43 +3.3V PAR +3.3V PAR +3.3V PAR
44 C/BE#[1] AD [15] C/BE#[1] AD [15] C/BE#[1] AD [15]
45 AD [14] +3.3V AD [14] +3.3V AD [14] +3.3V
46 GND AD [13] GND AD [13] GND AD [13]
47 AD [12] AD [11] AD [12] AD [11] AD [12] AD [11]
48 AD [10] GND AD [10] GND AD [10] GND

49 GND AD [09] G/M66EN AD [09] G/M66EN AD [09]
Used for
66MHz

50 GND GND
51

KEY
GND GND

KEY 5V_KEY

52 AD [08] C/BE#[0] AD [08] C/BE#[0] AD [08] C/BE#[0]
53 AD [07] +3.3V AD [07] +3.3V AD [07] +3.3V
54 +3.3V AD [06] +3.3V AD [06] +3.3V AD [06]
55 AD [05] AD [04] AD [05] AD [04] AD [05] AD [04]
56 AD [03] GND AD [03] GND AD [03] GND

 40

57 GND AD [02] GND AD [02] GND AD [02]
58 AD [01] AD [00] AD [01] AD [00] AD [01] AD [00]
59 +5V +5V +3.3V +3.3V Vi/o Vi/o
60 ACK#64 REQ#64 ACK#64 REQ#64 ACK#64 REQ#64
61 +5V +5V +5V +5V +5V +5V
62 +5V +5V +5V +5V +5V +5V
 (The above are 32bits_PCI) ------KEY------ (The followings are
64bits_PCI)

64bits
Separation

63 Reserved GND Reserved GND Reserved GND
64 GND C/BE#[7] GND C/BE#[7] GND C/BE#[7]
65 C/BE#[6] C/BE#[5] C/BE#[6] C/BE#[5] C/BE#[6] C/BE#[5]
66 C/BE#[4] +5V C/BE#[4] +3.3V C/BE#[4] Vi/o
67 GND PAR64 GND PAR64 GND PAR64
68 AD [63] AD [62] AD [63] AD [62] AD [63] AD [62]
69 AD [61] GND AD [61] GND AD [61] GND
70 +5V AD [60] +3.3V AD [60] Vi/o AD [60]
71 AD [59] AD [58] AD [59] AD [58] AD [59] AD [58]
72 AD [57] GND AD [57] GND AD [57] GND
73 GND AD [56] GND AD [56] GND AD [56]
74 AD [55] AD [54] AD [55] AD [54] AD [55] AD [54]
75 AD [53] +5V AD [53] +3.3V AD [53] Vi/o
76 GND AD [52] GND AD [52] GND AD [52]
77 AD [51] AD [50] AD [51] AD [50] AD [51] AD [50]
78 AD [49] GND AD [49] GND AD [49] GND
79 +5V AD [48] +3.3V AD [48] Vi/o AD [48]
80 AD [47] AD [46] AD [47] AD [46] AD [47] AD [46]
81 AD [45] GND AD [45] GND AD [45] GND
82 GND AD [44] GND AD [44] GND AD [44]
83 AD [43] AD [42] AD [43] AD [42] AD [43] AD [42]
84 AD [41] +5V AD [41] +3.3V AD [41] Vi/o
85 GND AD [40] GND AD [40] GND AD [40]
86 AD [39] AD [38] AD [39] AD [38] AD [39] AD [38]
87 AD [37] GND AD [37] GND AD [37] GND
88 +5V AD [36] +3.3V AD [36] Vi/o AD [36]
89 AD [35] AD [34] AD [35] AD [34] AD [35] AD [34]
90 AD [33] GND AD [33] GND AD [33] GND
91 GND AD [32] GND AD [32] GND AD [32]

 41

92 Reserved Reserved Reserved Reserved Reserved Reserved
93 Reserved GND Reserved GND Reserved GND
94 GND Reserved GND Reserved GND Reserved
A side Component side B side Top over layer
Remark: it is low logic when the signals are driven, all such signals end with “#”,
conversely when it is high, then signals have no “#” followed.

2.3 PCI interface pin definition

Electricity definition of digital circuits used on PCI interface may be classified
into five types: INPUT, OUTPUT, T/S (Tri-State), S/T/S (Sustain Tri-State) and O/D
(Open Drain). I/O signal is a standard signal only; T/S is standard tristate I/O signal,
whose logic diagram and truth table are shown in Figures 2-3-1 and 2-3-1; similar to
T/S signal, S/T/S is the continuous signal that can be driven by only one device. After
initiating driving of this signal, to stop driving this signal, it is necessary to pull up
this signal for one clock and then floating this pin and pull-up resistor is required to
keep this signal strong during intervals. O/D is an open drain signal, requiring an
additional pull-up resistor to maintain its backdrive, roughly, it requires 3 clock cycles
to meet the demands of backdrive actions, with logic diagrams and truth tables shown
in Figures 2-3-2 and 2-3-2. The following is the necessary signal definition and signal
type description.

As with signals on PCI BUS, normal PCI device needs to use 47 signal pins,
excluding PERR# and SERR#, with the definitions of these signals described as
follows:

◎ CLK (Input) “working frequency”

CLK provides the timing of all transmission on PCI BUS, except RST#, INTA#,
INTB#, INTC#, and INTD#, the remaining PCI signals are sampled on rising
edges of CLK.

◎ RST# (Input) “RESET SIGNAL”

As long as RST# ACTS, all PCI output signals must enter Tri-State (it is floating
for O/D type signals), to prevent signal such as AD, C/BE# and PAR floating
during resetting, system chips may pull these signals low. Although RST# is
asynchronous with CLK, system chips must ensure that it is a clean signal without
bounces.

◎ AD[31:00] (T/S) “data and address bus”

Address and data lines operate using AD[31:00] pins. When the first Frame# on

 42

the low CLK rising edge, AD[31:00] represents address line; when IRDY# and
TRDY# are both on low CLK rising edges, it represents a data line. When this
type of pin is used for the address line, for I/O, AD[31:00]32 are needed, for
configuration and memory, only AD[31:02] is address line, and [01:00] is
otherwise used. When this type of pin is used for data line, AD[07:00] is the data
of lowest byte (LSB), while AD[31:24] is the data of highest byte (MSB).

◎ C/BE[3:0]# (T/S) “control signal”

Not only is the address line and data line multiplexed together, but also bus
instruction and byte enable are multiplexed together. When the first Frame# is on
the rising edge of low CLK, C/BE[3:0]# represents bus instruction, in the rest of
the time, C/BE[3:0]# represents byte enable, indicating which data transmitted is
byte enable among the four bytes of data line, so C/BE[3:0] is used on PCI BUS
to identify, and its corresponding relation is that C/BE#[0] corresponds lowest
byte; C/BE#[3] corresponds highest byte(MSB), and low represents corresponding
byte, namely actually transmitted data.

◎ PAR (T/S) “parity check signal”

PCI BUS uses the method of Even Parity”, that is , all “1” numbers on AD[31:00],
C/BE[3:0] and PAR should be even. The key is to check whether there is data
transmission error, as with timing, it will lag behind by only one CLK.

◎ FRAME# (S/T/S) “Transmission control signal”

As with data transmission on bus, PCI_Bus_Master converts Frame# from high
low, if Frame# continues to low, it means that data is transmitting; when Frame# is
changed from low to high, it means that the last batch of data is waiting to be
transmitted.

◎ IRDY# (S/T/S) “Initiator Ready signal”

For writing, when it is placed low, it means PCI_Bus_Master has got the data
ready on bus. While for reading, it means that PCI_Bus_Master is ready to receive
data.

◎ TRDY# (S/T/S) “Target Ready signal”

For writing, when it is low, it means that the PCI_Target is ready to receive data;
while for reading, it means that data is ready on bus.

 43

◎ STOP# (S/T/S) “interrupting transmission signal”
PCI_Target may request PCI_Master to interrupt the current transfer cycle via this
signal.

◎ DEVSEL# (S/T/S) “Device Select signal”

The return signal that is used by PCI_Target to notify PCI_Master to select the
signal

◎ IDSEL (Input) “Initialization Device Select”

A special signal that is used for Configuration Read/Write transfer Each PCI Slot
in the system can select any of the signals in AD[31:11]. It is not connected to its
IDSEL and can not be repeated, mainly used in Plug ＆ Play operating
environment.

◎ REQ# (T/S)
The device that has the ability to master PCI sends requests to acquire the bus
control from PCI_Initiator of the system via this signal, thus becoming the
PCI_Bus_Master.

◎ GNT# (T/S) “signal Grant”

Enable the device that wants to acquire bus control to become new matter on the
bus. REQ# and GNT# become pairs of point-to-point signal, on each slot, there
are independent REQ# and GNT# connected with system chips.
The above signals are commonly used signal pins for PCI interfaces, and the
remainders are optional pins. Apart from pins added by 64 bits extension mode,
JTAG is also a characteristic of PCI interface. Because this type of signal is
capable of monitoring chips on PCI peripherals, it can significantly increase the
reliability of this interface in use, however, only a few advanced peripheral use
this signal pins. Figure 2-3-3 shows the pin diagram of 33MHz/32 bits PCI
interface relative to PCI interface pins definitions. In this chapter, we just briefly
describe it and in the next chapter, we will discuss the types of C/BE#[3:0] and
configuration cache, which can be considered as important information in using
PCI interface device.

 44

Figure 2-3-1 Tri-state logic symbol diagram

Figure 2-3-2 Open drain logic symbol diagram

Figure 2-3-3 33MHz/32 bits PCI pin diagram

T

T

 45
able 2-3-1 Tri-state logic truth table

able 2-3-2 Open drain logic truth table

2.4 PCI instructions

C/BE#[3:0] and configuration cache are important information in designing PCI
interfaces. Table 2-4-1 illustrates PCI instructions types, where PCI bus is
Little_Endian bus; table 2-4-2 describes the significance of data phase byte enable.

PCI bus transmits data on AD[31:0], while C/BE#[3:0] transmits instruction and
address enable signal. Generally, PCI signal transmission can be divided into two
parts: address phase and data phase. During address phase, signal on C/BE#[3:0] is
PCI instruction, as is shown in Figure 2-4-1 below is the signal configuration of this
phase of C/BE#[3:0], now data address bus AD[31:0] transmits address, during data
phase, signal on C/BE#[3:0] is byte enable signal, mainly defining AD[31:0] bus in
this phase to transmit data. As with what are the effective bytes on AD[31:0], table
2-4-2 will give a definition for it.

Table 2-4-1 PCI instructions types
C/BE#
3 2 1 0

Instructions types

0 0 0 0 Interrupt Acknowledge
0 0 0 1 Special Cycle
0 0 1 0 I/O Read
0 0 1 1 I/O Write
0 1 0 0 Reserved
0 1 0 1 Reserved
0 1 1 0 Memory Read
0 1 1 1 Memory Write
1 0 0 0 Reserved
1 0 0 1 Reserved
1 0 1 0 Configuration Read
1 0 1 1 Configuration Write
1 1 0 0 Memory Read Multiple
1 1 0 1 Dual Address Cycle
1 1 1 0 Memory Read Line
1 1 1 1 Memory Write and Invalidate

 46

Table 2-4-2 Definition of data phase byte enables
C/BE# Definition

3 2 1 0
Data path
numbers

Byte of transmission addressing dword

0 0 0 0 4 All the 4
0 0 0 1 3 The higher 3
0 0 1 0 3 The higher 2 and the lowest 1
0 0 1 1 2 The higher 2
0 1 0 0 3 The highest 1 and the lower 2
0 1 0 1 2 The highest 1 and the third highest 1
0 1 1 0 2 The highest 1 and the lowest 1
0 1 1 1 1 The highest 1
1 0 0 0 3 The lower 3
1 0 0 1 2 The second highest 1 and the third highest 1
1 0 1 0 2 The second highest 1 and the lowest 1
1 0 1 1 1 The second highest 1
1 1 0 0 2 The lower 2
1 1 0 1 1 The third highest 1
1 1 1 0 1 The lowest 1
1 1 1 1 0 Unused
Byte enable
signal

Data path Addressing location

C/BE#[3] 3 AD[31:24] The fourth location in the addressed dword
C/BE#[2] 2 AD[23:16] The third location in the addressed dword
C/BE#[1] 1 AD[15:08] The second location in the addressed dword
C/BE#[0] 0 AD[07:00] The first location in the addressed dword

2.5 Configuration address port and configuration transaction

Generally, the configuration mechanism of PCI peripheral is divided into two
types: configuration mechanism #1 and configuration mechanism #2. PCI 2.2 Version
has deleted configuration mechanism #2 and each PCI function on each PCI device
needs 64-dword special configuration cache; for X86 system, I/O address is 64KB
maximally. When it is not in conflicts with old interface, the I/O addresses that can be
used by the PCI interface fall between 0400h~04FFh, 0800h~08FFh and
0C00h~0CFFh.

Configuration mechanism #1 uses two 32 bits I/O ports: address 0CF8h and
0CFCh. 0CF8h~0CFBh is 32 bits Configuration Address Port, while
0CFCh~0CFFh32 is Configuration Data Port. Their definitions are shown in table
2-5-1, with definition of each bit described as follows:

 47

Table 2-5-1 Configuration address port

bit

Bit
bit
bit
bit

Co

When c
case of
IDSEL
instructs
describe

As
configu
AD [10
is interp

ID
2-5-1 co
configu
bit [15:1
and red
shows t
bus stab
complet

Reserved
 [0:1]:hardware c
d_word

 [10:8]: function n
 [15:11]: PCI Targe
 [23:16]: PCI Targe
 [30:24]: all are “0”

nfiguration transac
onducting configur
Type 0 and 01b in
signal can only co
 the actions of con
 the two types of c
 with configuratio
ration transaction,
:8] means function
reted by IDSEL in
SEL implementatio
nnects IDSEL to t

ration transaction
1] is responsible f
uce the numbers
he connecting meth
ility; and the othe
es decoding action
bus no.
onnection, read o
 that confirms Targ
umber parameters o
t device numbers
t bus numbers
bit [31]: configura

tion can be divid
ation transactions,
case of Type 1 con
rrespond to Type
figuration transact
onfiguration transa
n transaction Ty

AD [7:2], AD [7:2
s of Target device,
to device numbers.
n examples are sh
he unused AD line
address phase. Ho
or interpretation. T
of Host/PCI bridg
ods of added resis
r IDSEL impleme
s together with dig

48
device no.
nly, must
et function
f PCI Targ

tion access

ed into two
 the lowest
figuration
0 configur
ions. In the
ctions resp
pe 0, AD
] means d
AD [31:11

own in Fig
s, AD [31:

st/PCI brid
his method
es pins an
tance coup
ntation me
ital logic ci
function no.

be 0 when writingBit [7:2]:
configuration
et device

 is “0” , bus I/O access is “1”

 types, Type 0 and Type 1.
valid bit for AD bus is 00b in
type. FRAME# is driven low,
ation transaction, C/BE#[3:0]
 following paragraph, we will
ectively.
[1:0] is 00b, it is Type 0

word of Target configuration,
] is reserved and not read, and

ures 2-5-1 and 2-5-2. Figure
11] is not used during Type 0
ge configuration address port
 can correspond to 21 devices
d connections. Figure 2-5-2

ling, which has been added to
thod is that Host/PCI Bridge
rcuits.

Figure

Figure

Host/PCI Bridge Main Memory

Dev

Re

 2-5-1 IDSEL ex

 2-5-2 IDSEL ex

Device 0

ice 0 Devic

sistance
ample of implem

ample of implem

Device 1

e 1 Devic

Host/PCI
entation (witho

entation (with

Device 2

e 2 Dev

Bridge

49
ut decoupling re

coupled resistanc

Device 3

ice 3 Dev

Main Memo

sistance)

Device 4

ry

e)

ice 4

Address phase: Another IDSEL implementation method is to interpret with digital
logic circuit. Figure 2-5-3 shows example of configuration read using this method,
which is described with by the address and data phase.
‧PCI Initiator reads PCI Target
‧ FRAME# to below, transaction begins
‧AD[1:0]=00b－＞Type 0
 AD[7:2] －＞ configuration dword address
 AD[10:8] －＞function numbers
‧C/BE#[3:0]==1010b (configuration read)
‧PCI Initiator shows it can read data.
‧PCI Target shows it can transmit data.
‧Type 0 needs IDSELto select device.

Data phase
‧PCI Initiator reads PCI Target
‧FRAME# counter drive shows it is ready to complete the last data transmission
phase.
‧PCI Target transmits configuration data to PCI Initiator.
‧Bridge duplicates byte enable of processor to C/BE#[3:0]
‧ PCI Initiator reads data in case of IRDY# and TRDY#

Figure 2-5-3 Type 0 configurations read

 50

Figure 2-5-4 is Type 0 configuration write example, which is described in the address

PCI Initiator writes PCI Target
‧FRAME# low, and transaction begins
‧AD[1:0]=00b－＞Type 0
 AD[7:2] －＞ Address of configuration dword
 AD[10:8] －＞function numbers
‧C/BE#[3:0]==1011b (configuration write)
‧PCI Initiator indicates it can transmit data.
‧PCI Target indicates it can read data.
‧Type 0 needs IDSEL to select device.
Data phase
‧PCI Initiator writes PCI Target.
‧FRAME# counter drive indicates it is ready to complete the last data transfer phase.
‧PCI Initiator transmits configuration data to PCI Target
‧Bridge duplicates processor’s byte enable to C/BE# [3:0]
‧ PCI Target receives data in case of IRDY# and TRDY#

and data phase.
Address phase:
‧

Figure 2-5-4 Type 0 configurations write

 51

As with Type 1, AD [1:0] is 01b is Type 1 configuration transaction, AD [7:2]

ration, AD [10:8] confirms 8 functions of Target,
devices, selects different device IDSEL lines, AD

 the system, AD [31:24] are reserved and are all 0.
 sub-bus numbers and are not within

 configuration must be ignored. If bus numbers are equal to
b-bus numbers, then they can be configuration accessed through Type 0 and be

 sub-bus. If bus numbers are not equal to sub-bus numbers, but sub-bus

bed in the address and data

 configuration transaction
‧AD[7:2] －＞ configuration dword address

AD[15:11] －＞device numbers
‧AD
‧

=1010b (configuration access)
d.

the last data transfer phase has been completed.
ted configuration data.

byte enable to C/BE#[3:0]

actions
a

confirms 64 dword in Target configu
AD [15:11] confirms 32 entity
[23:16] confirms 256 buses in

Bus numbers on AD buses are different from
the same bus scope, so this
su
transmitted to
is within the scope of the bus, Host/PCI make configuration access by means of Type
1. Figure 2-5-5 is Type 1configuration read, which is descri

phase respectively
Address phase
‧FRAME# driven low
‧AD[1:0]=01b－＞Type 1

‧AD[10:8] －＞function numbers
‧

[23:16] －＞bus numbers
AD[31:24] －＞unused

‧C/BE#[3:0]=
‧IDESL can be ignore

Data phase
‧FRAME# counter drive indicates
‧PCI Target sends back the reques
‧Bridge duplicates processor’s
‧PCI Initiator device is ready
‧PCI Target provides data and announces trans
‧PCI bridge receives dat

 52

Figure 2-5-5 Type 1 Configuration read

‧AD

‧AD

Figure 2-5-6 shows Type 1 configuration writes, which are described in the

address and data phases respectively.
Address phase
‧FRAME driven low
‧AD[1:0]=01b－＞Type 1 configuration transaction

[7:2] －＞ configuration dword address
‧AD[10:8] －＞function number
‧AD[15:11] －＞device number

[23:16] －＞bus number
‧AD[31:24] －＞unused
‧C/BE#[3:0]==1011b (configuration writes)
‧IDESL can be ignored

Data phase
‧FRAME# counter drive indicates that the last data transfer phase is ready
‧PCI Target receives bridge’s configuration data
‧Bridge duplicates processor’s byte enable to C/BE#[3:0]
‧PCI Initiator device is ready

 53

‧PCI Target device is ready
‧PCI Target receives data

Figure 2 ype 1 configurations w

The first 16 dword of PCI Configuration cache is Configur eader,
ing the param of PCI devices. T eader field is divided into 3 types: Type

e nes P e, fines
o-Card Bus B , and Type 0 de the remaining PCI devices. Generally

speaking, Type 0 is more common. Table 2-6-1 shows type 0 configuration cache
Ty tion apte es

important caches such as Vendor ID, Device ID, Revision ID, Class Code,
ystem Vendor ID, Sub-System ID / ystem ice

che assigned information of the PCI
er ins evic i che d d by m e

terface card used is PLX 9052 chip, then Vendor ID=10B5, Device ID=9052.
Revision ID is 8 bits cache defined by vendor himself, via which programs of

are defined; Sub-System Vendor ID, (Sub-System ID)/
ub-System Device ID) is 16 bits cache defined by the vendor himself respectively,

 Host/PCI, PCI-to-EISA ISA, PCI-to-Micro Channel,
an uter Inter lle C able

-5-6 T rite

2.6 Configuration cache

ation cache h
defin eters his h
0, Type 1, Typ 2. Type 1 defi CI-to-PCI Bridg Type 2 header de
PCI-t ridge fines

Regarding pe 0 configura header, this ch r only d cribes more

Sub-S Sub-S Dev ID.
Vendor ID is 1

bendor numb
6 bits ca
ide; D

 by PCISIG
ts ca

, with the
efinee ID 16 b vendor hi self, if th

in

different drive versions
(S
and are connected to bridge
PCI-to-PCI, d comp rupt Contro r. DMA ontroller, Programm

 54

Timer, RTC Co not c this cache, which mainly identifies the type
of sub-system and Sub-System r ID =1 Sub-S the

face car use
Class code sists of 8 bits ca as shown in Figure 2-6-1, and

the 3 caches are: class code, sub-class code and program interface. This cache is
developed and is freely used by the vendor. Table 2-6-2 shows the class code cache
definitions. Instruction cache is 1 s cache, ing ba nse and
access ability. T struction cache definitions. Sta s cache,

 track of m t functions defined by PCI device instruction
cache, with format definition shown in table 2-6-4. Header ty cache,
bit [6:0] is header type, bit [7] d g device is a single/
[7]= 0 is single function device, [7]= 1 is a multi- on dev

In addition to the above mentioned more im nt Typ ,
there are severa ches suc ache Lin e cach cache,

-In-Self-Te ase Ad cache, E ion R cache,
Card Bus CIS, Interrupt Pin cache, Interrupt Line e, Min equest,
Max_Lat: priority level request, ab ndex cac c. For
Type 1 configuration cache, the reader can to th
ARCHITECTURE.

-1 PCI configuration cache

ntroller, need ontain
Vendo 0B5, ystem ID=9052 of

inter d in this practice
 cache con three ches,

6 bit defin sic device respo
able 2-6-3 is in
functions states ai

te cache is 16 bit
keeps ed a

pe register is 8 bits
efinin multi-function device. If

functi ice.
porta e 0 configuration caches

l other ca
st cache, B

h as C e Siz e, Latency Timer
Built dress xtens OM base address

 cach _Gnt: time block r
ility i he, et these types of caches and

refer e book--PCI SYSTEM

Table 2-6
00h 02h 04h 06h 09h 0Ch 0Dh 0Eh 0Fh08h

Vendor Device
ID

Instruction Status
Cache

Revision
ID

Class
Co

Cache
Line
Size

de
Latency
Timer

Header
TyID Cache pe

BIST

10h 18h 14h 1Ch
Base address 0 Base address 1 Base address 2 Base address 3
20h 24h 28h 2Ch 2Eh

Base address 4 Base address 5 Card Bus/CIS
Sub
System
Vendor ID

Sub System
ID

30h 34h 35h 3Ch 3Dh 3Eh 3Fh
Extension ROM
base address

Ability
index

Reserved
Interrup
line

terrupt
e

T
t In

lin
Min GNT Max LA

Class Code Sub-Class Code Program Interface

 55

Figure 2-6-1 class caches

Table 2-6-2 class code cache
Basic Class
Code

Device
description

Sub-Class
code

ram
interface
Prog

Device description

00h A device 00h All non-VG

00h

Device built
before class code
definition

01h 01h
Device compatible with VGA

00h 00h SCSI Controller
01h ××h IDE Controller
02h oller 00h FDD Contr
03h 00h IPI Controller
04h troller 00h RAID Con

01h
Mass storage
media controller

80h 00h The other storage peripherals
00h ontroller 00h Ethernet C
01h ontroller 00h Token Ring C
02h 00h FDDI Controller
03h 00h ATM Controller
04h 00h ISDN Controller

02h
Network
controller

80h peripherals 00h The other network
00h Device compatible with VGA

00h
01h Device compatible with 8514

01h 00h XGA Controller
02h 00h 3D Controller

03h Display controller

80h 00h The other display peripherals
00h 00h Video device
01h 00h Audio device
02h 00h Computer telephone devices

04h
Multi-media

80h multi-media devices
device

00h The other
00h 00h RAM Controller
01h troller 00h Flash Con05h

Memory
controller

80h 00h The other memory controllers
00h 00h Host/PCI
01h 00h PCI/ISA
02h 00h PCI/EISA

06h Bridge device

03h 00h PCI/Micro Channel

 56

00h PCI/PCI
04h

g PCI/PCI 01h Subtraction decodin
05h 00h PCI/PCMCIA
06h 00h PCI/ N u Bus
07h 00h PCI/Card Bus
08h ××h Race Way
80h 00h The other bridge device

00h XT compatible serial controller

01h
16450 compatible serial
controller

02h
16550 compatible serial
controller

03h
16650 compatible serial
controller

04h
1

r
6750 compatible serial

controlle

05h
16850 compatible serial

oller contr

00h

06h
16950 compatible serial
controller

00h Parallel port
01h Bi-directional parallel port
02h Following ECP1.×parallel port
03h IEEE128 controller

01h

FE h IEEE1284 Target
02h 00h Multi-port serial controller

00h General purpose modem
01h Interface compatible with 16450
02h Interface compatible with 16550
03h Interface compatible with 16650

03h

04h Interface compatible with 16750

07h
Simple
communication

80h communication device

controller

00h The other
00h 8259 interrupt controller
01h ISA PIC
02h EISA PIC
10h IO APIC

08h Basic system
peripheral device

ller

00h

20h IO APIC interrupt contro

 57

00h 8237 DMA controller
01h ISA DMA Controller 01h
02h EISA DMA Controller
00h 8254 timer
01h ISA system timer 02h
02h EISA system timer
00h RTC controller

03h
01h ISA RTC Controller

04h 00h PCI hot-plug controller

80h 00h
The other system peripheral
devices

00h 00h Keyboard controller
01h 00h Digitizer (PEN)
02h 00h controller Mouse
03h 00h Scanner controller

00h
09h Input devic

Common Game Port controller
04h

10h Game Port controller

e

80h 00h The other input peripheral device

00h 00h
al docking station

system
 Gener

0Ah
Docking

80h 00h The other docking station system
Station

00h 00h 386
01h 00h 486
02h 00h Pentium
10h 00h Alpha
20h 00h PowerPC
30h 00h MIPS

0Bh ssor

80h 00h Co-Processor

Proce

00h Fire wire (IEEE1304)
00h

10h Open HCI IEEE1394
01h 00h ACCESS bus
02h 00h SSA serial storage architecture

00h UHC-USB
10h OHC-USB

80h
USB without particular program
interface

0Ch
r

FE h USB device

Serial bus
controlle

03h

 58

04h 00h Fiber Channel
05h 00h SM-Bus
00h 00h IRDA compatible controller
01h 00h Consumer IR controller
10h 00h controller RF

0Dh
Wireless
controller

80h 00h Other wireless controller
× controller ×h Following I2O

0Eh
Sma
Con

rt IO
troller

00h
00h Signal FIFO of address

01h 0) 0h (TV
02h 00h (Audio)
03h 00h (Voice)

0Fh
Sate
com
cont

ta)

llite
munication
roller

04h 00h (Da
00h 00h Applied to network and operation
01h 0 Used in entertainment 0h 10h

Encr cip
herin
Controller 80h 0 d for other functions

yption/de
g

0h Use
00h 0 module 0h DPIO

11h

Data
and
processing
cont

80h 0
d

 acquisition
signal

roller 0h

Other controllers of this kin

12h~FE h Reserved
FF h Device not in conformity with the defined class code

le 6-3 instructio

Description Preset value
Tab 2- n registers
Bit
15
14
13
12
11
10

Reserved 0

09 Fast Back-to-Back enable 0
08 SERR#enable 0

07 Gradual drive control
1 when used, 0 when
unused

06 Parity error response 0

 59

05 VGA color table monitoring NON-VGA is1, VGA is 0
04 Memory Write and Invalidate enable 0
03 Special cycle 0
02 Bus Master 0
01 Memory space 0
00 IO space 0

Table 2-6

Bit
read
/wri

-4 Status register
 (R)
te (W)

Function Preset value

15 R/W Parity error detected 1: Parity error detected

14 R/W
System error signal has been
sent out

1: The device may generate
SERR# signal

13 R/W Master Abort received Receive Target Abort signal
12 R/W Target Abort received Receive Master Abort signal

11 R/W
Target Abort signal has been
sent out

1:error occurs

10
09

R DEVSEL timing
00b:fast
11b: reserved

08 R/W Master data parity error 1:error occurs

07 R Fast Back-to-Back ability
1:supports this function, 0:does not
support

06 R UDF support 1:supports UDF, 0:does not support

05 R 66MHz ability
1:Capable of 66MHz operation,
0:33MHz

04 R Ability serial
1
without this function

:with ability index cache0:

03
02
01
00

R Reserve 0

2.7 Read transmission

As with PCI read transfer, take PCI Initiator reading PCI Target as an example,
single data read and burst read are described respectively. Figure 2-7-1 shows single
read transfer; Figure 2-7-2 shows burst read transfer.

Single read transfer, with actions of each described as follows:
Clock 1 When it is detected that bus is in idle (both FRAME# and IRDY#are

 60

counter-driven high), initiator begins to conduct transaction on the rising
edge of clock 1. Initiator drives address on AD[31:0], drives instructions on
C/BE#[3:0], and drive FRAME# low, indicating the transaction begins and
there is an effective address and instruction on bus.

Clock 2 Clock rising edge, targets on the bus are sampled address, instructions and

FRAME#, address phase are completed. All targets begin to decipher,
deciding the target of this transaction. Initiator drives IRDY# low,
indicating it is ready to receive the first batch of data read from target.
While initiator drives IRDY# low, it back drive FRAME# high, indicating it
is ready to complete the last data phase of this transaction. Initiator stops
driving instructions to C/BE#[3:0] and starts to drive byte enable so as to
indicate the location of the first dword to be read. There is not any target
driving DEVSEL# low and announcing the transaction.

Clock 3 Clock rising edge, initiator is sampled so that DEVSEL# is backdriven high,

indicating that the transaction has not need announced by target. So, the data
phase is not completed, it was prolonged by a clock (a wait state). In wait

tinue to drive byte enable and drive IRDY# until
target drives DEVSEL# low so as to announce the transaction. Meanwhile,

Clock 4

lock 5 Clock rising edge, bus returns to idle state.

state, initiator must con

target drives TRDY# low, indicating that it is driving the first dword onto
AD bus.

Rising edge, initiator and target are both sampled and IRDY# & TRDY# are
driven low. At the same time, initiator latches data and the setting of TRDY#,
indicating the data is valid. The first (also the only one) data is read
successfully. When target is sampled and FRAME# is backdriven high,
indicating this is the last data phase. The transaction is completed, so
initiator drives IRDY# high and stops driving byte enable, target backdrives
TRDY# and DEVSEL# high and stops driving data.

C

 61

Figure 2-7-1 single read transfer

ith Burst read transfers, the actions of each clock are described as follows:
Initiator drives FRAME# low, indicating that transaction begins, and there is
a valid starting address and instruction. FRAME# must continue to be driven
low until initiator is prepared to complete the last data phase. When initiator
is driving FRAME# low, it will drive the starting address on AD bus and
drive transaction types on instruction/byte enable line. Address and
transaction type are driven onto the bus during clock period 1. During the
clock period 1, IRDY#, TRDY# and DEVSEL may not be driven (prepared
to be taken over by new target). It is maintained to logic high by pull-up
resistor on the system board (requiring system board resources).

 Initiator stops driving AD bus. On all signals that may be driven by more
than 1 PCI agent, a reverse cycle (namely dead cyc

As w

Clock 1

Clock 2

le) is needed. This cycle
is intended to avoid that when one agent is closing its output driver, another
agent begins to drive the same signal (resulting in data collision), target will
acquire the control of AD bus so as to drive the first requested data item (one
to four bytes), transmitting it to initiator. During the process of reading,
clock 2 is defined as reverse cycle, because the ownership of AD bus is

 62

converted into the addressed target by initiator. Target is responsible for
continuously backdriving TRDY# high to accomplish this cycle. At the same

uring the last data phase, it is required to drive IRDY#
low and counter drive FRAME# high at the same time, indicating it is

Clock 3

arget begins to drive the first data item
(one to four bytes, as requested by the setting of C/BE lines) onto AD bus

Clock 4

ase (clock edge 4), initiator
sets byte enable, indicating the byte to be transmitted in the first dword. The
r t
byte enabling necessary to the data phase. If initiator does not know what
will the byte enable of the next data phase will be set to, it may maintain the

DY#, preventing the current data phase from ending.
After entering into the second data phase, initiator continues to drive IRDY#

 than backdrive FRAME# high, indicating that initiator is prepared

target is

requesting more time so as to input the second data item, so it inserts a wait

t

time, initiator stops driving instructions onto instruction/byte enable lines,
and uses them to indicate the bytes to be transferred (and the data path used
during the process of data transfer) in the dword that has been addressed so
far. Usually, during the process of reading, initiator may drive all byte enable.
Meanwhile, initiator drives IRDY# low, indicating it is prepared to receive
the first data item from the target. While driving IRDY#, initiator does not
backdrive FRAME# high, therefore indicating that this is the last data phase
of the transaction. D

prepared to complete the last data phase.

Target drives DEVSEL# low, indicating its recognizes its address and takes
part in this transaction. Meanwhile, t

and drives TRDY# low to indicate the emerge of the request data.

When initiator and the currently addressed target are on the rising edges of
clock four, they both are sampled and TRDY# & IRDY# are driven low,
initiator will read the first data item from the bus. The first data phase
consists of clock 2 and the wait state of target insertion (clock 3, a reverse
cycle). At the beginning of the second data ph

ule is when a data phase is in progress, initiator must immediately outpu

backdriving state of IR

low rather
to read the second data item. In multi-data transactions, target (if it supports
burst) is responsible for latching the starting address-to-address counter and
managing the address counters of each data phase.

Clock 5 Initiator is sampled and TRDY# is backdriven high, confirming

state into the second data phase (clock 5). In wait state, target begins to drive
he second date item onto the bus and drive TRDY# low, indicating the

 63

emerge of data item.

When initiator is sampled and both IRDY# and TRDY

Clock 6 # are driven low, it

reads the second data item from the bus. This is the end of the second data

Clock 7

Clock 8 When it is sampled that both IRDY# and TRDY# are driven low, initiator

reads the third data item from the bus. The third data phase consists of clock

Clock 9

phase, which consists of clock cycle 4 and 5. Initiator sets byte enable,
indicating the bytes to be inputted in the next dword. Meanwhile, it
backdrives IRDY# high, indicating that it needs to exceed the time of a
clock cycle before getting ready to receive data. Target continues to drive
TRDY# low, indicating it will immediately drive the third requested data
item onto AD bus.

Target must continue to drive the third data item onto AD bus, initiator
drives IRDY# low, indicating it wants to receive the third data item at the
rising edge of the next clock. Meanwhile, it backdrives FRAME# high,
indicating this is the last data phase.

6 and 7. On the rising edge of clock 8, sampling to FRAME# is backdriven
high, instructing target this is the last data phase and the burst transfer made
up of the 3 data phases is fully completed. Initiator backdrives IRDY# high,
allowing the bus to return to idle state (on the rising edge of clock 9), while
target backdrives TRDY# and DEVSEL# high.

The bus returns to idle state (both TRDY# and DEVSEL# are driven high)

 64

Figure 2-7-2 Burst read transfer

2.8 W
AS with PCI device write transfer, take PCI initiator writing PCI target as

single wr

As with s

Clock 1.

lock 2. Clock rising edge, all the targets on the bus are sampled and address,

rite transfer

example, single data write and burst write are described respectively. Figure 2-8-1 is
ite transfer, while Figure 2-8-2 is burst write transfer.

ingle write transfer, the actions of each clock signal are as follows:

When it is detected that the bus is idle (both TRDY# and DEVSEL# are
backdriven to high), initiator begins to conduct the transaction on clock
rising edge. Initiator drives the address on AD[31:0] , drives instructions on
C/BE#[3:0], and drives FRAME# low, indicating that the transaction begins
and there is a valid address and instruction on the bus.

C
instruction, and FRAME#, the data phase are completed, all the targets start
to decipher to decide the target of this transaction, initiator drives IRDY#
low, indicating its is driving the first written data item onto the AD bus, as
long as the time that initiator drives IRDY# low is within the 7 clock cycles

 65

after entering data phase.
When initiator drives IRDY# low, it also cunterdrives FRAME# high, thus
indicating it is prepared to complete the last data phase of this transaction.
Initiator stops driving instructions onto C/BE#[3:0] and begins to drive byte
enable, indicating it wants to be written into the first dword. During clock 2,
target drives DEVSEL# low to announce the transaction; meanwhile, target
drives TRDY# low, indicating it is prepared to receive the first written data

Clock 3.

lock 4. Clock rising edge, the bus returns to idle state

item.

Master is sampled and DEVSEL# is backdriven low, indicating that the
target has announced the transaction. Target is sampled to IRDY# and data
on AD bus. The setting of IRDY# also shows that it has latched the first
valid written data item. The setting of IRDY# instructs initiator and target
are prepared to receive, meanwhile, target is also sampled so that FRAME#
is backdriven high, indicating that this is the final data phase. The
transaction is completed, initiator is backdriven by IRDY# high and stops
driving byte enable, target backdrives TRDY#and DEVSEL# high and stops
driving data.

C

 66

Figure 2-8-1 Single write transfer

st writes transfer: the actions of each clock signal are described as follows:

FRAME# and IRDY# are backdriven high (on the rising edge of clock one),
the bus remains in idle state. Initiator drives FRAME# low, indicating the
transaction begins and there is a valid starting address and instruction on the
bus, FRAME# must continue to be driven low until initiator is ready
(already driven IRDY# low) to complete t

Bur

Clock 1.

he last data phase. While initiator
drives IRDY# low, it drives the starting address on AD bus and drives
transaction types to instruction/byte enable line- C/BE#[3:0]. Address and
transaction types are driven onto the bus during clock period one. IRDY#,
DY# and DEVSEL# will not be driven (prepared to be taken over by new
initiator and target). And it maintains high with the pull-up resistor on the
system board.

Clock 2. Initiator stops driving AD bus and begins to drive the first written data item

and may immediately starts to drive the first data item onto AD bus. Initiator
stops driving instructions and begins to drive byte enable to indicate the byte
that has been written into target in the currently addressed dword. Initiator

 67

drives written data onto AD bus and drives IRDY# low, indicating that data
has emerged in the bus. While initiator drives IRDY# low, it does not

 (because this is not the last data phase). Target
deciphers address and instructions and drives DEVSEL# low, announcing

ampling byte enable t decide which bytes to be written),
completes the first data phase, and adds 4 to address counter to point to the

ord. Initiator drive the second data onto AD bus and sets byte enable,

e and the data path used, also continues to drive IRDY# low, and it will

last data phase. The setting of

en low, indicating they are both prepared to complete the
Target receives

ecide
which data paths are valid data), completing the second data phase. Before
initiator begins to drive the next data item, it needs some time (because it
encounters empty cache). So it backdrives IRDY# high to insert a wait state
into the third data phase, immediately setting the proper byte enable
necessary to the third data phase. Before target is prepared to receive the
third data item, it also needs more time, to indicate more demands for time,
target backdrives TRDY# high during the clock period. Target again adds 4
to address counter to point to the next dword, although initiator has not the
third data item that can be driven, it must drive a stable signal onto the data
path to prevent AD bus from floating.

Clock 5. When initiator and target are sampled and IRDY# and TRDY# are driven

high, they insert a wait state (clock cycle 5) into the third data phase.
Initiator drives IRDY# low and drives the last data item onto AD bus.

backdrive FRAME# high

the transaction. At the same time, it drives TRDY# low, indicating that it is
prepared to receive the first written data item.

Clock 3. When initiator and the currently addressed target are on the rising edges of

target and are sampled and TRDY# and TRDY# are driven low, indicating
that it is ready to complete the first data phase. This is a transfer (single
clock data phase) of zero wait state. Target receives the first data item from
the bus (and s

next dw
indicating the byte it will write in the next dword during the second data
phas
not backdrive FRAME# high, therefore indicating that initiator is prepared
to read the second data phase rather than the
IRDY# indicates that the data to be written appears on the bus.

Clock 4. Initiator and the currently addressed target are sampled and TRDY# and
TRDY# are driv
second data phase, which is a data phase of zero wait state.
the second data item from the bus (and sampling byte enable to d

 68

Meanwhile, it drives FRAME# high, indicating this is the fin
and continues to drive the byte enable necessary to the third da

al data phase,
ta phase until

C
ecause target is not

prepared to receive the third data item). Target is also sampled and FRAME#
is backdriven to high, indicating that the final data phase is in progress,
continuing to backdrive TRDY# high, until it is prepared to receive the final
data item. TRDY# is backdriven to high sampling, target and initiator insert
the second wait state into the third data phase. During the second waits state,
initiator continues to backdrive TRDY# high, indicating it is not prepared to
receive the third data item.

Clock 7. Target and initiator are sampled and IRDY# is driven low, indicating
initiator is still transmitting data, but TRDY# is still high. In response, target
and initiator inset the third wait state into the third data phase, during which,
initiator continues to drive the third data item onto AD bus and maintain the
setting of byte enable. Now, target drives TRDY# low, indicating it is
prepared to complete the last data phase.

Clock 8. Initiator and target are sampled and IRDY# and TRDY# are driven low,
indicating that they are prepared to end the third, also the final data phase. In
response, the third data phase is completed on rising edge of clock 8. Target
receives the third data item on AD bus. The third data phase consists of 4
clock cycles (the first clock cycle of data phase, clock cycle 4, and the 3 wait
states). Initiator stops driving data onto AD bus, stops driving C/BE# bus,
and back drives IRDY# high (enabling bus to return to idle state). Target
back drives TRDY# and DEVSEL# high.

it is completed. Target continues to backdrive TRDY# high, indicating it is
not prepared to receive the third data item.

lock 6 Initiator is sampled and IRDY# is driven low, indicating it is transmitting
data, but TRDY# is still high (backdrive state) (b

 69

Figure 2-8-2 Burst writes transfer

This chapter has described the hardware architecture of PCI interface, pin
definition and configuration cache, etc. Usually, PCI interface configuration cache can
write C/C++ program languages to read and write. However, changing configuration
cache may cause PCI interface card unable to operate. When it comes to this
circumstance of incomplete data, it is better not to change the data in configuration
cache without authorization. Regarding the implementation of PCI interface, it will be
described in the next chapter with PLX PCI_9052 chips and actual examples of
practice kits made of it.

 Exercises
1. Give examples to describe PCI_Master, PCI_Slave, and PCI_Initiator, PCI_Target

device.
2. To understand the definition of cache by reading PCI configuration cache, please

have a try to describe with actual computer device.
3. Have a try to describe the relevant data that will replace PCI interface in the

future.
4. About the relevant applications of PCI interface, give practical examples to

describe its functions.

 70

5. Compare the differences between ISA interface and PCI interface.
6. Give examples to describe the advantages and disadvantages PCI interface.

 71

Article 2 PCI-IO/LAB hardware description
This article is divided into chapter 3 and 4, which describe hardware lines of

PCI-IO/CAB and the important specifications of chips used. For PLX9050/9052 chips
please refer to chip specification documents of PLX Company. The specifications of
other parts can be found in the disk attached with this manual.

 72

Chapter 3 PCI-IO/LAB hardware

 The hardware of PCI-IO/CAB is designed and manufactured by Leaper for the
electronic circuits of this exercise equipment. This manual will discuss the products
functions in two chapters to help the reader to understand the basic concepts of this
device.

3.1 PCI-IO hardware

Shown in Figure 3-1-1 is the picture of PCI-IO interface card, with

PLX-9050/9052 chip in the middle of this figure as the core of this interface card;
PLX-9050/9052 chip is briefly described in next chapter. To use this chip, a serial
EEPROM as cache is needed, storing characteristics related with this interface card.
Figure 3-1-2 shows the pin of this interface PCI slot; Figure 3-1-3 shows the
producing circuit of 8254 chips and related clock. Figure 3-1-4 shows the decoupling
capacitor, mainly eliminating the noise of interface card.

 73

Figure 3-1-1 PCI-IO interface card (engineering version)

Figure 3-1-5 shows part of the decoupling capacitance and chip mode setting.

Figure 3-16 shows Chip LOCAL end interrupted pin, PCI-IC is set to operate under
Non-Multiplexed and the LOCAL end does not produce interrupted input, only uses
the interface card as IO output/input. Figure 3-1-7 shows the serial EEPROM of
PLX-9050/9052, storing settings related with this interface card. Figure 3-1-8 is
PLX-9050/9052 connection diagram. Figure 3-1-9 is resistance network, mainly
connecting PLX-9052 chips and allowing this interface card to have IO function in
conjunction with related setting. Figure 3-1-10 is also a decoupling capacitance.
Plenty of decoupling capacitance is needed on the PCI interface card to mitigate
electricity and noise interference. Figure 3-1-11 is an output clock frequency selection,
4 different kinds of LOCAL end operating clocks can be selected. Figure 3-1-12 and
3-1-13 show RAM and IO port input or output selection, common output may be
unnecessary to be set. However, it must be set when used in input status. Figure
3-1-14, 3-1-15, 3-1-16, 3-1-17, 3-1-18, 3-1-19 shows the circuit diagrams of IO
respectively, from the diagram we can learn that output and input signals switch
channels here. Figure 3-1-20 is output /input end protection loop. Figure 3-1-21 shows
output joint, output end on the interface card respectively and another output end on

 74

the baffle, which is connected to PCI-LAB with a 68-pin connecting wire, while
3-1-22 is IO-BANK selection circuit.

There is an IO-BANK0 inside this interface card, while IO-BANK1~IO-BANK4

may also be in it. Normally, implementation can use internal and external IO-BANK,
however, internal IO-BANK mechanism has been fixed to use 8254 chips. The read
himself can also implement 8254-related practice in IO-BANK1~IO-BANK4.

Figure 3-1-2 PCI-IO card PCI slot

 75

Figure 3-1-3 Built-in 8254 and clock circuit

Figure 3-1-4 Decoupling capacitance

Figure 3-1-5 Decoupling capacitance and chip mode setting

 76

Figure 3-1-6 LOCAL end interruption pin

Figure 3-1-7 93C46 serial EEPROM

 77

Figure 3-1-8 PLX-9052 connection diagrams

 78

Figure 3-1-9 Resistance network

Figure 3-1-10 Decupling capacitance

 Figure 3-1-11 Clock selections

 79

Figure 3-1-12 RAM control port (only engineering version has RAM)

 80

Figure 3-1-13 Output/input selections

Figure 3-1-14 IO_PORT0 circuit diagram

 81

 Figure 3-1-15 IO_PORT1 circuit diagram

Figure 3-1-16 IO_PORT2 circuit diagram

 82

igure 3-1-17 IO-PORT3 circuit diagram

F

igure 3-1-18 IO-PORT4 circuit diagram F

 83

Figure 3-1-19 IO-PORT5 circuit diagram

 84

Figure 3-1-20 IO protection circuit

 85

Figure 3-1-21 Output joint

Figure 3-1-22 IO-BANK selection

3.2 PCI-LAB hardware

 Figure 3-2-1 shows the hardware diagram of PCI-LAB, this section only
describes the common circuit, while the various module circuits are described
respectively in implementation.

Figure 3-2-2 shows the power switch of PCI-LAB, when changing PCI-LAB
modules, please be sure to cut off the power supply to prevent the PCI-LAB from
being burned. As with the power supply of PCI-LAB, we can learn from observing the

 86

LED display in Figure 3-2-3 that when PCI-LAB is operating, the red light of this
LED must be on. Close the PCI-LAB, then this LED light is off.

Figure 3-2-1 PCI_LAB experiment module

Figure 3-2-2 PCI_LAB power switch

Figure 3-2-3 PCI_LAB power indicator LED light

 87

Figure 3-2-4 shows the 68-pin of PCI-LAB; which is connected to PCI-IO

throu

ows the lines of IO-BANK1
which are used to switch the functions of port-used modules.

Th

gh this, while Figure 3-2-5 is the interpretation circuit of
IO-BANK1~IO-BANK4. Figure 3-2-6 and 3-2-7 shows the external pin of the PCI
extension module, which can be connected to the external heater, step motor and DC
motor external module. Figure 3-2-8 is the output footer of 8254, and is the output
measurement point of 8254 experiment. Figure 3-2-9 sh
IO-PORT5 on PCI-LAB,

e circuits of the rest of the modules are described in detail in examples.

Figure 3-2-4 PCI-LAB pins

Figure 3-2-5 Explanation of IO-BANK circuit

 88

Figure 3-2-6 cartridges pin1

Figure 3-2-7 extension module pins 2

Figure 3-2-8 8254-output ends

 89

Figure 3-2-9 PCI-LAB function and parameter switch

 90

Chapter 4 Brief introduction of related chips

This chapter introduces PLX PCI9050/9052, 93C46 serial EEPROM and 8254

chips. 9050/9052 chip is the core of the interface card in this experiment, and 93C46
used to memorize the PCI cache data in this interface card, while 8254 is the built-in
counter of this interface card, the rest of the parts are 74 series logic gates, so this
article only briefly introduces these three kinds of chips.
4.1 PLX9050/9052 chip

PLX9050/9052 chip is PCI Slave chip, mainly connects the PCI bus and common
logic bus. This series of chips have powerful functions, which can be designed into a
PCI-to-ISA keyed and can use IO output, with several kinds of modes available for
choosing. Shown in Figure 4-1-1 below is the sketch of external framework of this
series of chip, with serial EEPROM providing 9050/9052 chip PCI Host and Local
end configuration information; one end connects PCI bus, the other end can be
connected to the IO controller or memory. Generally, this type of chip connects the
DSP or FPGA chips, etc., forming an IO control board. Figure 4-1-2 shows the pin
diagram of this type of chip.

 91

Figure 4-1-1 PCI 9050/9052 external structure diagram

 92

Figure 4-1-2 PCI 9050/9052 pin definition diagram

 93

Figure 4-1-3 PCI 9050/9052 internal structure diagram

Figure 4-1-3 is the internal structure diagram of PLX 9050/9052. This chip

structure can use PCI function of standard C/C++ language without the need to use
the development library supplied by the PLX company and PLX 9050/9052 RDK kit
(Rapid Develop Kit) had been issued for many years. If the reader wants to design the
advanced PCI experiment card by himself, this kit is another development mode.

PCI instructions supported by PLX PCI9050/9052 chips are shown in table 4-1-1.
Because this chip is PCI Slave chip, part of the functions cannot be used. The basic
operating mode is divided into 2 modes: Non-Multiplexed and Multiplexed, which
needs to be adjusted from hardware as listed in table 4-1-2, while LEAP PCI-IO
interface card used in this manual is set to be Non-Multiplexed. The rest of the
settings are software settings, stored in 93C46 EEPROM; most of the settings of this

hich can use PLXMON supplied by the PLX
Company to conduct configuration modi cations. However, this manual does not
provide this function so as to avoid interface card damages.

Here, this manual describes the differences between Big Endian and Little Endian.
Figure 4-1-3 shows the comparison between Big Endian and Little Endian. From this,
it can be learned that the high, low bits of the two are arrayed in reverse order. Figure
4-1-4 shows the sketch of the conversion between the two, the operating modes of
these two memories depend on the differences of the IO controller.
Table 4-1-1 Instructions of this PCI chip

chip are done by means of software, w
fi

 94

Table 4-1-2 operating mode

Figure 4-1-3 Comparison
Little Endian with Big Endian

Figure 4-1-4 Changeover between
Little Endian and Big Endian

 95

4.2 Serial RRPR

Many comp cts use memory as its initialization function, which can
ch e ch ternal f ware data ddition ernal can
b even i stem is closed. The memory used is called by a joint name as
non-volatile me uding RO , PR , EPROM, and
ROM, etc., EEPROM and FLASH ROM can even be used as RAM. Regarding its use,
this type of me methods,

x e small
sizes and low ation and

emory of TV channel selectors, software protectors (Keypro) and PCI-related

ircuit board has a larger number of pins, but it
an still be considered as the mainstream of current erasable programmed memory.

Figure 4-2-1 shows the internal structure of 29F002, this type of memory can use a
8Kbits (8×256Kbits) in total. This is the same amount as

ther serial memory structure except that the memory capacity and memory block
mory usually has only 8 pins, is

mos

OM
uter produ

ange th aracter of the in irm . A ally, its int data
e reserved f the sy

mory, incl M OM EEPROM FLASH

mory can be divided into serial and parallel data transmission
whereby 27C x and 29Cxx are serial types, while 93Cxx is parallel. Due to th

costs of serial memory, it has been wisely used on the configur
m
interface cards and so on.

Serial electronics can erase a larger number of memory pins. This type of
memory are mostly packaged by means of DIP, PQFP and PLCC, has 8 bits data bus,
and controls memory position through more than 10 address buses. It is often used in
BIOS of computer motherboard, BOOT ROM of PCI network card and disk firmware.
The writing and burning of its internal programs are common and convenient. It only
appears to be complicated because its c
c

memory capacity of 204
o
vary with its types. Serial electronic erasable me

tly packaged by means of DIP and PLCC. Due to its smaller size compared with
serial memory, it is widely used in the memory of PCI peripheral interface card. This
type of memory transmits data and bus in series, reducing the number of pins so as to
reduce the size of circuit board significantly. This will be the mainstream standard of
future erasable programmed memory.

 96

Figure 4-2-1 29F002 internal structures

This section will describe the interface characteristic and application methods of
6, 66series) , type 93C46, 93C56, 93C66 is the difference

f memory capacity: 93C46 has1024 bits, 93C56 has 2048 bits，93C66 is 4096bits.
ns, 93C46 single instruction needs to use 9 bits, while 93C56

and 9

f each register is 16 bits, 1024 bits (1024 bits) in total. Seven 9 bits
instruction controls all actions of this IC, whereby the data can be kept for 10 to 40
years. Figure 4-2-2 and 4-2-3 show its block diagram and pin diagram. This memory
has only 8 pins, with the definition of pins shown in table 4-2-1.

serial EEPROM (96C46, 5
o
Some further instructio

3C66 are both 11 bits, with the rest of the structure and functions being the same.
Because this experiment version uses 93C46 as the memory of PLX-9052 chip
configuration, we use 93C46 as an example to describe its principle of operation.

Functions and internal structure of 93C46

93C46 is the serial EEPROM that can access 1024bits, with 64 registers inside,
the length o

 97

Figure 4-2-2 29C46 internal structures

Figure 4-2-3 29C46 pin diagram

Table 4-2-1 29C46 pin definition
Pin Chinese definition English definition Description
CS Chip select pin Chip Select Chip read/write places this signal at

high potential
SK Serial Data Clock pin Serial Data Clock Read or write synchronous clock of

various bits data action
DI Serial Data Input pin Serial Data Input Serial Data Input pin (go with SK

signal)
DO Serial Data Output Serial Data Output Serial Data Output pin (go with

SKsignal) pin
Vcc Power Supply pin Power Supply Chip power cord

GND Ground pin Ground Chip ground wire
NC No Connection No Connection No connection (unused)

 98

93C46 instruction structure
7 instruction structures of 93C46 are shown in table 4-2-2, the length of each

instruction is 9 bits, which transmits add anner
 SK clock signal. The first bit is the starting bit and

ust be placed high. It judges the actions to be taken through the second and third bit
bsequent 6 bits is address signal, transmits 16bits data

sign

ress and data signals in a serial m
mostly in conjunction with the
m
control code (OP Code). The su

al again, it will remain in the original action status if it works with SK signal.
Thus it needs to wait for clock signals to access data.

Table 4-2-2 instruction structures
Instruction Definition Starting bit OP Code Address Input signal

READ Read 1 10 A5~A0 －
WEN Write Enable 1 00 11XXXX －

WRITE Write 1 01 A5~A0 D15~D0
WRALL Write All

Registers
1 00 01XXXX D15~D0

WDS Write Disable 1 00 00XXXX －
ERASE Erase 1 11 A5~A0 －
ERAL Erase All

Registers
1 00 10XXXX －

1: digital signal high potential 0: digital signal low potential
Description A5~A0: Address arranged from the highest bit to the lowest bit

D15~D0: Data arranged form the highest bit to the lowest bit

Read instruction (READ)

The Read instruction is to read the data stored in 93C46 through DO pin in a
serial manner. To read memory data, first enter the instruction and address signal in
sequence, this action will select the memory register, and place its contents in a 16
bits serial offset register and read the data when the SK signal is on the rising edge.
The serial data read is outputted in the order of “high bits first and low bits later” with
timing diagram shown in Figure 4-2-4.

 99

Figure 4-2-4 read timing

Write Enable instruction (Write Enable) WEN

To write data into the EEPROM 93C46, this instruction must be issued before
data can be written. Otherwise the write action will be invalid. For this chip, after
adding power is turned on, EEPROM is in an unwritable status, and after this
instruction is issued, it enters the writable status. Data write is controlled through
write instructions. After the writable status is enabled, it will be maintained until the

ns that forbid the write function to close
write. Figure 4-25 contains the timing diagram of write enable.

power supply disappears or issues instructio

Figure 4-2-5 Write enables timing

Write instruction

Write instruction writes 16 bits data into the designated memory address. Input
the instruction and data in conjunction with SK clock signal in a serial manner.
After write is completed; CS should be kept at a low potential (at least 250ns). When
CS changes back to h

igh potential, DO pin is at low potential and indicates that the
write action is not completed (busy). Oppositely, if DO pin is high potential, it

dicates that the write action has been completed (ready) and the next instruction
ore proceeding to this instruction, write enable instruction

in
may be implemented. Bef

 100

must be executed first so th gure 4-2-6 is the
timing diag writes act

at write action can operate properly. Fi
ion. ram of

Figure 4-2-6 Write timing

e al n

 (250ns). When CS changes back to high potential, DO pin can be used to
dicate whether the write action is completed or not, which is the same as the method

of write instruction in operating. Figure 4-2-7 shows the timing diagram of this
instruction.

Writ l i struction
Write all instruction writes 16 bits data after the instruction into all memory

registers, whose contents are the same. The address column of this instruction is
useless. After completing inputting instructions and data, CS must be kept low
potential
in

Figure 4-2-7 Write all timing

Write disable instruction
 Write disable instruction forbids any write action, protects the data from being
modified unexpectedly. After the data is written, this instruction can be issued to
ensure the safety of the data. Its timing diagram is shown in Figure 4-2-8

 101

Figure 4-2-8 Write disable

The instruction to erase register contents (Erase)
 When erasing e contents of ster, this instruction, which erases
the register contents of designated addresses, may be issued. Af instruction has
been issued, it is necessary to judge whether this instructio ted, which
is of the same mann r as write in perating, wit s as
shown in Figure 4-2-9.

th a memory regi
ter this

n has been execu
h timing diagrame struction in o

Figure 4-2-9 Erasing ster con

(Erase All instructio AL

After this instru on is iss , all the contents of registers change to high
potential. The same thing occurs with write instructions in operating mode. With the
timing diagram as shown in Figure 4-2-10. Generally written, the
ontents of the registers may be erased first, and the write action may be carried out.

regi tents

n) R
cti ued

, before data is
c

 102

Figure 4-2-10 Erase all timing

4.3 8254 timing/counting chip

It is a sim m od co t t software. However, the accuracy is not
high. The timi sp d i ffected by operating s peripheral hardware,
unable to achieve the accuracy of “within one 1 the software timing
program is executed, the execution of other programs is interrupted. Moreover, it
consumes the time for the microprocesso process. Consequently, the hardware

 more important to achieving real-time execution efficiency and

can be programmed, is widely used in

 used to achieve a count length of 32 bits. Figure 4-3-1 is
the f diagram of
8254.

ple eth to un ime with
ng ee s a ystems and

ms”. When

r to
counter appears to be
peripheral execution.

8254 is the timing/counting chip that
design and experiments of ISA interface, with maximum operating frequency of 8
MHz. The modified 8254 are 10MHz, can still be used in experiment of PCI interface.
Generally there are speedier timer/count chips available for use. This chip has a
read-back function, which can lock information such as count timer value or status in
any case to facilitate reading. Each 8254 has 3 sets of independent counters, the count
length is 16 bits, the highest count frequency is 8MHz, 2 sets of counters can be
connected in a series to be

unction block diagram of 8254 timer interface, while 4-3-2 is the pin

 103

Figure 4-3-1 8254-function block diagrams

Figure 4-3-2 8254-pin diagram

Like 8255A, the use of 8254 chips needs 4 I/O addresses, w

s

hich are selected by

RD , WR RD , WRCS, , A0 and A1 pins of 8254. , Pins are I/O read/write control

CS signals, chip selection signal is connected to PLXPCI9052 chip, so I/O address

assigned by 8254 is A40h~A403h of IO BANK0. A0 and A1 pins are connected to

low base address line A0 and A1, used to select any of the four I/O addresses in 8254.

 104

The 3 co the remaining

O addresses are used for 8254 control ports (A403h), like the control port of 8255A,

254 control ports so plan the working modes of the

coun

ounter pins

ncy

unters of 8254 each use an I/O address (A400h~A402h), and

I/

control bits are written into 8

ters. Each set of counter of 8254 has 3 pins: clock input end (CLK), GATE

control input end (GATE), and signal output end (out), with the functions of each pin

described as follows:

Table 4-3-1 C

CLK
8 MHz The input end of base clock for

timing; the maximum clock freque

allowed by 8254 is 8 MHz.

GATE its function is determined by the working

Used to control the start and close of counter,

modes set by 8254 control ports.

OUT

The output end of counter, which can be

connected to CLK input ends of other

counters to achieve a counting length.

825

A0,

4 chip has 24 pins, including bi-directional data bus D0~D7, control lines A1,

WR , CS anRD , d 3 sets of counter pins CLK[2:0], GATE[2:0], OUT[2:0], the

func

select 82

actions:

tion of each pin is shown in table 4-3-2 below. Because address lines are used to

54 internal counters and control the register, table 4-3-3 below describes its

 105

Table 4-3-2 Pin functions

Pin Definition Input/output

D7~D0 Bi-directional data bus Bi-directional

2~CLK0 Counter timing input
Unidirectional

input

2~OUT0 Counter output
Unidirectional

output

2~GATE0 Counter gate input
Unidirectional

input

CS Chip selection
input

Unidirectional

 Read control
Unidirectional

RD
input

WR Write control
Unidirectional

input

A2 A1 Address line
Unidirectional

input

Vcc power (+5V) ------

GND Earth wire ------

Table 4-

3-3 counter selection

A0 A1 Selection

0 0 Counter 0

0 1 Counter 1

1 0 Counter 2

1 1 Control bit register

8254-control field

r will not enter the usable status

befo modes of

the c

When 8254 is started initially, its internal counter working modes, count value,

and output signals are in a undefined status, the counte

re a proper control bit is written into the control port and the working

ounter and count values are planned. In the summaries of the above tables and

 106

figures,

Table 4-

the basic read and write modes of 8254 are described as shown in table 4-3-4.

3-4 8254-control fields

CS RD WR A1 A0 Function

0

0

1

1

0

0

0

0

0

1

Date write counter 0

Date write counter 1

0

0

1

1

0

0

1

1

0

1

Date write counter 2

Date write control register

0 0 1 0 0 Read counter 0

0 0 1 0

1

1

0

Read counter 1

Read counter 2 0 0 1

0

1

0

0

×

1

1

×

1

1

×

×

1

×

×

No action

No action

No action

 er, with 8254 counter controlling a certain

st signals to make data processing easier. Under mode

0, th

rsely; if GATE

=low, then current counting is paused. The counter continues to count until

n rises to high.

 the terminal of counting, OUT signal

8254 working mode

 8254 counters can be planned into 6 working modes via control bits. The

following is the description of these 6 working modes.

Mode 0— (Interrupt on Terminal Count) ◎

Mode 0 is mainly used for event count

amount. If the preset amount is 500, first set the counter to mode 0, load count value

500, CLK signal will count accordingly, the count value, subtracting 1 each time, until

the count value is subtracted to 0. The “OUT” output end sends out a signal, which

can be taken as Interrupt reque

e counter actions are:

1. When it is set to mode 0, the OUT output signal of counter is low

2. GATE signal is used to control the counting actions of counter. When

GATE=high, the counter counts backwards properly; conve

GATE signal agai

3. After new count values are loaded into the counter, the counter begins to act,

now GATE signal must be high, and count value automatically subtracts 1 on

the decreasing edges of CLK signal. At

 107

will be outputted high and the current counting is stopped. Unless new count

values are loaded or new working mode is set, the OUT signal will maintain

high and the count values will continue to be 0.

4. Again, when a new count value is loaded during counting, the counter will

count from the new count value until the end of counting. If a 16 bits count

value is loaded, the following two events may take place: first when writing

ading new count value, the counting work may

continue.

can be planned. The GATE

nd is taken as a trigger signal, when the GATE signal is triggered, a pulse wave

ime width will be generated, which is called a one shot signal.

The

1. After mode 1 is set, the OUT signal of the counter will be outputted to high.

he count value and on the rising edge of GATE signal, the user

 the old

ones.

has the retriggerable function. If during counting (that is, OUT

of counting. This retriggerable function will make the pulse wave width

high byte count values, the current counting is terminated; then when writing

low byte count value or lo

◎Mode 1—Hardware Retriggerable One-Shot output

Mode 1 is to take the counter as a one-shot generator that

input e

signal that can plan t

pulse wave width of this one shot signal is jointly determined by the count value

of 8254 counter and pulse wave frequency of CLK input end. Under mode 1, the

counter actions are:

2. After loading t

adjusts the OUT signal to low and the counter begins to count backwards.

When the counter stops counting backwards, OUT signal will again rise to

high.

3. One shot signals can be repeatedly generated; if after the end of counting,

GATE signal is again triggered, another shot signal will be generated in the

same order as in item 2, with pulse wave width being the same as

4. This mode

signal is low), there is another trigger signal of GATE rising edge, the

counter will start to count backwards from the original count value until the

end

of one-shot signal become longer.

5. If a new count value is loaded during the process of counting, the original

pulse wave width may not be affected. The counter will count from the

 108

loaded count value when the next GATE signal was triggered.

◎Mode 2—Rate Generator

When it is set to mode 2, the counter may divide input pulse waves from CLK

with N, and can often be used as interrupt signal generators of real-time pulse waves.

The value of N here is determined by the count valued loaded, but the value should

not be 1. During each counting cycle, OUT signal is low. Except for one short CLK

cycle, during the rest of the time, the OUT signal is high. Under mode 2, the counter

actions are:

1. After it is set to mode 2, OUT signal will maintain high. The counter will

begin to count backward when count value is loaded.

2. When GATE = high, the counter can count backwards; conversely, if GATE=

low, the current counting is stopped and forces OUT signal to be outputted

high.

3. During the process of counting (that is, GATE is high, and after count value

is loaded), OUT signal is maintained at H. Till the time when the counter

counts backward to 1, OUT output is low, then to 0 (that is the end of

counting). Now OUT signal will again rise to high. If after the end of

counting, GATE signal remains high, the counter will again begin to count

from the original count value, and repeats in cycles until the counter changes

to another working mode, or a new count value is loaded, or the GATE signal

comes to high.

4. If a new count value is loaded during the process of counting, the current

counting cycle may not be affected. It will count from the newly loaded

count value till the next counting cycle.

◎Mode 3-- Square Wave generator mode (Square Wave Mode)

 Except for different output of OUT signals, the counter action of mode three is

similar to that of mode 2. When operating under this mode, the counter, after dividing

the signal frequency from the CLK input end with N, outputs a square wave whose

duty cycle is about 50% from the output end. That is, the square pulse wave whereby

high and low account for half of the time respectively. When N is even, the square

wave is half of the time occupied by high and low multiplies cycle time of the CLK

 109

pulse wave. When N is odd, then the time taken by high is-- (N+1) / 2 multiplies cycle

time of CLK pulse w

time of CLK pulse wave, while the time taken by low is (N－1) / 2 multiplies cycle

ave. In other words, if N is odd, then the high of the OUT signal

will

 output is low, and counts to 0 again. After lasting a

period of one CLK cycle, it again rises to high, which is the control signal.

To send out a new strobe control signal, a new count value may be loaded

upon the end of counting.

4. If a new count value is loaded during the process of counting, the counter

will continue to count from this new count value until the end of counting. If

a 16 bit count value is loaded, the following 2 events may take place: first,

when the high byte count value is written, the current counting is stopped;

then when writing low byte count value, the counting work may continue

from the count value loaded.

◎Mode 5--Hardware Triggered Strobe signal output (Hardware Triggered

Strobe)

Like mode 4, this mode also takes counter as the generator of strobe control signal.

However, mode 5 takes the rising edge of GATE signal as the trigger signal of strobe

control. Under mode 5, the actions of the counter are:

1. After it is set to this mode, the OUT signal will be outputted high.

2. After the count value is loaded, the counter will not count backwards, it will

have one more CLK time then the low.

◎Mode 4-- Software triggered strobe control signal output (Software Triggered

Strobe)

This working mode is to take the counter as strobe control signal generator

triggered by software. Under mode four, the actions of counter are:

1. After it is set to this mode, OUT signal will be outputted high.

2. GATE signal can control the actions of counter. When GATE is high, the

counter can count properly. When GATE is low, the counter stops counting.

However, GATE signal may not affect output to OUT.

3. After the count value is loaded (now the GATE signal is high, output of

OUTPUT signal should be low), the counter starts to count backwards. At the

end of counting, OUT

 110

not begin to count before the trigger signal of GATE is on a rising edge. At

the end of counting, OUT is low, and will rise to high after lasting for a

rk may not be affected. Only when the next GATE signal is again

he new count value.

Read

ters, then read count value with common
coun

his command can not only read the count value of the counter, but also read the
status of the counter. This command is also written into the control port by means of a
control bit, which is described as follows:

period of a CLK cycle.

3. If before the end of counting, GATE signal is again triggered (rising edge),

the counter will count from the original count value until the end of counting,

namely the counter now has the function to be triggered again.

4. If a new count value is loaded during the process of counting, the current

counting wo

triggered, the counter will count from t

 the count value of 8254

It is usually desirable to read the present count value of 8254 without interfering

with the counting work of 8254. Generally speaking, there are 3 methods to read 8254

count values, which are described as follows:

◎ Common read command
Read count value with common control port command. The shortcomings of this
method is that it is unable to read the count value that is being counted, to read the
right count values, the counter must stop working.

◎ The locking command of counter
In the control bit of 8254, there is the command of counter locking. This command
can lock the count value of designated coun

ters. Like control bits, this command must be written into the control port of
8254 in the following formats:

SCI and SCO are used to select 3 counters, D4, D5 must be 0, while D0~D3 is
any value; usually we set them to be 0. After this command is written into the
control port, the count value of selected counter will be locked in the latch circuit
inside 8254, and be kept until it is read. After the count value in the latch circuit
is read, data in the latch circuit will change with the count value.

◎ Read-back command
T

 111

1. CNT0~CNT2 are used to designate counters, that is, when either of

CNT0~CNT2 is set to 1, one counter is designated. For instance, when

CNT0=1, this read-back command is only valid for counter 0.

2. When COUNT=0, lock the count value of the selected counter for reading,

this command has the same function as the above-mentioned counter locking

command.

3. When STATUS=0, lock the selected counter status data, then the status data

of the counter can be read.

 As with initial value setting of 8254, when power is turned on, 8254 remains in
an undefined status, the output of various counters, count values and operating modes
are not defined. To use 8254 to make it act properly, control field data needed must be
written into registers, the unused counters need not be set.

D7, D6 (SC1, SC0)

ol field, are used to select any of the
ree counters or read back instruction. To select counter 0, SC1 and SC0 in control

field must be set to 0; to select counter 1, then SC[1:0] =01. Similarly to select
1.

D5, D4 (RW1, RW0)

The two bits D5, D4 are the high/low bytes that set read/write into various
counters, or locking instructions of the counter; the counter is 16-bit register, which is
divided into high bytes and low bytes. If high byte (D15~D8) is selected, then low
byte (D7~D0) is cleared to be 0; conversely, if low byte (D7~D0) is selected, then
high byte (D15~D8) is cleared to be 0. If high and low bytes are selected at the same
time, the low byte action will be done first and the high byte actions second when
reading or writing data. When RW[1:0] =00, it is counter locking instruction.

D3~D1 (M2~M0)
 The value of this bit determines the operating modes of various 8254 counters.
The operating modes of various counters that can be set include six types.

D0 (BCD)

r value to be hexadecimal or decimal. When
0=0, the count value written is hexadecimal. In this case, the maximum initial value

of counter can be FFFFH; when D0=1, the count value written is decimal, and now

D7 and D6, the two highest bits in contr
th

counter 2, SC[1:0] =10. It is read back instruction when SC[1:0]=1

This bit is used to set write counte
D

 112

the maximum initial value of counter can be 9999. As for which scale to use, it may
epend on the actual situations: if the count value exceeds 9999, hexadecimal code d

can be used.

 113

Article 3 PCI interface experiment software hardware

basic setting
Leaper electronic company manufactures PCI interface experiment cards used in

this book. The use of PCI_9052 chip of US PLX company as its core, together with
8254 timer/counter, 16V8(PLD), memory 93C46 and 74 series logic switches enable
this interface card to have the functions of basic I/O cards. This interface card is
designed without hardware interrupt but with many IO so that it can replace the old
ISA interface experiment textbook.

With the current trend of Legacy-Free, ISA/EISA interface cards are about to fall
into disuse, and the R&D of interface circuit is sure to move toward more advanced
interfaces. However, since more advanced PCI interfaces are based on 32 bit, 33 MHz

xtbook must be important in the
areas related with future interface design. This article will describe in brief the

re and hardware setting of this
xperiment board (the hardware portion is divided into 3 parts: assembly language,

Debug Mode, and Visual C++), then describe the setting and operating methods of the
3 types of program languages.

PCI_32 bits interfaces, this type of experiment te

experiment board used, and describe the softwa
e

 114

Chapter 5 PCI_LAB/IO software setting and description

anufactured by Leaper electronic
ompany, the hardware portion of which is divided into two major parts: PCI_IO

interface card and PCI_LAB, which are connected by a 68-pin cable. PCI_IO needs to
be connected to a PCI slot, while PCI_LAB is the experiment board for this practice,
used to observe the experiment result. This chapter will describe its hardware building
and drive program setting, while the software setting and operation will be described
in the next chapter.

5.1 PCI experiment board hardware building

This chapter will describe the installation of the PCI experiment board step by

step. First, PCI-IO interface card must be installed in the PC. Figure 5-1-1 shows how
the PCI-IO interface card to be used. The IO chip used is PLX 9052 chip. While

r motherboard chassis interface
lot, containing AGP interface, PCI interface and ISA interface. Generally speaking,

the AGP interface slot on the motherboard chassis is brown, PCI interface slot is white,
s the sketch of PCI slot for this

terface card, any of the PCI slots can be used to plug this interface in. Never plug
into different types of slots to avoid damage to the motherboard chassis slot, and lock
out the screws on the rear board to prevent the interface card from coming off. Figure
5-1-4 is the connection diagram of PCI-IO interface card and PCI-LAB experiment
board, 2 devices are connected using 68-pin connecting wire; the end of which is wide
at the top and narrow at the bottom, and not easy to reverse plugs. With the above
steps taken, software settings can be made.

The change of modules on PCI-LAB and PCI-LAB can be made on this
ifications, the power supply of the

omputer must be shut off, then can the changes of module and PCI-LAB be made,
which is the safest changing method. However, both this experiment board and

CI-LAB or modules can be made
y cutting off the power supply on the PCI-LAB, and power indicator LED is below
CI-LAB power switch. To make changes, please make sure that the power supply

PCI_LAB/IO is the PCI I/O practice board m
c

Figure 5-1-2 shows the sketch of common compute
s

and ISA interface slot is black. Figure 5-1-3 show
in

experiment platform; usually, according to PCI spec
c

interface board have protection circuit, changes of P
b
P
has been cut off, otherwise software errors may occur to the PCI-LAB or PCI-IP or
there may be risks of hardware being burned.

 115

Figure 5-1-1 Leaper PCI-IO experiment board

Figure 5-1-2 Interface slot sketch

 116

Figure 5-1-3 Installing PCI-IO diagram

Figure 5-1-4 Connecting PCI-LAB experiment board

5.2 PCI-IO drive program setting

This experiment board is PCI-IO and PCI interface board, to install it into the PC,
the drive program must be installed. Currently, the most commonly seen operating
system is Windows 98/ME and Windows 2000/XP, this section will describe the

 117

process of loading the drive program in two parts:
The computer operating system for installing this experiment is Windows 98,

with drive program settings as follows: after the computer is started, the system will
search new devices (Custon(OEM) PCI 9050/9052 Board)as shown in Figure 5-2-1.
When you are unable to see the Add New Hardware Wizard window, you can go to
the control panel to select Add New hardware. If this hardware can not be detected,
please shut off the computer and check whether the PCI-IO interface is plugged
securely in the PCI slot, or change the slot of PCI-IO interface card, move PCI-IO
interface card to another empty PCI slot, then start the computer to set the drive
program. Click Next in Figure 5-2-1, then the window is shown as Figure 5-2-2, click
the item suggested to be used, and click Next, then the window in Figure 5-2-3 will
appear. Click the designated position and browse…\Win32\Driver\Wdm in the drive
program, click Next, then the window shown in Figure 5-2-4 appears, indicating the
drive program setting of PCI-IO interface board on Win 98 system has been
completed.

The setting of the drive program installed in Windows 2000 operating system

ws: when installing PCI-IO
terface in computer system and after the computer is started, window shown in

Figure 5-2-5 will be displayed, informing ou that a new device has been detected
ew Add Hardware Wizard”

window shown in Figure 5-2-6 will be displayed. Like the drive program loading
methods under Win98 system. Select recommended options in Figure 5-2-7 window,
and select “Designated Position” in Figure 5-2-8 window, browse
“…\Win32\Driver\Wdm” in the drive program disk in Figure 5-2-9, while Figure
5-2-10 is the window that the installation of drive program has been completed.

environment for this experiment module is as follo
in

y
(Custon(OEM) PCI 9050/9052 Board), meanwhile “N

 118

Figure 5-2-1 Win98 drive program setting step one

Figure 5-2-2 Win98 drive program setting step two

 119

Figure 5-2-3 Win98 drive program setting step three

Figure 5-2-4 Win98 drive program setting step four

Figure 5-2-5 Win2k drive program setting step one

Figure 5-2-6 Win2k drive program setting step two

 120

Figure 5-2-7 Win2k drive program setting step three

Figure 5-2-8 Win2k drive program setting step four

Figure m setting step five 5-2-9 Win2k drive progra

 121

Figure 5-2-10 Win2k drive program setting step six

Note: After installing the drive program, the computer must be restarted. After
restarting the computer, the read should confirm under Win98 operating system

ynamic linking document in WINDOWS\SYSTEM
nd WINDOWS\SYSTEM32 folder and confirm under Win2k system whether there

is PLXAPI.DLL dynamic linking document in WINNT\SYSTEM and
WINNT\SYSTEM32 folder. Lack of this document will cause VC/C++ program to be
unable to execute the program and output the results on PCI-IO interface card and
PCI-LAB. In this case, the reader himself can copy this file into the above position
from the disk attached with this drive program.

whether there is PLXAPI.DLL d
a

 122

5.3 IO address of PCI-IO interface card

This PCI-IO interface card, after load the drive program, can restart the system.
After the system is restarted, you can observe the IO base position of this interface
card, because this interface card and experiment board both use IO port method.
Debug mode and Assembly programs can be written only after obtaining the IO
address of this interface card, so this part of the information is very important. Also,
this section is divided into two parts: Win98 and Win2k, describing how to observe
the IO address of this PCI-IO interface card.

To observe the IO port of this interface card in Win98 operating system
environment, by Start\Setting\Console\system or clicking “My computer” in the

 Figure 5-3-1 appears; by clicking sub-page device
dministrator in the window, a other devices can be found. After clicking this device,

 click sub-page resource in the window,
wind

w shown in Figure 5-3-4 appears. Like the steps in Win98, select
Devi

desktop, window shown in
a
window shown in Figure 5-3-2 appears ,and

ow shown in Figure 5-3-3 will appear; in which the input/output scope shown
ranges from 1000h~10FFh, 1488h~148Bh and 1880h~18FFh. These 3 groups output
scope listed are the IO ports of this interface.

To observe the IO port of this interface card in Win2k operating system
environment, by Start\Setting\Console\system or clicking “My computer” in the
desktop, windo

ce administrator Other devices as shown in Figure 5-3-5, 5-3-6 and 5-3-7 in
sequence, and I/O scope between C000h~C07Fh, C400h~C403h and C800h~C8FFh
may be found in sub-page Resource. The three groups of output scopes listed are the
IO port of this interface card, the address of IO scope from 00h to FFh is the IO port
addressed used by this experiment board.

 123

Figure 5-3-1 IO address read one of PCI-IO (Win98)

Figure 5-3-2 IO address read two of PCI-IO (Win98)

 124

Figure 5-3-3 IO address read three of PCI-IO (Win98)

Figure 5-3-4 IO address read one of PCI-IO (Win2k)

 125

Figure 5-3-5 IO address read two of PCI-IO (Win2k)

Figure 5-3-6 IO address read three of PCI-IO (Win2k)

 126

Figure 5-3-7 IO address read four of PCI-IO (Win2k)

5.4 Configuration cache

As with the interface card PCI-IO of this experiment, software PLXMON of
PLX Company can be used to configure read/write action of cache. This book does
not provide this software, only fetches its cache values for the reader’s references.
Figure 5-4-1 is PCI configuration register. And Figure 5-4-2 is local configuration
register. Readers are specially cautioned not to change the internal values inside the
configuration cache willfully, otherwise it may cause the computer system or interface
card to be unable to act properly. However, we will not describe this in detail.

 127

Figure 5-4-1 PCI configuration cache (PCI-IO interface card)

ure 5-4-2 Local configuration register (PCI-IO interface card) Fig
Description:
(00h)Vendor ID = 10B5 h = 0001 00 b PLX Technology

2h)Device ID = 9050 h = 1001 0000 0101 0000 b 9050/9052 OEM board

(06
(08
(09
(0C
(0E d not be set
(0Dh)Header Type = 00 h = 0000 0000 b Single function device
(0Fh)BIST = 00 h = 0000 0000 b disable BIST
(10h)Base Address 0 = E500 0000 h

= 1110 0101 0000 0000 0000 0000 0000 0000 b Memory Base

00 1011 0101
(0
(04h)Command = 0003 h = 0000 0000 0000 0011 b with Memory and IO space

h)Status = 0280 h = 0000 0010 0100 0000 b with Fast Back-to-Back ability
h)Revision = 02 h = 0000 0010 b Revision No of vendor product
h)Class Code = 000000 h All non-VGA device before class code definition
h)Cache Line = 08 h 32 bytes(8 dword)cache lines
h)Latency = 00 h PCI Target device nee

 128

(14h)Base Address 1 = 0000 B001 h
= 0000 0000 0000 0000 1011 0000 0000 0001 b IO Base

(18h)Base Address 2 = 0000 A801 h
= 0000 1010 1000 0000 0001 b IO Base

(1Ch)Base Address 3 = 0000 A401 h
= 0000 1010 0100 0000 0001 b IO Base

(20h)Base Address 4 = 0000 h
= 0000 b Memory Base

(24h)Base Address 5 = E480 0000 h
= 1110 0100 1000 0000 b Memory Base

(28h)Card Bus CIS = 0000 h undefined
(2Ch)Sub Vendor ID = 10B5 h PLX Technology
(2Eh)Sub System ID = 9050 h 9050/9052 Chip
(30h)Expansion Rom = 0000 0000 h no definition
(34h)Next Capability = 00 h without new functions
(3Ch)Interrupt = 00 h No hardware interrupt(engineering board)
(3Dh)Interrupt Pin = 00 h No correspondence(engineering board)
(3Eh)Min Latency = 00 h time slic
(3Fh)Max Latency = 00 h Priority level request

5.5 Use PCI-IO in Debug mode

To use PCI-IO interface cards in Debug mode, no additional setting is required,
as long as the basic hardware settings are in the above 4 sections, Debug mode
program can be written. The process to open Debug mode is: click Start\execute, as is
shown in Figure 5-5-1. Click Yes after entering Debug, the window of Debug mode
will appear, as is shown in Figure 5-5-2; the program can be written in the window.
Debug mode instructions are discussed in chapter four.

e request

Figure 5-5-1 Open Debug mode

 129

Figure 5-5-2 Debug mode working window

5.6 MASM assembly language setting

MASM is the X86 assembly language designed by Microsoft, which is shortened
from Macro Assembly; the editions that can be used for PCI-IO interface cards
include: MASM 6.11, MASM 6.14, MASM 6.15, etc. Form the disk attached with
this book, assembly language compiler folder, or downloading MASM compiler
online, they can be used by unzipping or copying into a fixed folder.

This folder is put in BIN folder in C disk, the assembly language can be
ompiled by using Notebook; the storage format can be .txt file, if the file name of

this
“C:
ass led. Figure 5-6-1 shows MASM folder.
Using masm C:\testasm\test.txt instruction, “test.obj” will be generated in the folder.
“.obj” is an Object file, namely me uage file. “link C:\testasm\test.txt”

eeds to be used to produce a “test.exe” execute file. Usually, ”test.obj” and ”test.exe”
file can be generated by using “ml C:\testasm\test” File.

c
this program is C:\testasm\test.txt, then it should be in Testasm folder; to assembly

 language, use “Start”, “Program”, “MS-DOS mode”, MS-DOS mode displays
\WINDOWS>”, key in “cd\bin”, after changing to MASM working folder,
embly language can be started to be assemb

chanical lang
n

 130

Figure 5-6-1 MASM folders

5.7 Visual C/C++ standard original setting

Visual C/C++ program language is the C/C++ program language issued by
Microsoft, there are the following basic setting for using this program language to
write programs and using PCI-IO interface card, and notebook can be used to edit in
programming, or to write during the process of compiling programs. First copy
Include and Win32folder into Drive program folder in drive program disk, then
proceed to set.

The environment setting used in this compiling program is as follows, first a new
“Projects” must be opened, as is shown in Figure 5-7-1, and define it as test here. This
Project is in C:\TEST folder, and select Win32 Console Application, following the
windows in Figures 5-7-2 and 5-7-3; file window will appear, as shown in Figure
5-7-4. Figure 5-7-5 is adding the required program edit file; Figure 5-7-6 is adding
PlxInit.c to Source File. Figure 5-7-7 adds PlxApi.Lib to Test File, and sets

CI_CODE and LITTLE_ENDIAN in the setting of Project. Figure 5-7-8 and 5-7-9
show adding Include File and Library file sub-page Directories in Option window
in Tool respectively. You can star our own VC/C++ program after
ompleting the above settings.

P
to

t to compile y
c

Figure 5-7-1 Open new Projects

 131

Figure 5-7-2 Select empty Project

Figure 5-7-3 Results after selecting

 132

Figure 5-7-4 File window of Project

Figure 5-7-5 Add the program file (.c file) compiled

 133

Figure 5-7-6 Add PlxInit.c file

Figure 5-7-7 Add PlxApi.lib, PCI_CODE and LITTLE_ENDIAN setting

 134

Figure 5-7-8 Designating INCLUDE file

Figure 5-7-9 Designating Library file

This chapter only describes the setting of the PCI interface card, which mainly

uses PLX-SDK original files to set. The next chapter is the simplified setting methods
after sorting.

 135

5.8 Visual C/C++ 6.0 initial environment setting STEP by STEP

PCI_IO interface card Visual C/C++ 6.0 initial environment setting STEP by STEP
PCI_IO interface card Visual C/C++ 6.0 initial environment setting STEP by STEP
1) From Start Program sets Microsoft Visual C++ 6.0 Microsoft Visual C++ 6.0

open Visual C++ 6.0
2) To open and complete Visual C++ 6.0 from File New, the window has to be

opened then can complete Visual C++ 6.0. It is necessary to build a PROJECT to
compile the program, FIGURE as shown in Figure 5-8-1 appears.

Figure 5-8-1

3) Win32 Console Application using the mouse in the window as shown in Figure

5-8-1 to return it to blue as shown in Figure 5-8-2.

 136

Figure 5-8-2

4) Project name (its name) and Location (its storage location) in the window may be

changed, as shown in Figure 5-8-3. This example places the file whose Project
name is TESTPCI in the location of C:\TEST\TESTPCI. Then finally click OK
button using the mouse.

Figure 5-8-3

 137

5) After clicking OK pushbutton, the window shown in Figure 5-8-4 appears. Click
An empty project, and click Finish button using the mouse.

Figure 5-8-4

6) nt
description such as Empty console application and No files will be created or
added to the project. In case of ation, please close the PROJECT

o
end this window. Following the above steps, the Test folder will appear in the hard
disk, in which there will be a PROJECT folder of all TESTPCI built.

New Project Information window as shown in Figure 5-8-5 appears, with conte

 different inform
built previously, and rebuild a new PROJECT again, click OK with the mouse t

 138

Figure 5-8-5

) Build and complete new PROJECT, start to set the program environment. Shown
i

ilding and completing new project, click TESTPCI Files, the
cross pattern in the left will be unfolded, displaying the content shown in Figure
5-8-8, then it can be learned that TESTPCI Files consists of three folders: Source
Files, Header Files, and Resource Files.

7

n Figure 5-8-6 is the content displayed in the sub-window on the right of the main
window after bu

 139

Figure 5-8-6

Figure 5-8-7

 140

) Click Source Files to return it blue, as shown in Figure 5-8-9, then the window

 File New, click C++ Source File to
return it to blue, as shown in Figure 5-8-11. Fill in the name of this file in the box

Figure 5-8-8

8
shown in Figure 5-8-10 will appear from

below the file, and fill in PCI as example.

 141

Figure 5-8-9

Figure 5-8-10

 142

Figure 5-8-11

9) After clicking OK, PCI.CPP sample program logic file will be generated in C++

Source File folder, unfold C++ Source File folder, the results shown in Figure
5-8-12 will appear.

 143

Figure 5-8-12

10) Move the mouse cursor onto C++ Source File folder. After clicking mouse right

button and selecting Add Files to Folder, window shown in Figure 5-8-13 appears.
Look for PlxInit.c and add this file by selecting OK, with the result shown in
Figure 5-8-14.

Figure 5-8-13

 144

Figure 5-8-14

11) Click TESTPCI to return it to blue, click mouse right button and after clicking

Add Files to Folder, select Library Files(.lib)in file types , as is shown in Figure
5-8-15. Look for PlxApi.lib and click OK to add it to PROJECT, with the result
shown in Figure 5-8-16.

 145

Figure 5-8-15

Figure 5-8-16

 146

12) Open the Window as shown in Figure 5-8-17 from Project Settings. Pay
attention to set the whole TESTPCI PROJECT here. After clicking C/C++, the
result is shown in Figure 5-8-18. Enter PCI_CODE and LITTLE_ENDIAN in
Preprocessor definitions, as is shown in Figure 5-8-19, click OK to complete its
setting. Here, attention should be paid to the cases of the characters entered.

Figure 5-8-17

Figure 5-8-18

 147

Figure 5-8-19

13) Open the wi oo

Directories, a hown in Figure 3-8-21, select In Show
directories for e mo under Directories, click

se ey o shown i and the status shown in
Figure 3-8-22 will be displayed, and click the “…” Pushbutton on its right to
look for the HEADER FILES as shown in Figure 3-8-24. The result is shown in
Figure 3-8-25. Add the “.h” document corresponding to the PLX chip of this
device here.

ndow as shown in Figure 3-8-20 form T ls Options, select
nd its result is s clude Files in
, and move th use cursor to the box

mou left k n it, as is n Figure 3-8-22, click

 148

Figure 5-8-20

Figure 5-8-21

 149

Figure 5-8-22

Figure 5-8-23

 150

Figure 5-8-24

Figure 5-8-25

14) Add folder which contains PlxInit.h in the same sequence as step 13, as is shown

in Figure 5-8-26.

 151

Figure 5-8-26

15) Select Library Files in Show directories for, add it to the folder where PlxApi.lib

as in step 13, as shown in Figure 5-8-27, then click OK to complete the setting.

Figure 5-8-27

16) Click PCI.cpp using the mouse, and you can proceed to write the program code.

 152

Chapter 6 Program language description

From what is described in chapter five, IO port address of PCI-IO card can be

read. The reader records this address in table 6-0 below, in which reference IO address
is the IO address used in the test in this book. The reader must compile the programs
using the setting of the computer host machine. Described below are the instructions
needed by Debug Mode, Masm, and vc/c++.

Table 6-0 PCI-IO interface card IO address reference values and readers experiment
value record

Input/output
scope

Reference values
in this book

Scope
Reader’s practice value

(self-record)
Lowest IO scope A400~A4FF _00~_FF
Second lowest IO

scope
A888~A88B __8~__B

Highest IO scope AC80~ACFF _80~_FF

6.1 Debug mode instructions

As is shown in Figure 6-1-1 below is the Debug mode instructions for the
readers’ references.

 153

Table 6-1-1 Debug Mode commands
Command Use Format

A Assemble A [address]
C Compare C range address
D Dump (Dump memory) D [address] or D[range]
E Enter Memory E address [list]
F Fill memory block F range list
G GO (execute) G [= add exec][[addr]..]
H Hexadecimal addition/subtraction H Value1 Value2
I Input from port I port address
L Load file L [address]
L Load sector L address drive sector n
M Move memory block M range address
N Name file for Load and Write N file spec [filespec]
O Output byte to port O port address byte
Q Quit to DOS Q
R Display and or change Register/flags R [register]
S Search list or string S range list
T Trace T [=address][value]
U Unassembled U [address]

W Write file
W [address](Write length to center

of CX)
W Write sector W address drive sector n

6.2 MASM description

Generally speaking, register of 80X86 series CPU has the following types:
common register: AX, BX, CX, DX; point register: IP, SP, BP, SI, DI; segment
register: CS, DS, ES, SS; flag register: flag etc. While a float-point register (R7~R0)
and a 16 bits status register are added to 80486 portion, these are roughly commonly
seen registers.

Common register: AX (Accumulator store the result of operation), BX (base
registration), CX (counter), DX (date), 32 bits are four registers: EAX, EBX, ECX,
EDX. While AX, BX, CX, DX can be further divided into high low bytes. Figure
6-2-1 below shows its common bit format sketch.

 154

EAX

AX
AL AH

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 6-2-1 Common register format

 Pointer register is divided into IP(Instruction Pointer), program pointer, SP, ESP
(Stack Pointer), stack pointer, BP, EBP(Stack Pointer), stack pointer, SI, ESI (Index
Pointer), index pointer and DI, EDI (index pointer) index pointer. The size of a
segment is 64KB, the address pointed by segment register is the lowest address, and
the four registers do not affect each other, which can fully or partly point to the same
memory address. The Flag register mainly displays CPU status and operation results.

Figure 6-2-2 below shows the bit definition of flag register; while for the rest of
register figures, please refer to books related with combined languages.

Figure 6-2-2 Bit definition of flag register

6.3 MASM instruction

Table 6-3-1 below shows the instructions of MASM assembly language; the
reader himself can refer to books related to MASM for more detailed instruction
explanations.

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
OF DF IF TF SF ZF AF PF CF

Reserved
Overrun Direction Interrupt

Single

step
Symbol

Zero

value

Reserved Auxiliary

carry
Reserved

Odd/even
Reserved

Carry

 155

Table 6-3-1 MASM instructions
Instruction

group
Detailed
division

Instruction

Data
transmission

mov, movsx, movzx, xchg

Pile address push, pop, pushf, popf, pusha, popa, pushfd, popfd
Address
access

lea, lds, les, lss, lfs, lgs

Form access Xlat

Data
transmission

Flag access lahf, sahf
Addition add, adc, inc

Subtraction sub, sbb, dec, neg
Multiply mul, imul
Divide div, idiv, cbw, cwq

Arithmetic
operation

BCD aaa, aas, aam, aad, daa, das
Logic

operation
and, or, xor, not

Bit test bt, btc, btr, bts, bsf, bsr
Flag setting Setxx

Bit
operation

Offset
rotation

shl, shr, sal, sar, ror, rol, rcl, rcr, shrd, shld

Jump jmp, jxx
Test compare cmp, test

Loop loop, loopxx
Auxiliary

program call
call, ret, retn, retf

Auxiliary
program enter

and leave
enter, leave

Flow
control

Interrupted
call

int, into, iret

String
processing

movs, scas, cmps, lods, stos

Each string processing instruction has changes such ad

xxs,ssxb,ssxw,ssxd

String
processing

Stub code rep, repe, repz, repne, repnz
I/O Data I/O in, out

 156

String I/O ins, insb, insw, insd, outs, outsb, outsw, outsd
Direct mode lock, wait, esc, hit

Memory
scope

Bound

Address nap
Protection

mode
lar, lsl, lgdt, sgdt, lidt, sidt, lldt, sldt, ltr, str, lmsw, smsw,
arpl, clts, verr, verw

80386 exclusive control instruction
Control

instruction
cr0, cr2, cr3

Error
detecting

instruction
dr0, dr1, dr2, dr3, dr6, dr7

CPU control

Test
instructions

tr6, tr7

6.4 PCI-IOin C/C++ program language instructions

API needed to be used by this PCI-IO interface card are:
DeviceSelected
PlxChipTypeGet
PlxPciDeviceOpen
PlxPciDeviceClose
PlxPciConfigRegisterRead
PlxIoPortWrite
PlxIoPortRead

For API of other functions, please refer to PLX SDK Programmer's Reference

Manual document in the folder of drive program in the disk attached with this book.
The above API can use this interface card in a simple way.
 As with the actions of this interface card, select the interface card device with
DeviceSelected and PlxChipTypeGet, use PlxPciDeviceOpen to open the interface
card, then use PlxPciConfigRegisterRead” to read IO base address. Then IO data can
be outputted with PlxIoPortWrite or inputted with PlxIoPortRead. In the end, the
program executes the action of closing this interface card and completes this action
with PlxPciDeviceClose, which may not be used. However, each VC/C++ must have
a start and return-to-zero action. About the samples of each program, the user can
observe its use, now we will proceed to briefly describe the use of PlxPciDeviceOpen,

 157

PlxPciDeviceClose, PlxIoPortWrite, PlxIoPortRead and PlxPciConfigRegisterRead.

◎PlxPciDeviceOpen:

Format:

RETURN_CODE

PlxPciDeviceOpen(

DEVICE_LOCATION *pDevice,

HANDLE *pDrvHandle

);

Sample:

HANDLE hDevice;

RETURN_CODE rc;

DEVICE_LOCATION Device;

rc = PlxPciDeviceOpen(

&Device,

&hDevice

);

if (rc != ApiSuccess)

{

// ERROR – Unable to open a PLX device

}

◎PlxPciDeviceClose:

Format:

RETURN_CODE

PlxPciDeviceClose(

HANDLE hDevice

);

Sample:

 158

HANDLE hDevice;

RETURN_CODE rc;

// Release the open PLX device

rc = PlxPciDeviceClose(

hDevice

);

if (rc != ApiSuccess)

{

// ERROR – Unable to release PLX device

}

◎ PlxIoPortWrite(IO port write))):

Format:

RETURN_CODE

PlxIoPortWrite(

HANDLE hDevice,

U32 address,

ACCESS_TYPE bits,

VOID *pValue

);

Sample:

U32 port;

U32 RegValue;

HANDLE hDevice;

RETURN_CODE rc;

port = PlxPciConfigRegisterRead(

Device.bus,

Device.slot,

CFG_BAR1,

&rc

);

 159

port = port & ~(1 << 0);

RegValue = 0x00300024;

rc = PlxIoPortWrite(

hDevice,

port + 0x34, // Write to local register 34h

BitSize32,

&RegValue

);

if (rc != ApiSuccess)

{

// ERROR - Unable to read I/O port

}

◎ PlxIoPortRead(IO port read):

Format:

RETURN_CODE

PlxIoPortRead(

HANDLE hDevice,

U32 address,

ACCESS_TYPE bits,

VOID *pOutData

);

Sample:

U32 port;

U32 RegValue;

HANDLE hDevice;

RETURN_CODE rc;

port = PlxPciConfigRegisterRead(

Device.bus,

Device.slot,

CFG_BAR1,

&rc

 160

);

port = port & ~(1 << 0);

rc = PlxIoPortRead(

hDevice,

port + 0x34, // Read local register 34h

BitSize32,

&RegValue

);

if (rc != ApiSuccess)

{

// ERROR - Unable to read I/O port

}

◎ PlxPciConfigRegisterRead read:

“Subsystem Device/Vendor ID”

Format

U32

PlxPciConfigRegisterRead(

U32 bus,

U32 slot,

U32 registerNumber,

RETURN_CODE *pReturnCode

);

sample:

U8 bus;

U8 slot;

U32 RegValue;

RETURN_CODE rc;

DEVICE_LOCATION Device;

RegValue =

PlxPciConfigRegisterRead(

Device.BusNumber,

 161

Device.SlotNumber,

CFG_SUB_VENDOR_ID,

&rc

);

6.5 IO definition port of LEAP PCI-IO/LAB
 IO definition port of LEAP PCI-IO/LAB is shown in Figure 6-5-1 below. LEAP
PCI-IO card shares four IO-BANKs, each of which has forty-eight IO outputs, and
eight IO outputs form an IO-PORT. As is shown in table 4-0, IO-BANK is built-in
IO-BANK (the user is unable to change it), which is used by built-in 8254.
IO-BANK1~IO-BANK4 can be used by the reader himself. The IO address of
IO-BANK1 IO-PORT0 is A410h, corresponding to I00~I07 of IO-BANK1. The IO
address of IO-BANK2 IO-PORT0 is A420h, corresponding to IO0~IO7 of
IO-BANK2, while the IO address of built-in 8254 is A400~A403 on IO-BANK0.
Table 6-5-1 IO definition port of PCI-IO/LAB

7-segment code LED display ＆LCD display
＆ 4×4 keyboard ＆ buzzer ＆ A/D＆D/A

Dot matrix LED display
& Logic state input key

 Unit

I/O MAP IO_BANK_1 IO_BANK_2

I/O0-IO7
Data
BUS

LCD display
D/A unit
A/D unit

LCD_DB0-LCD_DB7
DA_DB0-DA_DB7
AD_DB0-AD_DB7

OUT
7 segment

LED
LED a-LED g ＆

LED p I/O8-IO15
IN

Dot matrix LED
LED_COL1

∣
LED-COL16

(OUT)

I/O16-IO19 OUT 4×4 keyboard KEY_IN0-KEY_IN3

I/O20-IO23 IN
4×4 keyboard KEY_SEL0-

KEY_SEL3

OUT
I/O24-IO31

IN
Logic state input key

SW_1-SW_8

 162

I/O32 OUT Dot matrix LED ROW_SEL0

I/O33 OUT

7 segment
LED

LCD unit
/D/A unit
A/D unit

IO33-32=0 enable
LED7_EN

IO33-32=01 enable
LCD_EN

IO33-32=10 enable
/DA_CS

IO33-32=11 enable
/DA_CS

Dot matrix LED ROW_SEL1

I/O34 OUT Dot matrix LED ROW_SEL2

I/O35 OUT

Unit read
write

control

IO35-34=10 enable
/IO_RD

IO35-34=01 enable
/IO_WR

Dot matrix LED ROW_SEL3

I/O36 OUT
LCD

display
LCD_RS

I/O37 OUT D/A unit DA_A/B
I/O38 OUT Buzzer BUZZER_CTRL
I/O39 OUT Fan FAN_ON

I/O40 OUT
7 segment
code LED

Common cathode SEL0
Step motor control

STEP_DR1

I/O41 OUT
7 segment
code LED

Common cathode SEL1
Step motor control

STEP_DR2

I/O42 OUT
7 segment

LED
Common cathode SEL2

Step motor control
STEP_DR3

I/O43 OUT
Step motor control

STEP_DR4
I/O44 IN SENSOR control
I/O45 IN
I/O46 IN Fan unit FAN_OUTPUT
I/O47 IN A/D unit /AD_INTR

IO-BANK4 IO-PORT5 is A444, corresponding to IO32~IO39 of IO-BANK4.

Another IO PORT is the ninth IO PORT of each IO-BANK, which defines the output
or input mode of each IO-PORT in this IO-BANK, and is described in the programs.

 163

IO IO Port IO BANK Sample
value IO BANK Sample

value IO (16 bits) IO (24 bits) (32 bits)

00
01
02
03
04
05
06
07

1 A420 hA410 h

08
09
10
11
12
13
14
15

2 A411 h A421 h

16
17
18
19
20
21
22
23

3 A412 h A422 h

24
25
26
27
28
29
30
31

4 A413 h A423 h

32
33
34
35
36
37
38
39

5 A414 h A424 h

40
41
42
43
44
45
46
47

6

1

A415 h

2

A425 h

 164

6.6 Visual C/C++ simple program compiling description
 For programs that use PCI-IO interface card to compile Visual C\C++, the
following program shows that the user can go straight to execute its result as long as
he changes the position of the program compiling zone with program code.
VC/C++ program code:

// start of the program//
#include <stdio.h>
#include "PlxApi.h"
#include "PciRegs.h"
#include "PlxInit.h" // Need to add different Include File to individual program//

int main() //main program//
{
 U8 Revision;
 U16 j;
 U32 ChipType;
 U32 LocalAddress=0;
 S8 DeviceSelected;
 HANDLE hDevice;
 RETURN_CODE rc;
 DEVICE_LOCATION Device;
 IOP_SPACE IopSpace;
 U32 port,RegValue;
 U32 buffer[64]; // define the parameters, add by yourself
upon lack of parameters //

 DeviceSelected = SelectDevice(&Device); // Select interface card//
 rc = PlxPciDeviceOpen(&Device, &hDevice); //PCI-IO card open action //

 port=PlxPciConfigRegisterRead(
 Device.BusNumber,
 Device.SlotNumber,
 CFG_BAR3,
 &rc); // read base address//

 buffer[0] = 0x00000000;

 165

 port = port & ~(1<<0); // return-to-zero and reset action//

 PlxChipTypeGet(hDevice, &ChipType, &Revision); //IO Port setting //
 IopSpace = IopSpace0;
 IopSpace = IopSpace1;

< program writing zone > add program code here

}
 return 1;
}

// end of the program//

 166

Article 4 Basic PCI-LAB experiment examples
 Basic I/O experiment conducts related interface test and experiment using the
most basic and simplest element of interface and electronics. This article is divided
into two parts: chapter seven and chapter eight. The pushbutton method is the most
basic input elements in the chapter, while the derived keyboard is a little difficult, and
LED is the principal basic output element. This chapter will focus on LED light and
seven-segment display screen, while LED dot matrix and LED display will be
described in detail in Chapter 8---advanced output experiment. Each chapter or
section will first briefly introduce the characteristics of elements used for basic I/O
experiment, and then describe the experiment and its application. Complete sample
programs can be found in the sample program folder in the attached disk.

 167

Chapter 7 Simple I/O experiment

LED is the most commonly seen electronic elements for display, which can

usually be used to display binary data. Whereby LED ON stands for 1, OFF stands for
0. When different LEDs are arranged together in different manners, more information
will be displayed, for instance, when seven LEDs are arranged in the manner shown
in Figure 7-0-1, they can display Arabic numerals symbols. This method is widely
used in electronic watches, electronic instrument, acoustic, which is commonly
known as seven-segment display.

Usually, commercially available seven-segment displays have many
specifications, which can mainly be classified as:

1. Distinguished by the overall dimension of LED display.
2. Distinguished by the colors emitted by the display, usually red, yellow,

green, etc (blue LED is rarely seem). In addition, there are LED displays
consisting of several different kinds of colors.

3. Distinguished by the display unit number contained in the display.
4. Distinguished by the connection methods of LED, which is divided into 2

types: common anode and common cathode.
In addition to specifications such as dimension, colors, brightness, common

anode and common cathode are more important in selecting LED display. This
characteristic affects the design of the LED display drive circuit. Figure 7-0-2 and
7-0-3 show the connection methods of common anode and common cathode LED
displays: the anodes of all LEDs in the seven-segment display are connected together
called the Common Anode. The cathode of all LEDs in the seven-segment display,
connected together is called Common Cathode. Figure 7-0-4 shows the corresponding
seven-segment LED display and Pins for PCI-LAB experiment plate, the format of bit
is ABCDEFGH.

 168

Figure 7-0-1 Seven-Segment LED display

Figure 7-0-2 Common anode

Figure 7-0-3 Common cathode

 169

Figure 7-0-4 Seven-segment LED display and bits correspondence

To facilitate identification, English letter codes a~g are used to represent the

seven LED. At the lower right corner of the seven-segment LED, there is another
LED point, which is used to display decimal points, and is expressed as symbol dp.
Due to the different Pins for seven-segment LED display manufactured by different
manufacturers, confirming with triple use ammeter is the most reliable method. For
digital ammeter confirming methods, if there is a specialized LED test file, it can
directly use this test file, namely judge the positions relationships between its Pins and
various displays form whether the LED is shining, and find out common contacts and
its polarity. If there is not specialized an LED test file, it can be confirmed using
common diode testing methods. As with pointer ammeter identifying method, transfer
the ammeter to x1 files specially for testing resistance, connect the black testing rod to
LED anode, and the red testing rod to LED cathode, then LED display Pins can be
determined by whether the LED is shining.

Pushbutton switch is the most widely used signal input element, and the switches
take the form of a mechanical switch, electronic switch and photoelectric switch, etc.
These experiments use the relatively simple mechanical switch. Generally speaking,
mechanical switch has two basic types: the first type is normally a closed switch,
which is generally in a closed-circuit (short-circuited) status; it will not become an
open circuit before the switch is pressed down. The other type is normally an open
switch, which is usually in an open-circuited status and becomes a closed circuit when
the switch is pressed down. Since the switch has two statuses: short-circuit and open
circuit, it is easy to match with a digital circuit. When the switch is an open circuit
(namely the switch is not pressed down), we can obtain the potential of H from the
input end by means of a 4.7K lifting resistance connected to ＋5V. Conversely,
when the switch is connected to the grounding end due to closing (namely the switch
is pressed down), then the potential of L will be obtained at the input/output end.
Common pushbutton switches can be used as the simplest logic input device.

7.1 Seven-segment display experiment (DEBUG Mode)

Experiment purpose: use DEBUG Mode to enable the seven-segment display to show
numbers 0~9.
Experiment module: single or six seven-segment LED displays (as is shown in Figure
7-1-1)

Ω

 170

 171

Figure 7-1-1 6 seven-segment LED display module

Part list:
digital IC:

one 74LS138
 one 74LS240
 one 74LS244
 NPN-BJT:
 six 2SC945
 Analog elements:
 eight R 330Ω
 six R 1KΩ
 three C 0.1 uF
 Seven-segment LED display:

2 three sets seven-segment LED display

Circuit diagram: (as is shown in Figure 7-1-2)

Figure 7-1-2 seven-segment LED display circuit diagram

 Principle of experiment: 6 NPN-BJT control the display of 6 seven-segment
LED display respectively, whose display bits are controlled by 74LS244 end. The
selected is common cathode seven-segment LED display, 74LS138 and 74LS240 are
responsible for enabling 3 bit interpretation controls of IO42~IO40 to select 7
segment display.

Seven-segment LED display selection

IO [42：40] = 000b=0h The first seven-segment LED display
IO [42：40] = 001b=1h The second seven-segment LED display
IO [42：40] = 010b=2h The third seven-segment LED display
IO [42：40] = 011b=3h The fourth seven-segment LED display
IO [42：40] = 100b=4h The fifth seven-segment LED display
IO [42：40] = 101b=5h The sixth seven-segment LED display

The numbers displayed：

IO [15：8] = 00111111b=3Fh display 0
IO [15：8] = 00000110b=06h display 1
IO [15：8] = 01011011b=5Bh display 2
IO [15：8] = 01001111b=4Fh display 3

 172

IO [15：8] = 01100110b=66h display 4
IO [15：8] = 01101101b=6Dh display 5
IO [15：8] = 01111101b=7Dh display 6
IO [15：8] = 00000111b=07h display 7
IO [15：8] = 01111111b=7Fh display 8
IO [15：8] = 01101111b=6Fh display 9
IO [15：8] = 01110111b=77h display A
IO [15：8] = 01111100b=7Ch display B
IO [15：8] = 01011000b=58h display C
IO [15：8] = 01011110b=5Eh display D
IO [15：8] = 01111001b=79h display E
IO [15：8] = 01110001b=71h display F

Experiment procedures:

 (1)Read PCI-IO interface card IO base address
 (2)This function is in IO_BANK 1, so base address adds 10
 (3)IO IO[42：40] is in the sixth byte, IO [15：8] is in the second byte
 (4)Open Debug Mode to write directly
 (5)Use instruction “-O (address) (data)” output
 (6)First set all IO to be output port , then transmit data.

Example:

Suppose that base IO address is A400h, which is the first IO byte of IO_BANK 1,

then the IO address of IO [42：40] is A415h, IO address of IO [15：8] is A411h,
displaying 0~9 numbers as follows:

-O A418 00 \all IO_BANK 1 are output ports
-O A415 00 \ the first seven-segment LED display
-O A411 3F \ display 0
-O A411 06 \ display 1
-O A411 5B \ display 2
-O A411 4F \ display 3
-O A411 66 \ display 4
-O A411 6D \ display 5
-O A411 7D \ display 6
-O A411 07 \ display 7
-O A411 7F \ display 8
-O A411 6F \display 9

 173

When the experiment is in output port mode, the outputting of input setting -o

A418 00 can be omitted.

7.2 Seven-segment display experiment (MASM)

Experiment code:

 Continue 7.1 seven-segment display experiment (Debug Mode), use MASA to
enable single seven-segment LED display to display numbers 0~9.
MASM program code:

. MODEL SMALL

.386

. STACK

. DATA

IO_PORT0 EQU 0A411H; io_bank_1 io-8~15

IO_PORT1 EQU 0A415H; io_bank_1 io-40~47

OUT_DISABLED EQU 0A408H; io_bank_0

IO_PORT0D EQU 0A400H; io_bank_0

IO_PORT1D EQU 0A404H; io_bank_0

. CODE

BEGIN:

 PUSH DS

 MOV AX, 0

 PUSH AX

 MOV AX,@DATA

 MOV DS,AX

DISP_BEGIN:

 MOV DX,IO_PORT1 ; The first seven-segment code on

 MOV AX,0000H ;0000_0000

 OUT DX,AX

 174

 CALL COUNT_7SEG

 CALL WAIT_1S

 MOV AH,0BH ;press any key to end the program

 INT 21H ;interrupt vector 21h

 CMP AL,0FFH

 JNZ DISP_BEGIN

 JMP EXIT ;end of the program

COUNT_7SEG: ; display 0~9 numbers

 MOV DX,IO_PORT0 ; display O

 MOV AX,003FH ;0011_1111

 OUT DX,AX

 CALL WAIT_1S

 MOV DX,IO_PORT0 ; display 1

 MOV AX,0006H ;0000_0110

 OUT DX,AX

 CALL WAIT_1S

 MOV DX,IO_PORT0 ; display 2

 MOV AX,005BH ;0101_1011

 OUT DX,AX

 CALL WAIT_1S

 MOV DX,IO_PORT0 ;display 3

 MOV AX,004FH ;0100_1111

 OUT DX,AX

 CALL WAIT_1S

 MOV DX,IO_PORT0 ; display 4

 MOV AX,0066H ;0110_0110

 OUT DX,AX

 175

 CALL WAIT_1S

 MOV DX,IO_PORT0 ; display 5

 MOV AX,006DH ;0110_1101

 OUT DX,AX

 CALL WAIT_1S

 MOV DX,IO_PORT0 ; display 6

 MOV AX,007DH ;0111_1101

 OUT DX,AX

 CALL WAIT_1S

 MOV DX,IO_PORT0 ; display 7

 MOV AX,0007H ;0000_0111

 OUT DX,AX

 CALL WAIT_1S

 MOV DX,IO_PORT0 ; display 8

 MOV AX,007FH ;0111_1111

 OUT DX,AX

 CALL WAIT_1S

 MOV DX,IO_PORT0 ;display 9

 MOV AX,006FH ;0110_1111

 OUT DX,AX

 CALL WAIT_1S

 RET

WAIT_1S:

 MOV BX,0007FH

WAIT_LOOP:

 176

 CALL WAIT_1MS

 DEC BX

 CMP BX,0000H

 JBE WAIT_1S_EXIT

 LOOP WAIT_LOOP

WAIT_1S_EXIT:

 RET

WAIT_1MS:

 MOV CX,03FFFH

WAIT_LOOP1:

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 LOOP WAIT_LOOP1

 RET

EXIT:

 MOV DX,OUT_DISABLED ;clear all settings

 MOV AX,0000H

 OUT DX,AX

 MOV DX,IO_PORT0D

 MOV EAX,00000000H

 OUT DX,EAX

 MOV DX,IO_PORT1D

 MOV AX,0000H

 OUT DX,AX

 MOV AH,4CH

 INT 21H

 END BEGIN

Due to the high executing speed of assembly languages, if it is found that the

numbers are displayed too fast, you yourself can add more waiting time
(WAIT_1S).

 177

7.3 Seven-segment display experiment (VC/C++)

Experiment purpose: Continue 7.1 seven-segment display experiment (Debug

Mode),use VC/C++ to enable sing seven-segment LED display to
display numbers 0~9.

VC/C++ program code

// Set all IO BANK 1 to be output //

 RegValue = 0x0000;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x18,

 BitSize32,

 &RegValue);

// Set the seven-segment LED on the extreme right //

 RegValue = 0x00000000;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

// display”0”//

 RegValue = 0x00003F00;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x10,

 BitSize32,

 &RegValue);

/ display”1”//

 RegValue = 0x00000600;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x10,

 BitSize32,

 &RegValue);

// display”2”//

 178

 RegValue = 0x00005B00;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x10,

 BitSize32,

 &RegValue);

//display ”3”//

 RegValue = 0x00004F00;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x10,

 BitSize32,

 &RegValue);

//display ”4”//

 RegValue = 0x00006600;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x10,

 BitSize32,

 &RegValue);

//display ”5”//

 RegValue = 0x00006D00;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x10,

 BitSize32,

 &RegValue);

//display ”6”//

 RegValue = 0x00007D00;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x10,

 BitSize32,

 &RegValue);

//display ”7”//

 RegValue = 0x00000700;

 rc=PlxIoPortWrite(

 hDevice,

 179

 port + 0x10,

 BitSize32,

 &RegValue);

//display ”8”//

 RegValue = 0x00007F00;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x10,

 BitSize32,

 &RegValue);

//display ”9”//

 RegValue = 0x00006F00;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x10,

 BitSize32,

 &RegValue);

7.4 Drive multi-sets seven-segment LED display experiment (MASM):

 Experiment purpose: Enable multi-sets seven-segment LED display to display
0~9 numbers by writing MASA program.

MASM program codes

.MODEL SMALL

.386

.STACK

.DATA

IO_PORT0 EQU 0A411H ; io_bank_1 io-8~15

IO_PORT1 EQU 0A415H ; io_bank_1 io-40~47

OUT_DISABLED EQU 0A408H ; io_bank_0

IO_PORT0D EQU 0A400H ; io_bank_0

IO_PORT1D EQU 0A404H ; io_bank_0

 180

.CODE

BEGIN:

 PUSH DS

 MOV AX,0

 PUSH AX

 MOV AX,@DATA

 MOV DS,AX

DISP_BEGIN:

 MOV DX,IO_PORT1 ; the first seven-segment code on

 MOV AX,0000H ;0000_0000

 OUT DX,AX

 CALL COUNT_7SEG

 CALL WAIT_1S

 MOV DX,IO_PORT1 ; the second seven-segment code on

 MOV AX,0001H ;0000_0001

 OUT DX,AX

 CALL COUNT_7SEG

 CALL WAIT_1S

 MOV DX,IO_PORT1 ; the third seven-segment code on

 MOV AX,0002H ;0000_0010

 OUT DX,AX

 CALL COUNT_7SEG

 CALL WAIT_1S

 MOV DX,IO_PORT1 ; the fourth seven-segment code on

 MOV AX,0003H ;0000_0011

 OUT DX,AX

 CALL COUNT_7SEG

 CALL WAIT_1S

 MOV DX, IO_PORT1 ; the fifth 7-segment code on

 MOV AX, 0004H ;0000_0100

 181

 OUT DX, AX

 CALL COUNT_7SEG

 CALL WAIT_1S

 MOV DX,IO_PORT1 ; The sixth seven-segment code on

 MOV AX,0005H ;0000_0101

 OUT DX,AX

 CALL COUNT_7SEG

 CALL WAIT_1S

 MOV AH,0BH ;Press any key to end the program

 INT 21H ; Interrupt vector 21h

 CMP AL,0FFH

 JNZ DISP_BEGIN

 JMP EXIT ;end of the program

COUNT_7SEG: ;display 0~9 number

 MOV DX,IO_PORT0 ;display O

 MOV AX,003FH ;0011_1111

 OUT DX,AX

 CALL WAIT_1S

 MOV DX,IO_PORT0 ;display 1

 MOV AX,0006H ;0000_0110

 OUT DX,AX

 CALL WAIT_1S

 MOV DX,IO_PORT0 ;display 2

 MOV AX,005BH ;0101_1011

 OUT DX,AX

 CALL WAIT_1S

 MOV DX,IO_PORT0 display 3

 MOV AX,004FH ;0100_1111

 182

 OUT DX,AX

 CALL WAIT_1S

 MOV DX,IO_PORT0 ;display 4

 MOV AX,0066H ;0110_0110

 OUT DX,AX

 CALL WAIT_1S

 MOV DX,IO_PORT0 ;display 5

 MOV AX,006DH ;0110_1101

 OUT DX,AX

 CALL WAIT_1S

 MOV DX,IO_PORT0 ;display 6

 MOV AX,007DH ;0111_1101

 OUT DX,AX

 CALL WAIT_1S

 MOV DX,IO_PORT0 ;display 7

 MOV AX,0007H ;0000_0111

 OUT DX,AX

 CALL WAIT_1S

 MOV DX,IO_PORT0 display 8

 MOV AX,007FH ;0111_1111

 OUT DX,AX

 CALL WAIT_1S

 MOV DX,IO_PORT0 ;display 9

 MOV AX,006FH ;0110_1111

 OUT DX,AX

 CALL WAIT_1S

 RET

WAIT_1S:

 MOV BX,0007FH

WAIT_LOOP:

 183

 CALL WAIT_1MS

 DEC BX

 CMP BX,0000H

 JBE WAIT_1S_EXIT

 LOOP WAIT_LOOP

WAIT_1S_EXIT:

 RET

WAIT_1MS:

 MOV CX,03FFFH

WAIT_LOOP1:

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 LOOP WAIT_LOOP1

 RET

EXIT:

 MOV DX,OUT_DISABLED ;clear all settings

 MOV AX,0000H

 OUT DX,AX

 MOV DX,IO_PORT0D

 MOV EAX,00000000H

 OUT DX,EAX

 MOV DX,IO_PORT1D

 MOV AX,0000H

 OUT DX,AX

 MOV AH,4CH

 INT 21H

 END BEGIN

 184

7.5 Drive multi-sets seven-segment LED display experiment (VC/C++)

Experiment purpose: Write VC/C++ program to enable several group of
seven-segment LED displays to display 0~9 numbers.

VC/C++ program code

// Set the first seven-segment LED display on the right //

 RegValue = 0x00000000;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

// Set the second seven-segment LED display on the right //

 RegValue = 0x00000001;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

// Set the third seven-segment LED display on the right //

 RegValue = 0x00000002;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

// Set the fourth seven-segment LED display on the right//

 RegValue = 0x00000003;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

 185

 186

// Set the fifth seven-segment LED display on the right //

 RegValue = 0x00000004;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

// Set the sixth seven-segment LED display on the right //

 RegValue = 0x00000005;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

7-6 Buzzer experiment (Debug Mode & MASM)

 Experiment purpose: Let the buzzer emit a sound with Debug Mode and MASM.
Experiment module: As is shown in Figure 7-1-6 is the buzzer and drive circuit on
PCI-LAB.

Figure 7-6-1 experiment modules

Part list:

Buzzer:
one KSS_1206

NPN-BJT：
one 8050

Resistance:
one 10Ω
two 1kΩ

Principle of experiment: The starting output signal is low, drive this signal to high,

then to low, so that a sound can be emitted.

Circuit diagram： (as is shown in Figure 7-6-2)

Figure 7-6-2 Circuit diagram

Experiment procedures: (1) Read PCI-IO interface card IO base address.
 (2) This function is in IO_BANK 1, so base address adds one.
 (3) IO [38] is in the fifth byte.
 (4) Open Debug Mode to write directly.
 (5) Use instruction “-O (address) (data)” output.
 (6) First set IO used to be output port, then transmit data.

Example:

-o A418 00
-o A414 00
-o A414 40
-o A414 00

MASM program code

.MODEL SMALL

 187

.386

.STACK

.DATA

IO_PORT1 EQU 0A414H ; io_bank_1 io-32~39

OUT_DISABLED EQU 0A408H ; io_bank_0

IO_PORT0D EQU 0A400H ; io_bank_0

IO_PORT1D EQU 0A404H ; io_bank_0

.CODE

BEGIN:

 PUSH DS

 MOV AX,0

 PUSH AX

 MOV AX,@DATA

 MOV DS,AX

DISP_BEGIN:

 MOV DX,IO_PORT1

 MOV AX,00H

 OUT DX,AX

 CALL WAIT_1MS

 MOV DX,IO_PORT1

 MOV AX,40H

 OUT DX,AX

 CALL WAIT_1MS

 MOV AH,0BH press any key to end the program

 INT 21H

 CMP AL,0FFH

 JNZ DISP_BEGIN

 JMP EXIT end of the program

WAIT_1MS:

 188

 MOV CX,03FFFH

WAIT_LOOP1:

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 LOOP WAIT_LOOP1

 RET

EXIT:

 MOV DX,OUT_DISABLED ;clear all settings

 MOV AX,0000H

 OUT DX,AX

 MOV DX,IO_PORT0D

 MOV EAX,00000000H

 OUT DX,EAX

 MOV DX,IO_PORT1D

 MOV AX,0000H

 OUT DX,AX

 MOV AH,4CH

 INT 21H

 END BEGIN

7.7 Buzzer experiment (VC/C++)

Experiment purpose: Using VC/C++ to enable the buzzer to emit a sound.

VC/C++ program code

//low//

 RegValue = 0x0000;

 rc=PlxIoPortWrite(

 hDevice,

 189

 190

 port + 0x14,

 BitSize32,

 &RegValue);

//high//

 RegValue = 0x0040;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

//It is required to output low-high-low in sequence continuously to have sound//

7.8 Pushbutton switches input experiment (Debug Mode & MASM)

 Experiment purpose: Practising pressing pushbutton switch and output its result
with LED display.

Experiment module: as is shown in Figure 7-8-1 below.

Figure 7-8-1 Pushbutton switches module

Part list:

eight pushbutton switches
Resistance

one 10kΩ resistance network
logic IC：

one 74LS244
Capacitance:

one 0.1uF

Circuit diagram: as is shown in Figures 7-8-2 and 7-8-3 below.

Figure 7-8-2 Pushbutton input switch connection diagram

Figure 7-8-3 Data latch circuit

Principle of experiment: Read the data of IO port

SW_1 0000_0001 01h
SW_2 0000_0010 02h
SW_3 0000_0100 04h
SW_4 0000_1000 08h
SW_5 0001_0000 10h

 191

SW_6 0010_0000 20h
SW_7 0100_0000 40h
SW_8 1000_0000 80h

Experiment procedure: (1)Set IO port to output mode.
 (2)read the data of IO_BANK2 IO_PORT4

Sample:

-o A428 D0 Set to be output mode
-i A423
<display result>
-o A428 00

MASM program code:

.MODEL SMALL

.386

.STACK

.DATA

OUT_DISABLE EQU 0A418H

IO_PORT0 EQU 0A410H

IO_PORT1 EQU 0A414H

IO_PORT2 EQU 0A412H

IO_PORT3 EQU 0A413H

OUT_DISABLEA EQU 0A428H

IO_PORT0A EQU 0A420H

IO_PORT1A EQU 0A424H

IO_PORT2A EQU 0A423H

OUT_DISABLED EQU 0A408H

IO_PORT0D EQU 0A400H

IO_PORT1D EQU 0A404H

IO_PORT2D EQU 0A402H

TEST_UNIT DB 10H

MAT_ROW DB 01H

MAT_COL DB 00H

MAT_COUNT DB 00H

 192

TEMP DW 0H

TEMP_LOOP DW 0H

LCD_TEMP DW 0H

TEMP_LCD1 DW 0H

TEMP_LCD2 DD 0H

.CODE

BEGIN:

 PUSH DS

 MOV AX,0

 PUSH AX

 MOV AX,@DATA

 MOV DS,AX

PUSH_BOTTOM:

 MOV DX, OUT_DISABLEA ; Set I/O 16~31 to INPUT

 MOV AX, 00D0H

 OUT DX,AX

 MOV TEMP,0FFH

BUT_BEGIN:

 MOV DX,IO_PORT1A ; Set the F column of MATRIX TO to display

 MOV AX,000FH

 OUT DX,AX

 MOV DX,IO_PORT2A

TEST_LOOP:

 IN AX,DX ;Read back PUSH_BOTTON value

 XOR AH,AH

 MOV DX,IO_PORT0A ;Display PUSH_BOTTON in the bottom column of Matrix

 OUT DX,AX

 CALL WAIT_1MS

 CMP AX, 00FFH ; ended when all one.

 JZ PUSH_EXIT

 MOV AH, 0BH ; press any key to end the program

 193

 INT 21H

 CMP AL, 0FFH

 JNZ BUT_BEGIN

 JMP EXIT

PUSH_EXIT:

 CALL WAIT_3S ; PUSH_BOTTOM end of program

MAT_COLA : MATRIX COMMAND

 MOV DX, IO_PORT0A

 MOV EAX, 0000FFFFH

 OUT DX, EAX

 CALL WAIT_1S

 RET

MAT_ROWA:

 MOV DX, IO_PORT1A

 OUT DX, AX

 CALL WAIT_1S

 RET

MAT_COU:

 MOV DX, IO_PORT0A

 MOV EAX, 0000FFFFH

 OUT DX, EAX

MAT_A:

 MOV DX, IO_PORT1A

 MOV AL, MAT_COUNT

 OUT DX, AX

 CALL WAIT_1MS

 INC MAT_COUNT

 CMP MAT_COUNT, 10H

 JE MAT_AEXIT

 JMP MAT_A

MAT_AEXIT:

 RET

 JMP EXIT

WAIT_3S:

 MOV TEMP_LOOP, 07H

 194

WAIT_3S_LOOP:

 CALL WAIT_2S

 DEC TEMP_LOOP

 CMP TEMP_LOOP, 00H

 JBE WAIT_3S_EXIT

 JMP WAIT_3S_LOOP

WAIT_3S_EXIT:

 RET

WAIT_2S:

 CALL WAIT_1S

 CALL WAIT_1S

 CALL WAIT_1S

 CALL WAIT_1S

 CALL WAIT_1S

 CALL WAIT_1S

 RET

WAIT_1S:

 MOV BX, 0007FH

WAIT_LOOP:

 CALL WAIT_1MS

 DEC BX

 CMP BX, 0000H

 JBE WAIT_1S_EXIT

 LOOP WAIT_LOOP

WAIT_1S_EXIT:

 RET

WAIT_1MS:

 MOV CX, 03FFFH

WAIT_LOOP1:

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 195

 LOOP WAIT_LOOP1

 RET

WAIT_2MS:

 MOV CX, 07FFH

WAIT_LOOP2:

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 LOOP WAIT_LOOP2

 RET

EXIT:

 MOV DX, OUT_DISABLED ; clear all settings

 MOV AX, 0000H

 OUT DX, AX

 MOV DX, IO_PORT0D

 MOV EAX, 00000000H

 OUT DX, EAX

 MOV DX, IO_PORT1D

 MOV AX, 0000H

 OUT DX, AX

 MOV AH, 4CH

 INT 21H

 END BEGIN

7.9 Pushbutton switch input experiment (VC/C++)

Experiment purpose: Complete the section 7.8 experiment by means of VC/C++.

VC/C++ program code

//set IO needed to be input //
 RegValue = 0x00D0;

 196

 Arc=PlxIoPortWrite (
 hDevice, Port + 0x28,
 BitSize32,
 &RegValue);

//set 8 LED to return to 0//
 RegValue = 0x0000;
 rc=PlxIoPortWrite(
 hDevice,
 port + 0x20,
 BitSize32,
 &RegValue);

//Read input value//
 rc=PlxIoPortRead(
 hDevice,
 port + 0x23,
 BitSize32,
 &RegValue);

//output to LED//

rc=PlxIoPortWrite(
 hDevice,
 port + 0x20,
 BitSize32,
 &RegValue);

 197

Chapter 8 Motor and resistance heater

 Table 8-0-1 contains the comparison between the step motor and DC motor,
regarding the basic principles of step motor and DC motor. It can be found in relevant
literature related to motor mechanics, so we do not describe it in detail in this manual.

Table 8-0-1 Comparison between step motor and DC motor

 Step motor (open circuit control) DC motor (closed-circuit control)

Step angle Depends on the motor Vary with rotary coder and circuit

Maximum

speed

About 3000 rpm in case of 200 step

motor
6000 rpm

Start, stop

and

Repeat

speed

Variable, maximum repeating speed is

proportional to inertia, friction and the

ambient temperature of load. Resonance

frequency is not stable in cases of low

torque.

Variable, maximum repeating

speed is

Proportional to inertia, friction and

the ambient temperature of the

load. Resonance gains of the

system are limited.

Precision
Depends on the design of motor without

accumulated errors.
Depends on servo circuit.

Cost Open circuit control is cheaper. High prices

Still toque Large torque
Depends on the feedback circuit

method.

System

reliability
Depends on the life of bearing. Depends on the life of brush.

Load inertia Smaller inertia is better. Smaller inertia is better.

Single step

response
Prone to vibrate Less prone to vibrate

 198

 199

8.1 DC motor experiment (Debug Mode & MASM)
Experiment purpose: Testing the operating and stopping of DC fan.
Experiment module: Figure 8-1-1 below shows DC fan module for the experiment.

Figure 8-1-1 DC fan modules

Part list:

one DC fan
NPN-BJT：

one 8050
Capacitance:

one 1kΩ
one 10kΩ

Digital logic IC：
one 74LS244

Capacitance:
one 0.1uF

Circuit diagram: consisting the two Figures below: 8-1-2 and 8-1-3

 Figure 8-1-2 Fan switch circuit

Figure 8-1-3 DC fan moduleIO latch circuit

Principle of experiment: FAN_ON high, the fan works, FAN_ON low, the fan stops

working

Experiment procedures:

 (1) Read PCI-IO interface IO base address.
 (2) This function is in IO_BANK 1, so base address adds 1.
 (3) I [39] is the fifth byte.
 (4) Open Debug Mode to write directly
 (5) Use instruction “-O (address) (data)”
 (6) First set the IO used to output port, then transmit data.

Sample:

-o A414 80 1000_0000 The fan works
-o A414 00 0000_0000 The fan stops

MASM program code:

 200

.MODEL SMALL

.386

.STACK

. DATA

IO_PORT1 EQU 0A414H; io_bank_1 io-32~39

OUT_DISABLED EQU 0A408H; io_bank_0

IO_PORT0D EQU 0A400H; io_bank_0

IO_PORT1D EQU 0A404H; io_bank_0

.CODE

BEGIN:

 PUSH DS

 MOV AX,0

 PUSH AX

 MOV AX,@DATA

 MOV DS,AX

DISP_BEGIN:

 MOV DX,IO_PORT1 ;fan on

 MOV AX,80H ;1000_0000

 OUT DX,AX

 MOV AH,0BH ;Press any key to end the program

 INT 21H ;interrupt vector 21h

 CMP AL,0FFH

 JNZ DISP_BEGIN

 JMP EXIT ;end of the program

EXIT:

 MOV DX,OUT_DISABLED ;clear all settings

 MOV AX,0000H

 OUT DX,AX

 MOV DX,IO_PORT0D

 MOV EAX,00000000H

 201

 OUT DX,EAX

 MOV DX,IO_PORT1D

 MOV AX,0000H

 OUT DX,AX

 MOV AH,4CH

 INT 21H

 END BEGIN

8.2 DC motor experiment (VC/C++)

Experiment purpose: Write programs with VC/C++ to drive DC fan motor.

VC/C++ program code:

//turn on the fan//

 RegValue = 0x0080;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

//turn off the fan//

 RegValue = 0x0000;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

//set fan input//

 RegValue = 0x0000;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x18,

 BitSize32,

 &RegValue);

//read fan input//

 202

 rc=PlxIoPortRead(

 hDevice,

 port + 0x15,

 BitSize32,

 &RegValue);

8.3 Step motor experiment (Debug Mode)

Experiment purpose: Use Debug Mode to drive step motor.

Experiment module: Figure 8-3-1 below shows step motor module for the experiment.

Figure 8-3-1 step motor modules

Part list

a four phase step motor
Digital logic IC:

one 74LS244
Current drive IC:

one ULN2003

 203

Resistance:
 one 2.2kΩ
Capacitance:
 1 0.1uF

Circuit diagram: Figure 8-3-2and 8-3-3 are step motor drive circuit.
According to the excitation phase of different step motors, drive with 1-2-3-4 phase
respectively to achieve forward and reverse.

Figure 8-3-2 Step motor drive circuits 1

Figure 8-3-2 Step motor drive circuits 2

Principal of experiment: Output signal from A425h port

 IO40－IO43 are the first through the fourth phases of the step motor
respectively.

0001 the first phase of step motor
0010 the second phase of step motor
0100 the third phase of step motor
1000 the fourth phase of step motor

Example:

-O A425 01

 204

-O A425 02
-O A425 04
-O A425 08

8.4 Step motor experiment (MASM)

Experiment purpose: Write programs with MASA to make the step motor to forward
or reverse.
Forward:

.MODEL SMALL

.386

.STACK

.DATA

IO_PORT1 EQU 0A425H ; io_bank_2 io-40~47

OUT_DISABLED EQU 0A408H ; io_bank_0

IO_PORT0D EQU 0A400H ; io_bank_0

IO_PORT1D EQU 0A404H ; io_bank_0

.CODE

BEGIN:

 PUSH DS

 MOV AX,0

 PUSH AX

 MOV AX,@DATA

 MOV DS,AX

DISP_BEGIN:

 MOV DX,IO_PORT1 ;1

 MOV AX,01H ;0000_0001

 OUT DX,AX

 CALL WAIT_1S

 205

 CALL WAIT_1S

 MOV DX,IO_PORT1 ;4

 MOV AX,08H ;0000_1000

 OUT DX,AX

 CALL WAIT_1S

 CALL WAIT_1S

 MOV DX,IO_PORT1 ;3

 MOV AX,04H ;0000_0100

 OUT DX,AX

 CALL WAIT_1S

 CALL WAIT_1S

 MOV DX,IO_PORT1 ;2

 MOV AX,02H ;0000_0010

 OUT DX,AX

 CALL WAIT_1S

 CALL WAIT_1S

 MOV AH,0BH ;Press Any key to end the program

 INT 21H

 CMP AL,0FFH

 JNZ DISP_BEGIN

 JMP EXIT ;end of the program

WAIT_1S:

 MOV BX,0007FH

WAIT_LOOP:

 CALL WAIT_1MS

 DEC BX

 CMP BX,0000H

 JBE WAIT_1S_EXIT

 LOOP WAIT_LOOP

WAIT_1S_EXIT:

 RET

WAIT_1MS:

 MOV CX,03FFFH

 206

WAIT_LOOP1:

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 LOOP WAIT_LOOP1

 RET

EXIT:

 MOV DX,OUT_DISABLED ;clear all settings

 MOV AX,0000H

 OUT DX,AX

 MOV DX,IO_PORT0D

 MOV EAX,00000000H

 OUT DX,EAX

 MOV DX,IO_PORT1D

 MOV AX,0000H

 OUT DX,AX

 MOV AH,4CH

 INT 21H

 END BEGIN

Reverse:

.MODEL SMALL

.386

.STACK

.DATA

IO_PORT1 EQU 0A425H ; io_bank_2 io-40~47

OUT_DISABLED EQU 0A408H ; io_bank_0

IO_PORT0D EQU 0A400H ; io_bank_0

 207

IO_PORT1D EQU 0A404H ; io_bank_0

.CODE

BEGIN:

 PUSH DS

 MOV AX,0

 PUSH AX

 MOV AX,@DATA

 MOV DS,AX

DISP_BEGIN:

 MOV DX,IO_PORT1 ;1

 MOV AX,01H ;0000_0001

 OUT DX,AX

 CALL WAIT_1S

 MOV DX,IO_PORT1 ;2

 MOV AX,02H ;0000_0010

 OUT DX,AX

 CALL WAIT_1S

 MOV DX,IO_PORT1 ;3

 MOV AX,04H ;0000_0100

 OUT DX,AX

 CALL WAIT_1S

 MOV DX,IO_PORT1 ;4

 MOV AX,08H ;0000_1000

 OUT DX,AX

 CALL WAIT_1S

 MOV AH,0BH ;Press Any key to end the program

 INT 21H

 CMP AL,0FFH

 JNZ DISP_BEGIN

 JMP EXIT ;end of the program

 208

WAIT_1S:

 MOV BX,0007FH

WAIT_LOOP:

 CALL WAIT_1MS

 DEC BX

 CMP BX,0000H

 JBE WAIT_1S_EXIT

 LOOP WAIT_LOOP

WAIT_1S_EXIT:

 RET

WAIT_1MS:

 MOV CX,03FFFH

WAIT_LOOP1:

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 LOOP WAIT_LOOP1

 RET

EXIT:

 MOV DX,OUT_DISABLED ;clear all settings

 MOV AX,0000H

 OUT DX,AX

 MOV DX,IO_PORT0D

 MOV EAX,00000000H

 OUT DX,EAX

 MOV DX,IO_PORT1D

 MOV AX,0000H

 OUT DX,AX

 MOV AH,4CH

 INT 21H

 209

 END BEGIN

8.5 Step motor experiment (VC/C++)

Experiment purpose: Program with VC/C++ program languages to make the step
motor to forward or reverse.

Forward:

//Set all IO Port to be output//
 RegValue = 0x0000;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x11,

 BitSize32,

 &RegValue);

// Reverse action (engineering plate) //

 RegValue = 0x0001;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x25,

 BitSize32,

 &RegValue);

 RegValue = 0x0008;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x25,

 BitSize32,

 &RegValue);

 RegValue = 0x0004;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x25,

 BitSize32,

 &RegValue);

 RegValue = 0x0002;

 rc=PlxIoPortWrite(

 210

 hDevice,

 port + 0x25,

 BitSize32,

 &RegValue);

Reverse:

/Reverse action (engineering plate)//

 RegValue = 0x0001;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x25,

 BitSize32,

 &RegValue);

 RegValue = 0x0002;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x25,

 BitSize32,

 &RegValue);

 RegValue = 0x0004;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x25,

 BitSize32,

 &RegValue);

 RegValue = 0x0008;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x25,

 BitSize32,

 &RegValue);

8.6 Resistance heater experiment

Experiment purpose: enable resistance heater to heat

 211

 212

Note: please do not heat for more than 5 minutes or cooperate with DC fan to provide
coolant.

Experiment module: As is shown in Figure 8-6-1.

Figure 8-6-1 Resistance heaters

Part list:

Resistance:
 47Ω10W cement resistance (heater)
 three 1kΩ
NPN_BJT:
 two 8050

Circuit diagram:

Figure 8-6-2 Circuit Diagram

Principal of experiment: Provide current to resistance heater so that it can produce
heat energy.

Samples:

-O A415 10 Heater ON
-O A415 00 Heater OFF

MASM program code:

. MODEL SMALL

.386

. STACK

. DATA

OUT_DISABLE EQU 0A418H

IO_PORT1 EQU 0A415H

OUT_DISABLED EQU 0A408H

IO_PORT0D EQU 0A400H

IO_PORT1D EQU 0A404H

. CODE

BEGIN:

 PUSH DS

 213

 MOV AX, 0

 PUSH AX

 MOV AX, @DATA

 MOV DS, AX

DISP_BEGIN:

 MOV DX, OUT_DISABLE

 MOV AX, 0010H

 OUT DX, AX

 MOV DX, IO_PORT1 ; heater on

 MOV AX, 10H ; 0001_0000

 OUT DX, AX

 MOV AH, 0BH ; Press any key to end the program

 INT 21H

 CMP AL, 0FFH

 JNZ DISP_BEGIN

 JMP EXIT ; end of the program

EXIT:

 MOV DX, OUT_DISABLED ; clear all settings

 MOV AX, 0000H

 OUT DX, AX

 MOV DX, IO_PORT0D

 MOV EAX, 00000000H

 OUT DX, EAX

 MOV DX, IO_PORT1D

 MOV AX, 0000H

 OUT DX, AX

 MOV AH, 4CH

 INT 21H

 END BEGIN

VC/C++ program code:

//heating//

 214

 RegValue = 0x0010;

 arc=PlxIoPortWrite(

 hDevice,

 port + 0x15,

 BitSize32,

 &RegValue);

//no heating//

 RegValue = 0x0000;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x15,

 BitSize32,

 &RegValue);

8.7 Temperature sensor and DC motor upstream signal

The temperature sensor works with resistance heater in 8.6, and the values for
the temperature sensed must be converted into digital signals through A/D converter,
which is a little complicated. Figure 8-7-1 below shows its circuit diagram. DC motor
fan circuit diagram is shown in Figure 8-7-3 below. It can be seen that one set of
output line is FAN_OUTPUT signal, the reader can analyze the fan speed with this
part of signal.

The temperature sensing part uses LM335 as temperature sensing element, while
variable resistance mainly adjusts this element double bias voltage to improve its
accuracy, and amplifies output to AD converter circuit using LM324 current, the
unused OP AMP is pin-grounded as shown in Figure 8-7-2. When AD converter is
separately used, this module must be removed to avoid the interferences of this
circuit.

 215

Figure 8-7-1 Temperature sensing circuit

Figure 8-7-2 LM324 OP AMP

Figure 8-7-3 DC fan speed

 216

Chapter 9 Dot matrix, keyboard and LCD

Dot matrix, keyboard scan and LCD are more difficult experiment modules, dot

matrix is 16X16 red LED module, which is capable of carrying out different dot
matrix experiments such as 4X4、8X8 and 16X16. The keyboard input is the
commonly seen 4X4 scan input keyboard model, LCD module is a double row 16 bits
character LCD module. The following is the experiment of the three modules.

9.1 Dot matrix output experiment (Debug Mode & MASM)

Experiment purpose: Make the rows and columns of dot matrix shine respectively.

Experiment module: As is shown in 9-1-1 below.

Figure 9-1-1 16X16 dot matrix module

Circuit Diagram: Figure 9-1-2 and 9-1-3 are row selection circuits, 16 columns can be

selected from 4 bits. Figure 9-1-4 controls 16 rows with 2 sets of IO_PORT,
forming this experiment circuit.

 217

Figure 9-1-2 Column circuit diagram

Figure 9-1-3 Column circuit diagram

 218

Figure 9-1-4 Row circuit diagram

 219

Figure 9-1-5 Dot matrix connection diagram

Principle of experiment: Column data port IO_00~IO15 Bank_2

Row data port IO_32~IO_35 Bank_2

Experiment procedure: First open IO port to output mode.

 220

Define the row and column of output.
Output respectively and close IO port upon completion.

MASM Program code:

. MODEL SMALL

.386

. STACK

. DATA

OUT_DISABLE EQU 0A418H

IO_PORT0 EQU 0A410H

IO_PORT1 EQU 0A414H

IO_PORT2 EQU 0A412H

IO_PORT3 EQU 0A413H

OUT_DISABLEA EQU 0A428H

IO_PORT0A EQU 0A420H

IO_PORT1A EQU 0A424H

IO_PORT2A EQU 0A423H

OUT_DISABLED EQU 0A408H

IO_PORT0D EQU 0A400H

IO_PORT1D EQU 0A404H

IO_PORT2D EQU 0A402H

TEST_UNIT DB 10H

MAT_ROW DB 01H

MAT_COL DB 00H

MAT_COUNT DB 00H

TEMP DW 0H

TEMP_LOOP DW 0H

LCD_TEMP DW 0H

TEMP_LCD1 DW 0H

TEMP_LCD2 DD 0H

; **

. CODE

BEGIN:

 PUSH DS

 MOV AX, 0

 PUSH AX

 221

 MOV AX, @DATA

 MOV DS, AX

MARTIX: ; Matrix test program

 MOV DX, OUT_DISABLEA

 MOV AX,0010H ;Set I/O16~I/O19& I/O0~I/O7 to be high

impedance.

 OUT DX, AX

 CALL MAT_COU ; MATRIX scan all on

 CALL MAT_COU

 CALL MAT_COU

 CALL MAT_COU

 CALL MAT_COU

 CALL MAT_COU

 CALL MAT_COU

 CALL MAT_COU

 CALL MAT_COU

 MOV TEST_UNIT, 10H

 MOV EAX, 00000001H

MARTIX_A:

 MOV DX, IO_PORT0A ; Control COL display

 OUT DX, EAX

 CALL WAIT_1S

 PUSH EAX

ROW_LOOP:

 MOV AL, MAT_ROW

 MOV DX, IO_PORT1A

 OUT DX, AX

 CALL WAIT_1MS

 INC MAT_ROW

 CMP MAT_ROW, 10H

 JE MATRIX_B

 JMP ROW_LOOP

 222

MATRIX_B:

 POP EAX

 SHL EAX, 1

 DEC TEST_UNIT

 CMP TEST_UNIT, 0000H

 JBE MAT_EXIT

 JMP MATRIX_A

MAT_EXIT:

 MOV AL, MAT_COL

 CALL MAT_ROWA

 CALL MAT_COLA

 INC MAT_COL

 CMP MAT_COL, 10H

 JE MATRIX_END

 JMP MAT_EXIT

MATRIX_END: ;End of matrix display

 MOV DX, IO_PORT0A

 MOV EAX, 00000000H

 OUT DX, EAX

 MOV DX, IO_PORT1A

 MOV AX, 0000H

 OUT DX, AX

MAT_COLA: ;MATRIX COMMAND

 MOV DX, IO_PORT0A

 MOV EAX, 0000FFFFH

 OUT DX, EAX

 CALL WAIT_1S

 RET

MAT_ROWA:

 MOV DX, IO_PORT1A

 OUT DX, AX

 CALL WAIT_1S

 223

 RET

MAT_COU:

 MOV DX, IO_PORT0A

 MOV EAX, 0000FFFFH

 OUT DX, EAX

MAT_A:

 MOV DX, IO_PORT1A

 MOV AL, MAT_COUNT

 OUT DX, AX

 CALL WAIT_1MS

 INC MAT_COUNT

 CMP MAT_COUNT, 10H

 JE MAT_AEXIT

 JMP MAT_A

MAT_AEXIT:

 RET

 JMP EXIT

WAIT_3S:

 MOV TEMP_LOOP, 07H

WAIT_3S_LOOP:

 CALL WAIT_2S

 DEC TEMP_LOOP

 CMP TEMP_LOOP, 00H

 JBE WAIT_3S_EXIT

 JMP WAIT_3S_LOOP

WAIT_3S_EXIT:

 RET

WAIT_2S:

 CALL WAIT_1S

 CALL WAIT_1S

 CALL WAIT_1S

 CALL WAIT_1S

 CALL WAIT_1S

 CALL WAIT_1S

 RET

 224

WAIT_1S:

 MOV BX,0007FH

WAIT_LOOP:

 CALL WAIT_1MS

 DEC BX

 CMP BX,0000H

 JBE WAIT_1S_EXIT

 LOOP WAIT_LOOP

WAIT_1S_EXIT:

 RET

WAIT_1MS:

 MOV CX, 03FFFH

WAIT_LOOP1:

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 LOOP WAIT_LOOP1

 RET

WAIT_2MS:

 MOV CX, 07FFH

WAIT_LOOP2:

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 LOOP WAIT_LOOP2

 RET

EXIT:

 MOV DX, OUT_DISABLED ; clear all settings

 225

 MOV AX, 0000H

 OUT DX, AX

 MOV DX, IO_PORT0D

 MOV EAX, 00000000H

 OUT DX, EAX

 MOV DX, IO_PORT1D

 MOV AX, 0000H

 OUT DX, AX

 MOV AH, 4CH

 INT 21H

 END BEGIN

9.2 Dot matrix output experiment (VC/C++)

Experiment purpose: Drive 16X16 dot matrix with VC/C++

VC/C++ Program code:

//Set all IO Port to output

 RegValue = 0x0000;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x28,

 BitSize32,

 &RegValue);

//Select the first row

 RegValue = 0x0000;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x24,

 BitSize32,

 &RegValue);

//The eighth one on the left on

 RegValue = 0x00FF; //0000_0000_1111_1111

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x20,

 226

 BitSize32,

 &RegValue);

 //the eighth one on the right on

 RegValue = 0xFF00; //1111_1111_0000_0000

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x20,

 BitSize32,

 &RegValue);

//the eighth one on the left on

 RegValue = 0x00FF; //1111_1111

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x21, //Change output port

 BitSize32,

 &RegValue);

//All on

 RegValue = 0xFFFF; //1111_1111_1111_1111

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x20,

 BitSize32,

 &RegValue);

//Select the second row

 RegValue = 0x0001;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x24,

 BitSize32,

 &RegValue);

 //Select the third row

 RegValue = 0x0002;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x24,

 BitSize32,

 &RegValue);

//Select the fourth row

 227

 RegValue = 0x0003;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x24,

 BitSize32,

 &RegValue);

//Select the fifth row

 RegValue = 0x0004;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x24,

 BitSize32,

 &RegValue);

//Select the sixth row

 RegValue = 0x0005;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x24,

 BitSize32,

 &RegValue);

// Select the seventh row

 RegValue = 0x0006;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x24,

 BitSize32,

 &RegValue);

// Select the 8th row

 RegValue = 0x0007;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x24,

 BitSize32,

 &RegValue);

// Select the 9th row

 RegValue = 0x0008;

 rc=PlxIoPortWrite(

 hDevice,

 228

 port + 0x24,

 BitSize32,

 &RegValue);

//Select the 10th row

 RegValue = 0x0009;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x24,

 BitSize32,

 &RegValue);

//Select the 11th row

 RegValue = 0x000a;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x24,

 BitSize32,

 &RegValue);

//Select the 12th row

 RegValue = 0x000b;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x24,

 BitSize32,

 &RegValue);

//Select the 13th row

 RegValue = 0x000c;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x24,

 BitSize32,

 &RegValue);

//Select the 14th row

 RegValue = 0x000d;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x24,

 BitSize32,

 &RegValue);

 229

//Select the 15th row

 RegValue = 0x000e;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x24,

 BitSize32,

 &RegValue);

//Select the 16th row

 RegValue = 0x000f;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x24,

 BitSize32,

 &RegValue);

 230

9.3 4 X 4 Keyboard input experiment (Debug Mode & MASM)

Experiment purpose: Pushbutton switches input experiment, practicing scan input.

Experiment module: As is shown in Figure 9-3-1 below.

Figure 9-3-1 Keyboard experiment module

Part list:

Logic IC 74LS244 X 1
Resistor network 10KΩ X 1
Diode 1N4148 X 4
Capacitance 0.1u X 1

Circuit diagram: As is shown in the Figures 9-3-2 and 9-3-3 below.

 231

Figure 9-3-2 74LS244 latch circuit diagram

Figure 9-3-3 Keyboard circuit diagram

Principle of experiment:

In common circuit designs, many pushbuttons are often used, especially when it
is required to input plenty of data, keyboards are the best choice. When we want to
form a keyboard circuit, as is shown in the above Figures 9-3-2 and 9-3-3, sixteen I/O
are required to connect each switch to output ports directly. Arrange all pushbuttons in
the form of matrix, therefore 16 pushbutton can form 4X4 matrix circuit.

To facilitate identification, fix the coordinate of keyboard positions with rows
and columns, the traverse keys are marked with the first row, the second row, etc,
while the longitudinal keys are marked with the first column, the second column, etc.
Scan signal output IO_16~IO19 Bank_1
Read signal input IO_20~IO23 Bank_1
Experiment procedures: Open IO port with -o A418 c0 to enable it to have an input
function.
 Output scan signal to IO_16~IO_19
 Receive signals input by IO_20~IO_23
 end the program to close IO port by means of -o A418 00.

MASM program code:

 232

.MODEL SMALL

.386

.STACK

.DATA

OUT_DISABLE EQU 0A418H

IO_PORT0 EQU 0A410H

IO_PORT1 EQU 0A414H

IO_PORT2 EQU 0A412H

IO_PORT3 EQU 0A413H

OUT_DISABLEA EQU 0A428H

IO_PORT0A EQU 0A420H

IO_PORT1A EQU 0A424H

IO_PORT2A EQU 0A423H

OUT_DISABLED EQU 0A408H

IO_PORT0D EQU 0A400H

IO_PORT1D EQU 0A404H

IO_PORT2D EQU 0A402H

TEST_UNIT DB 10H

MAT_ROW DB 01H

MAT_COL DB 00H

MAT_COUNT DB 00H

TEMP DW 0H

TEMP_LOOP DW 0H

LCD_TEMP DW 0H

TEMP_LCD1 DW 0H

TEMP_LCD2 DD 0H

;**

.CODE

BEGIN:

 PUSH DS

 MOV AX,0

 PUSH AX

 MOV AX,@DATA

 MOV DS,AX

KEY_SCAN:

 MOV DX,OUT_DISABLE

 233

 MOV AX,0010H ;set I/O16~I/O19& I/O0~I/O7 to high

impedance.

 OUT DX,AX

 MOV DX,IO_PORT1

 MOV AX,0000H

 OUT DX,AX

KEY_BEGIN:

 CALL KEY_START1 ; Keyboard scan 0~3

 CALL KEY_START2 ; Keyboard scan 4~7

 CALL KEY_START3 ; Keyboard scan 8~B

 CALL KEY_START4 ;Keyboard scan C~F

 MOV AH,0BH ;press any key to stop the program.

 INT 21H

 CMP AL,0FFH

 JNZ KEY_BEGIN

 JMP EXIT ;end of main program

KEY_DB0:

 MOV AX,00003F00H ;Display numbers

 CALL KEY_DISPLAY

KEY_DB1:

 MOV AX,00000600H

 CALL KEY_DISPLAY

KEY_DB2:

 MOV AX,00005B00H

 CALL KEY_DISPLAY

KEY_DB3:

 MOV AX,00004F00H

 CALL KEY_DISPLAY

 234

KEY_DB4:

 MOV AX,00006600H

 CALL KEY_DISPLAY

KEY_DB5:

 MOV AX,00006D00H

 CALL KEY_DISPLAY

KEY_DB6:

 MOV AX, 00007D00H

 CALL KEY_DISPLAY

KEY_DB7:

 MOV AX, 00000700H

 CALL KEY_DISPLAY

KEY_DB8:

 MOV AX, 00007F00H

 CALL KEY_DISPLAY

KEY_DB9:

 MOV AX, 00006F00H

 CALL KEY_DISPLAY

KEY_DBA:

 MOV AX, 00007700H

 CALL KEY_DISPLAY

KEY_DBB:

 MOV AX, 00007C00H

 CALL KEY_DISPLAY

KEY_DBC:

 MOV AX, 00005800H

 CALL KEY_DISPLAY

KEY_DBD:

 MOV AX, 00005E00H

 235

 CALL KEY_DISPLAY

KEY_DBE:

 MOV AX, 00007900H

 CALL KEY_DISPLAY

KEY_DBF:

 MOV AX, 00007100H

 CALL KEY_DISPLAY

 RET

; *******************************

KEY_DISPLAY: KEY COMMAND

 MOV DX, IO_PORT0

 OUT DX, AX

 CALL WAIT_1S

 JMP KEY_BEGIN

 RET

KEY_START1:

 MOV DX, IO_PORT0

 MOV EAX, 00E00000H

 OUT DX, EAX

 MOV DX, IO_PORT2

 IN AX, DX

 CMP AX,0EEH press“1“, “1“is displayed seven-segment code

 JZ KEY_DB1

 CALL WAIT_2MS

 CMP AX,0EDH press“2“, “2“is displayed seven-segment

code

 JZ KEY_DB2

 CALL WAIT_2MS

 CMP AX,0EBH press“3“, “3“is displayed seven-segment code

 JZ KEY_DB3

 CALL WAIT_2MS

 236

 CMP AX,0E7H ; press“C“, “C“is displayed seven-segment

code

 JZ KEY_DBC

 CALL WAIT_2MS

 RET

KEY_START2:

 MOV DX, IO_PORT0

 MOV EAX, 00D00000H

 OUT DX, EAX

 MOV DX, IO_PORT2

 IN AX, DX

 CMP AX,0DEH press“4“, “4“is displayed seven-segment

code

 JZ KEY_DB4

 CALL WAIT_2MS

 CMP AX,0DDH ; press“5“, “5“is displayed seven-segment

code

 JZ KEY_DB5

 CALL WAIT_2MS

 CMP AX,0DBH ; press“6“, “6“is displayed seven-segment

code

 JZ KEY_DB6

 CALL WAIT_2MS

 CMP AX,0D7H ; press“D“, “D“is displayed seven-segment

code

 JZ KEY_DBD

 CALL WAIT_2MS

 RET

KEY_START3:

 MOV DX, IO_PORT0

 237

 MOV EAX, 00B00000H

 OUT DX, EAX

 MOV DX, IO_PORT2

 IN AX, DX

 CMP AX,0BEH ; press“7“, “7“is displayed seven-segment

code

 JZ KEY_DB7

 CALL WAIT_2MS

 CMP AX,0BDH ; press“8“, “8“is displayed seven-segment

code

 JZ KEY_DB8

 CALL WAIT_2MS

 CMP AX,0BBH ; press“9“, “9“is displayed seven-segment

code

 JZ KEY_DB9

 CALL WAIT_2MS

 CMP AX,0B7H press“E“, “E“is displayed seven-segment

code

 JZ KEY_DBE

 CALL WAIT_2MS

 RET

KEY_START4:

 MOV DX,IO_PORT0

 MOV EAX, 00700000H

 OUT DX, EAX

 MOV DX, IO_PORT2

 IN AX, DX

 CMP AX,07EH ; press“A“, “A“is displayed seven-segment

code

 JZ KEY_DBA

 238

 CALL WAIT_2MS

 CMP AX,07DH ;press“0“, “0“is displayed seven-segment

code

 JZ KEY_DB0

 CALL WAIT_2MS

 CMP AX,07BH ;press“B“, “B“is displayed seven-segment

code

 JZ KEY_DBB

 CALL WAIT_2MS

 CMP AX,077H ;press“F“, “F“ is displayed on seven-segment

code

 JZ KEY_DBF

 CALL WAIT_2MS

 RET

WAIT_3S:

 MOV TEMP_LOOP, 07H

WAIT_3S_LOOP:

 CALL WAIT_2S

 DEC TEMP_LOOP

 CMP TEMP_LOOP, 00H

 JBE WAIT_3S_EXIT

 JMP WAIT_3S_LOOP

WAIT_3S_EXIT:

 RET

WAIT_2S:

 CALL WAIT_1S

 CALL WAIT_1S

 CALL WAIT_1S

 CALL WAIT_1S

 CALL WAIT_1S

 CALL WAIT_1S

 RET

WAIT_1S:

 MOV BX, 0007FH

 239

WAIT_LOOP:

 CALL WAIT_1MS

 DEC BX

 CMP BX, 0000H

 JBE WAIT_1S_EXIT

 LOOP WAIT_LOOP

WAIT_1S_EXIT:

 RET

WAIT_1MS:

 MOV CX, 03FFFH

WAIT_LOOP1:

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 LOOP WAIT_LOOP1

 RET

WAIT_2MS:

 MOV CX, 07FFH

WAIT_LOOP2:

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 MOV BX, BX

 LOOP WAIT_LOOP2

 RET

EXIT:

 MOV DX, OUT_DISABLED; clear all settings.

 MOV AX, 0000H

 OUT DX, AX

 240

 MOV DX, IO_PORT0D

 MOV EAX, 00000000H

 OUT DX, EAX

 MOV DX, IO_PORT1D

 MOV AX, 0000H

 OUT DX, AX

 MOV AH, 4CH

 INT 21H

 END BEGIN

9.4 4 X 4 keyboard input experiment (VC/C++)

Experiment purpose: To enable keyboard input by writing programs with VC/C++ and
outputs to the seven-segment LED.

VC/C++ program code:

//set IO Port

 RegValue = 0x0010;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x18,

 BitSize32,

 &RegValue);

//Scan the first row.

 RegValue = 0x0010;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x12,

 BitSize32,

 &RegValue);

// Fetch the upstream value

 rc=PlxIoPortRead(

 hDevice,

 port + 0x12,

 BitSize32,

 241

 &RegValue);

//Scan the second row

 RegValue = 0x0020;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x12,

 BitSize32,

 &RegValue);

// Fetch the upstream value

 rc=PlxIoPortRead(

 hDevice,

 port + 0x12,

 BitSize32,

 &RegValue);

//Scan the third row

 RegValue = 0x0040;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x12,

 BitSize32,

 &RegValue);

//Fetch the upstream value

 rc=PlxIoPortRead(

 hDevice,

 port + 0x12,

 BitSize32,

 &RegValue);

//Scan the fourth row.

 RegValue = 0x0080;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x12,

 BitSize32,

 &RegValue);

//Fetch the upstream value

 rc=PlxIoPortRead(

 hDevice,

 port + 0x12,

 242

 BitSize32,

 &RegValue);

9.5 LCD

Exercises module: Shown in Figure 9-5-1 is the LCD display board used in this
exercise.

Figure 9-5-1 LCD practice module

Circuit diagram: The user himself should refer to PCI_LAB.pdf file in circuit diagram

folder in the disk.

 243

Figure 9-5-2 module switching circuit

Figure 9-5-3 LCD enable and read/write end

 There are two types of LCDs: fonts and drawing. Different character fonts are
burned inside the fonts LCD (arithmetic symbols, Arabic numerals, capital lowercase
English letters, Japanese), the user writes the control codes (ASCII CODE) of the

 244

characters to be displayed into LCD, the fonts will be displayed in the display screen.
LCD on common fax machine is font LCD. All the dots on drawing LCD use ON or
OFF control to display data or graphs, LCD used on common notebooks or laptops
are drawing LCD. The control of the former is relatively simple, so font LCD (CM
1602222) is selected, now we will proceed to describe this type of LCD, as follows:

LCD outside drawing and Pins

This LCD is double column 16 character LCD with 14 Pins, which is divided
into data signal lines (DB0 ~ DB7) and control signal lines (RS, R/W, E), while the
other 3 three Pins are power control lines (Vss, Vdd, Vo). The functions of the Pins
are described as follows:

DB3 ~ DB0 (Low-order Data Bus)

These four lines are low 4 bits data lines, used for transmitting data. When the
LCD is connected to a 4 bits CPU, these four signal lines are disconnected.

DB7 ~ DB4 (High-order Data Bus)
 These 4 signal lines are high 4 bits data lines, used for transmitting data. When
LCD is connected to 4 bits CPU, these four signal lines must be connected to a data
line (D3 ~ D0) of the controller

RS (Register Select)

RS is a signal line that selects instruction register or data register. When RS=1,
DR is selected. Conversely, when RS=0, IR is selected. After selecting register, write
into or read from, so when R/W =1, data is read from LCD. R/W signal line is
usually used in conjunction with the RS signal line.

E (Enable)
 This Enable signal line is used to enable LCD, whether data can be written
into/read from LCD depends on Pin E. That Pin E is high or low will not enable data
to be written into or read from LCD, which can only be enabled when level signals
from low→high→low are generated.
VDD (Power Supply)
 VDD is the power cord connected to +5V.
VSS (Power Supply)
 VSS is the power cord that is grounded
Vo (Power Supply)
 Vo is the power cord that adjusts voltage, controlling the brightness of the LCD.

 245

Internal structure diagram

There are more then 10 block diagrams inside LCD, as follows:
1. Registers
2. Busy Flag
3. Address Counter
4. Display Data RAM
5. Code Generator RAM
6. Code Generator ROM
7. Timing Generator
8. Cursor/Blink Converter
9. Parallel to Serial Converter
10. Bias Voltage Generator
11. LCD Driver
12. LCD Panel

Register (R)

There are 2 registers inside LCD module: instruction register (IR for short)
and data register (DR for short). Instruction register is used to store instructions
that control LED, such as Display Clear and Cursor Shift, etc. And a data register
is used to store display data to be written into/read from DD RAM or CG RAM.
After writing external data into the data register, the LCD will automatically write
the data of the DR into DD RAM or CG RAM. To choose IR or DR depends on
RS signal level, when RS=0, select DR, and when RS =1, IR is selected.

Busy flag (BF)

This flag is used to indicate whether LCD is working during internal
operation, namely whether it is ready to receive external data. When BF=1, it
means LCD is during internal operation; now LCD will not accept any
instructions from the outside until BF=0. After executing current instructions,
LCD will automatically clear busy flag to be 0, that is, BF=0.

Address counter (AC)

Address counter is used to generate the addresses required by display data
memory and character generator memory. When setting the address instructions of
DD RAM or CG RAM to be written into instructions register, select the addresses
of DD RAM or CG RAM to be stored in AC so that write into/read out data can be
stored in/read from DD RAMO or CG RAM that AC points to. When data is

 246

written into/read from DD RAM or CG RAM, AC may automatically add or
subtract one. The contents of AC corresponds to data line DB0 ~ DB6.

Display data memory (DD RAM)

Display data memory is used to store the display data of LCD, with capacity
of 80*8 bit, it can store 80 8-bit character codes. The address of DD RAM is the
contents of AC, usually expressed in Hexadecimal.

Character generator only memory (CG ROM)

CG ROM inside LCD can generate 160 different kinds of 5*7 dot matrix
fonts. Shown in table 9-5-1 are the dot matrix fonts, and it can be seen that the
control codes for these fonts are nearly the same as ASCII CODE. To display the
fonts in CG ROM, it is only necessary to write the control codes of the fonts into
the display memory (DD RAM).

 247

Table 9-5-1 font codes

Character generator memory (CG RAM)

CG RAM IN inside LCD is used to store the user-defined 5*7 dot matrix
fonts; at most 8 fonts can be stored. To display the fonts in CG RAM, the control
codes displayed in the row in the extreme left of table 9-5-1 must be written into
display memory (DD RAM).

Timing generator (TG)

Timing generator generates the timing signals required by DD RAM, CG
RAM and CG ROM. With proper timing signal control, no interference may occur
when externally accessing DD RAM data and reading data display.

Parallel to Serial Converter

This converting circuit can convert parallel data read from CG ROM or CG
RAM into serial data for the use of a display driver.

 248

Cursor/Blink Controller
This circuit controls the character blink on DD RAM address and whether

the cursor appears

Bias Voltage Generator

Bias voltage circuit is used to provide the voltage necessary to drive the
LCD.

LCD Driver

This circuit produces signals necessary to drive 5*7 dot matrix after receiving
the display data, time signal and bias voltage.

LCD Panel

LCD front panel is a dot matrix display screen, which can be divided into 6
types of specifications such as a single/double column 16 characters,
single/double column 20 characters, single/double column 40 characters, etc.

LCD instruction set

Table 9-5-2 is the instruction set that controls LCD, including 11 types. We can

learn from the table of the functions of the instructions and the time needed to execute
them. Some of the instructions are operating modes that set the LED. Some are
addressing internal DD RAM or CG RAM, while the remainders are used to write
into/read from data from DD RAM or CG RAM. For the external circuit to input
control LED, whether LCD is in a busy status should be check first, if BF=1, it means
that LCD is in a busy status, until BF=0.

Display Clear
 This command can clear all the contents of DD RAM to be 20H and the contents
of address counter to be 0.

Display/Cursor Home
 This command can clear the contents of AC to be 0 without affecting the
contents of DD RAM.

Enter Mode Set

I/D: When this bit is used to display data write into/read from DD RAM or CG
RAM, the contents of AC is +1 or –1.

 249

S: When this bit can only control data write into DD RAM rather than CG RAM,
the entire display is whether shift is necessary.

Display ON/OFF

D: This bit can control the ON/OFF function of the display.
C: This bit can control whether the cursor will display on LCD display screen.
B: This bit can control whether the display character blinks.

Display/Cursor Shift
 This command can control individual shift of the cursor or the simultaneous shift
of the cursor and display.

Function Set

Is used to set data length and display format. DL bit in command filed is used to
set data length, when DL=1, the data length is 8 bit; when DL=0, the data length is 4
bits. Bit N in the field is used to select single column or double column display, when
N=1, it is double column display; when N=0, it is a single column display.

CG RAM Address Set
 This command can set CG RAM Address.

DD RAM Address Set
 This instruction is used to set DD RAM Address.

 Busy Flag/Address Counter Read
 This read instruction can be used to judge whether the LCD is in a busy status or
not and to read the contents of the address counter.

 This instruction is used to write display data into the CG RAM or DD RAM.

 This instruction is used to read data in CG RAM or DD RAM.

 250

Table 9-5-2 LCD instruction set

9.6 LCD(MASM)

Experiment purpose: Write programs with MASM to enable LCD to display English
characters like A~\.
MASM program code:

. MODEL SMALL

.386

. STACK

. DATA

OUT_DISABLE EQU 0A418H

IO_PORT0 EQU 0A410H

IO_PORT1 EQU 0A414H

IO_PORT2 EQU 0A412H

 251

IO_PORT3 EQU 0A413H

OUT_DISABLED EQU 0A408H

IO_PORT0D EQU 0A400H

IO_PORT1D EQU 0A404H

IO_PORT2D EQU 0A402H

TEST_UNIT DB 10H

TEMP DW 0H

TEMP_LOOP DW 0H

LCD_TEMP DW 0H

TEMP_LCD1 DW 0H

TEMP_LCD2 DD 0H

; **

. CODE

BEGIN:

 PUSH DS

 MOV AX, 0

 PUSH AX

 MOV AX, @DATA

 MOV DS, AX

 MOV DX, OUT_DISABLE

 MOV AX,0010H ; set I/O16~I/O19& I/O0~I/O7 to high

impedance

 OUT DX, AX

LCD_DISPLAY: ;LCD_DISPLAY testing program

 MOV EBX, 00000038H ; clear LCD screen

 CALL COMMAND

 MOV EBX, 00000001H

 CALL COMMAND

 MOV EBX, 0000000EH

 CALL COMMAND

 MOV DX, OUT_DISABLE

 MOV AX,0010H ;set I/O16~I/O19 to high impedance

 OUT DX, AX

LCD_DISPLAY_1:

 252

 MOV DX,IO_PORT1 ;WR is LOW。

 MOV AX, 0004H

 OUT DX, AX

 MOV EBX, 00000038H ; SET mode

 CALL COMMAND

 MOV EBX, 00000001H ; clear the screen

 CALL COMMAND

 MOV EBX, 0000000FH ; move the cursor to the first place

 CALL COMMAND

 MOV TEMP_LCD1, 0010H

 MOV TEMP_LCD2, 0041H

LCD_DISPLAY_2:

 MOV EBX, TEMP_LCD2 ; display the characters of A~P. in

sequence

 CALL WRITE_COMMAND

 INC TEMP_LCD2

 DEC TEMP_LCD1

 CMP TEMP_LCD1, 0000H

 JBE LCD_DISPLAY_3

 JMP LCD_DISPLAY_2

LCD_DISPLAY_3:

 MOV EBX, 000000C0H ; new line

 CALL COMMAND

 MOV TEMP_LCD1, 0010H

 MOV TEMP_LCD2, 0051H

LCD_DISPLAY_4:

 MOV EBX, TEMP_LCD2 ;display the characters of Q~\ in

sequence

 CALL WRITE_COMMAND

 INC TEMP_LCD2

 DEC TEMP_LCD1

 CMP TEMP_LCD1, 0000H

 253

 JBE EXIT

 JMP LCD_DISPLAY_4

COMMAND: ;LCD_DISPLAY COMMAND

 MOV DX,IO_PORT1 ;WR is LOW, EN is HIGH

 MOV AX, 0005H

 OUT DX, AX

 MOV DX,IO_PORT0 ;feed into 01H

 MOV EAX, EBX

 OUT DX, EAX

 MOV DX, IO_PORT1 ;EN is LOW

 MOV AX,0004H

 OUT DX,AX

 MOV DX,IO_PORT1 ;RS and WR are HIGH

 MOV AX,0010H

 OUT DX,AX

 CALL WAIT_1S

 CALL WAIT_1S

 RET

WRITE_COMMAND: ;LCD write characters

 MOV DX,IO_PORT1

 MOV AX,0000H

 OUT DX,AX

 MOV DX,IO_PORT1

 MOV AX,0014H

 OUT DX,AX

 MOV DX,IO_PORT1

 MOV AX,0015H

 OUT DX,AX

 MOV DX,IO_PORT0

 MOV EAX,EBX

 OUT DX,EAX

 254

 MOV DX,IO_PORT1

 MOV AX,0014H

 OUT DX,AX

 MOV DX,IO_PORT1

 MOV AX,0000H

 OUT DX,AX

 CALL WAIT_1MS

 MOV DX,IO_PORT1

 MOV AX,0010H

 OUT DX,AX

 CALL WAIT_1S

 RET

 JMP EXIT

WAIT_3S:

 MOV TEMP_LOOP,07H

WAIT_3S_LOOP:

 CALL WAIT_2S

 DEC TEMP_LOOP

 CMP TEMP_LOOP,00H

 JBE WAIT_3S_EXIT

 JMP WAIT_3S_LOOP

WAIT_3S_EXIT:

 RET

WAIT_2S:

 CALL WAIT_1S

 CALL WAIT_1S

 CALL WAIT_1S

 CALL WAIT_1S

 CALL WAIT_1S

 CALL WAIT_1S

 RET

WAIT_1S:

 MOV BX,0007FH

WAIT_LOOP:

 255

 CALL WAIT_1MS

 DEC BX

 CMP BX,0000H

 JBE WAIT_1S_EXIT

 LOOP WAIT_LOOP

WAIT_1S_EXIT:

 RET

WAIT_1MS:

 MOV CX,03FFFH

WAIT_LOOP1:

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 LOOP WAIT_LOOP1

 RET

WAIT_2MS:

 MOV CX,07FFH

WAIT_LOOP2:

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 MOV BX,BX

 LOOP WAIT_LOOP2

 RET

EXIT:

 MOV DX,OUT_DISABLED ;clear all settings

 MOV AX,0000H

 OUT DX,AX

 MOV DX,IO_PORT0D

 256

 MOV EAX,00000000H

 OUT DX,EAX

 MOV DX,IO_PORT1D

 MOV AX,0000H

 OUT DX,AX

 MOV AH,4CH

 INT 21H

 END BEGIN

9.7 LCD (VC/C++)

VC/C++ program code:
 (LCD returns to zero)
//Set all IO Port

 RegValue = 0x0010;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x18,

 BitSize32,

 &RegValue);

//Set output to LCD

 RegValue = 0x0005; 0000_0101

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

//output information to LCD

 RegValue = 0x0038;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x10,

 BitSize32,

 &RegValue);

// disable LCD unit

 RegValue = 0x0004;

 257

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

//LCD_RS is high

 RegValue = 0x0010;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

//Set output to LCD

 RegValue = 0x0005; 0000_0101

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

//output information to LCD

 RegValue = 0x0001;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x10,

 BitSize32,

 &RegValue);

//Disable LCD unit

 RegValue = 0x0004;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

//LCD_RS is high

 RegValue = 0x0010;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 258

 BitSize32,

 &RegValue);

//Set output to LCD

 RegValue = 0x0005; 0000_0101

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

//output information to LCD

 RegValue = 0x0000;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x10,

 BitSize32,

 &RegValue);

//disable LCD unit

 RegValue = 0x0004;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

//LCD_Rs is high

 RegValue = 0x0010;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

//set all IO Port

 RegValue = 0x0010;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x18,

 BitSize32,

 &RegValue);

 259

 (Move the cursor to the first place)

//set the output to LCD

 RegValue = 0x0005; 0000_0101

 arc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

//output information to LCD

 RegValue = 0x000f;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x10,

 BitSize32,

 &RegValue);

//disable LCD unit.

 RegValue = 0x0004;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

//LCD_RS is high

 RegValue = 0x0010;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

 (newline)
//set the output to LCD

 RegValue = 0x0005; 0000_0101

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

 260

//output information to LCD

 RegValue = 0x00c0;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x10,

 BitSize32,

 &RegValue);

//Disable LCD unit

 RegValue = 0x0004;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

//LCD_RS is high

 RegValue = 0x0010;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

 (Write into instructions)
 RegValue = 0x0000;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

 RegValue = 0x0014;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

 RegValue = 0x0015;

 rc=PlxIoPortWrite(

 hDevice,

 261

 port + 0x14,

 BitSize32,

 &RegValue);

 RegValue = 0x0000; Value to be outputted

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x10,

 BitSize32,

 &RegValue);

 RegValue = 0x0014;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

 RegValue = 0x0000;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

 RegValue = 0x0010;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

9.8 8254 timer and counter

Experiment purpose: Write programs to enable 8254 to produce square wave output in
mode 3.

MASM program codes:

. MODEL SMALL

.386

 262

 263

. STACK

. DATA

P54C0 EQU 0A400H ;count 0 bit address of 82C54

P54CR EQU 0A403H ; control port bit address of 82C54

M054 EQU 16H ; count 0 is mode=3, only load LSB, binary counter

 ;0001_0110

. CODE

BEGIN:

 PUSH DS

 MOV AX, 0

 PUSH AX

 MOV AX, @DATA

 MOV DS, AX

 MOV DX, P54CR

 MOV AL, M054

 OUT DX, AL ;write into the control port.

 MOV DX,P54C0

 MOV AX,250

 OUT DX,AL ;Load counter value 250, and the output is 10MHz/250

; MOV AL,AH

; OUT DX,AL

EXIT:

 MOV AH,4CH

 INT 21H

 END BEGIN

VC/C++ Program code:

//Load mode setting//

 RegValue = 0x0016;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x03,

 BitSize32,

 &RegValue);

 264

//Set counter values //

 RegValue = 0x0250;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x00,

 BitSize32,

 &RegValue);

 265

Article 5 Advanced combined languages and C/C++

program language samples
D/A converter is an important device for computer experiments. Because the

programming for this type of device is not easy, the readers can study the
specifications of chips in the disc in this book on his/her own to write programs. The
related circuit diagram is shown in Figure 5-0-1 below.

Figure 5-0-1 PCI_LAB experiment board A/D and D/A module circuit diagram

 266

Chapter 10 Digital/analog converter

 D/A converter is an essential element to the control and application of the PC.
The four characteristics that require attention for common D/A converters are as
follows:
 (1) Revolution
 (2) Linearity
 (3) Setting time
 (4) Accuracy

The advantages and disadvantages of D/A converters are related to the above
four characteristics. Generally speaking, the higher the resolution is, the better the
linearity, and the ones that have faster setting time and higher accuracy have better
functions. The following is the description of the above characteristics:

(1) Revolution

The resolution of a D/A converter depends on the number of binary bits and the
relationships between the two can be expressed by the following equation. In which n
is the bit numbers of the converter, the number of ladders that can be produced by a n
bit D/A converter is 2P

n
P-1.

D/A converter DAC0808 is an 8 bit digital-to-analog converter, whose resolution

is 1/256, which can produce 256 ladder waves; each ladder is equal to the increment
of one LSB, namely 1/256. The larger the number of binary bits for the converter, the
smaller the conversion error is; conversely, the higher the resolution is, the larger the
conversion error. Currently the bit numbers of D/A converters are divided into four
types: 8, 10, 12, 16, due to the higher resolution of 12, 16 bits DAC, their prices are
higher; therefore, they are often used in more accurate control and experiments.

(2) Linearity

The second characteristic of D/A converter is Linearity. Linearity usually refer s
to the same amount of changes by analog output signals when a convert starts from
entering bits from low potential (0000_0000) to gradually changing to “all the input
bits are high potential (1111_1111). As long as the maximum error of the D/A
converter does not exceed ± 1/2 of the value of lowest sub-bit, namely ± 1/2 LSB, it
is normal. The specifications of D/A converters currently available on the market are
mostly equal to or more than ± 1/2 LSB.

 267

(3) Setting time
 The third characteristic of D/A converter is setting time. Setting time is the time
the digital information starts to convert to obtain a stable output value (final value
± 1/2 LSB) after it is input. Generally speaking, the shorter the setting, the better,
indicating that its response is good and the switching speed is fast.
The length of setting time is related to the changes of bits. When the input bit is
switched from low potential status to high potential status, the setting time required is
longer. Contrastingly, when the input bit is switched from high potential status to low
potential status, the required setting time is relatively shorter.

(4) Accuracy

The accuracy of a D/A converter is determined by the difference between the
actual output and ideal output. The smaller the difference is, the higher the accuracy.
Accuracy can be divided into two types: absolute accuracy and relative accuracy.
Absolute accuracy refers to the extent to which the actual output value is close to the
ideal output value, while relative accuracy refers to the extent to which the actual
output value is close to the ideal full-scale output value. Full-scale output value is the
corresponding output value when the input bits of the D/A converter are all of high
potential. Usually accuracy is expressed in percentages.

VC/C++ Sample program
（D/A output selection）
 RegValue = 0x0026; A 0010_0110

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

 RegValue = 0x0006; B 0000_0110

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

（Writ-in information ）
 RegValue = 0x0000; Encountering written data

 rc=PlxIoPortWrite(

 hDevice,

 268

 port + 0x10,

 BitSize32,

 &RegValue);

（IO_PORT setting）
 RegValue = 0x0010;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x18,

 BitSize32,

 &RegValue);

 P.S. Program code should be aligned with references to D/A chips, just like
VC/C++ program codes of liquid crystal display so that output form D/A converter
can be effective.

 269

Chapter 11 Analog/digital converter.

The device that converts analog signals into digital signal is called A/D converter,
and there are many converting methods, such as integration method, successive
approximation method, parallel method, integration methods and counter methods.
 The characteristics of A/D converter are similar to that of D/A converter.
However, there are still some differences, generally its characteristics can be roughly
divided into four types. Before using A/D converter, the user should first refer to its
characteristic so as to use it in interface designs effectively.

(1) Analog input voltage
(2) Resolution
(3) Switching time
(4) Digital output format
The above characteristics are described as follows.

Analog input voltage
 Usually A/D converter can accept limited analog input voltage, so, before using,
you have to know the limitations of input to A/D converter analog voltage. Otherwise,
the converter may be damaged. Part of the A/D converters allows only univocal input
voltage, namely the input voltage is either positive voltage or negative voltage.
Some A/D converter can allow dual polar input voltage, namely the input voltage can
be either positive or negative. Due to the different specifications of A/D converters,
the proper values should be obtained from the information handbooks provided by the
manufacturers. The common typical voltage values are: 0~+10V, 0~-10V, +5V~-5V
etc.

Resolution

 The resolution factor of A/D converter is similar to that of D/A converter,
determining the binary bits outputted by converter, which is 1/2P

n
Pof resolution, of

which n is the number of bit number. Usually the larger the number of bits the
converter is, the better the resolution. In case of different maximum output voltage,
the output level is also different.

Converting time

 The time from AD convert’s starting to convert analog input voltage to producing
stable digital data is called conversion time. A shorter conversion time usually means

 270

a faster converting speed. Generally, the higher the resolution is, the slower the
converting speed. To make the converting speed faster, the A/D converter price may
be higher.

Digital output format

 To be used in various different systems, A/D converter gas output code of the
following formats; unipolar binary code, unipolar BCD code, offset binary code, one’s
complement and two’s complement are available for choosing. Which kind of input
code will be selected depends on the needs of actual lines. When the input ranges of
A/D converters are all positive values or negative values, then binary code and reverse
binary code are usually selected. When the input ranges of the A/D converter can be
either positive or negative(dual-polar), offset binary code is usually selected.

VC/C++ sample program:

（A/D input）
 RegValue = 0x000b; 0000_1011

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x14,

 BitSize32,

 &RegValue);

（read out information） The value of RegValue is the data fetched

 rc=PlxIoPortRead(

 hDevice,

 port + 0x10,

 BitSize32,

 &RegValue);

（IO_PORT setting）
 RegValue = 0x0010;

 rc=PlxIoPortWrite(

 hDevice,

 port + 0x18,

 BitSize32,

 &RegValue);

 271

P.S. Program code should be aligned with references to A/D chips, just like VC/C++
program codes of liquid crystal display so that input form A/D converter can be
effective.

 272

Chapter 12 Project and IO-Port setting program

This PCI-IO interface panel can use 192 IO, which is presented by each 48 IO of
four IO_BANK. Planned with eight IO as an IO_PORT, you can go straight to the
self-made IO experiment board. With the experiment outward-pull module
self-developed by the lab of our university as shown in Figure 12-0 below. The IO of
PCI-IO board can be externally connected to the self-designed circuit, and LEE-PU
electronics also have similar products.

Figure 12-0 Externally connected module self-manufactured by this lab.
As for special case manufacturing, since it is necessary to set the output or input

of IO_PORT, program codes are provided here for the reader to use. Related output
/input information can be obtained by opening this test file with notebook and the
program codes are as follows.

#include <stdio.h>
#include "PlxApi.h"
#include "PciRegs.h"
#include "PlxInit.h" //add different Include File based on the needs of an

individual program)

 273

int main() //main program //
{
 U8 Revision,code;
 FILE *f;
 U16 i;
 U32 ChipType;
 U32 LocalAddress=0;
 S8 DeviceSelected;
 HANDLE hDevice;
 RETURN_CODE rc;
 DEVICE_LOCATION Device;
 IOP_SPACE IopSpace;
 U32 port,pp,RegValue;
 U32 buffer[64]; // define the parameter, increase upon

lack of parameters by yourself//

 DeviceSelected = SelectDevice(&Device); //Select interface card//
 rc = PlxPciDeviceOpen(&Device, &hDevice); //PCI-IO opening card

action //

 port=PlxPciConfigRegisterRead(
 Device.BusNumber,
 Device.SlotNumber,
 CFG_BAR3,
 &rc); //read base address//
 buffer[0] = 0x00000000;
 port = port & ~(1<<0); //return-to-zero and reset action //

 PlxChipTypeGet(hDevice, &ChipType, &Revision); //IO Port setting //
 IopSpace = IopSpace0;
 IopSpace = IopSpace1;
 RegValue = 0x00;
 pp=0x00;
 f=fopen("test","w");
 i=0x00;

for(i=0x00;i<0x49;)

 274

{
 printf("\n BASE %x 8",i);
 fprintf(f,"\n BASE %x 8",i);
for(RegValue=0x00;RegValue<0x100;)
{
 printf("\n setting0 %x",RegValue);
 fprintf(f,"\n setting %x",RegValue);
 rc=PlxIoPortWrite(
 hDevice,
 port + 0x08 +i,
 BitSize32,
 &RegValue);
 for(pp=0x00;pp<0x06;pp=pp+0x01)
 {
 rc=PlxIoPortRead(
 hDevice,
 port + pp,
 BitSize32,
 &code);
 printf("\n bank0 code %x",code);
 fprintf(f,"\n bank0 code %x",code);
 }
 pp=0x10;
 for(pp=0x10;pp<0x16;pp=pp+0x01)
 {
 rc=PlxIoPortRead(
 hDevice,
 port + pp,
 BitSize32,
 &code);
 printf("\n bank1 code %x",code);
 fprintf(f,"\n bank1 code %x",code);
 }
 pp=0x20;
 for(pp=0x20;pp<0x26;pp=pp+0x01)
 {
 rc=PlxIoPortRead(
 hDevice,

 275

 port + pp,
 BitSize32,
 &code);
 printf("\n bank2 code %x",code);
 fprintf(f,"\n bank2 code %x",code);
 }
 pp=0x30;
 for(pp=0x30;pp<0x36;pp=pp+0x01)
 {
 rc=PlxIoPortRead(
 hDevice,
 port + pp,
 BitSize32,
 &code);
 printf("\n bank3 code %x",code);
 fprintf(f,"\n bank3 code %x",code);
 }
 pp=0x40;
 for(pp=0x40;pp<0x46;pp=pp+0x01)
 {
 rc=PlxIoPortRead(
 hDevice,
 port + pp,
 BitSize32,
 &code);
 printf("\n bank4 code %x",code);
 fprintf(f,"\n bank4 code %x",code);
 }
 RegValue=RegValue+0x01;
}
i=i+0x10;
}
fclose(f);
 return 1;
}
This program first sets the setting of IO_BANK, then executes the setting of

0x08, fills the values from 0x00h to 0xFFh into the setting port, fetches the output or
input status of IO_PORT in various IO_BANK, then executes the setting of 0x18,

 276

0x28, 0x38, 0x48. In executing this program, IO combinations meeting various
demands can be found, allowing the use of the 32 bit output or input status.

