
http://www.leap.com.tw

The information in this document is subject to change without notice

LEAP software products are copyrighted by and shall remain the property of

LEAP ELECTRONIC CO., LTD. Use duplication, or disclosure is subject to

restrictions as stated in LEAP's applicable software license.

LEAP ELECTRONIC makes no warranty of any kind with regards to this

material, including, but not limited to, implied warranties of merchantability

and fitness for a particular purpose, except as stated in Leap's applicable

software license.

No part of this document may be copied or reproduced in any form without the

prior written consent of LEAP ELECTRONIC CO., LTD.

Copyright © 2000 LEAP ELECTRONIC CO., LTD.

All Rights Reserved.

First Edition, November 2000.

By LEAP ELECTRONIC CO., LTD.

CPLD Logic Design and Practices is a trademark of LEAP ELECTRONIC

CO., LTD. Other brands and product names are trademarks or registered

trademarks of their respective holders.

LEAP ELECTRONIC CO., LTD.

service@leap.com.tw

 CPLD Logic Circuit Design and Practice

service@leap.com.tw

 CPLD Logic Circuit Design and Practice Contents

 Contents

Chapter 1. Introduction to Digital Logic

1.1 Introduction to Digital Logic

1.2 Integrated Digital Logic Design Environment

1.3 Programmable Logic Device – PLD

1.4 PC Aided Digital Logic Design

1.5 Experimental Platform

1.6 Evaluation and Test

Chapter 2. Numerical System
2.1 Numeric Expressions

2.2 Numerical System Conversion

2.3 Numerical Complement

2.4 Negative Binary Number Expression

2.5 Binary Arithmetic Operations

2.6 Binary-coded Decimal (BCD) Code

2.7 Review

Chapter 3. Basic Logic Theories
3.1 Boolean Algebra

3.2 Boolean Algebra Simplification

3.3 Logic Gate

3.4 Applications of Logic Gate

3.5 Practices

3.6 Review

Chapter 4. A New Design Methodology
4.1 MAX+PLUS II Baseline Setup and Start

4.2 How to Use Mouse

4.3 Graphic Entry

4.4 Functional Simulation

4.5 Floorplan and Design Compilation
4.6 Device Programming and Circuit Testing
4.7 Use Graphic Entry to Complete LEDTEST Example
4.8 Review

Chapter 5. Combinational Logic Circuit
5.1 The Design, Simulation and Test of General Combinational Logic

 Circuit
5.2 The Design, Simulation and Test of Adder
5.3 The Design, Simulation and Test of Subtractor
5.4 The Design, Simulation and Test of Comparator
5.5 The Design, Simulation and Test of Encoder
5.6 The Design, Simulation and Test of Decoder
5.7 The Design, Simulation and Test of MUX
5.8 The Design, Simulation and Test of DMUX
5.9 The Question of Harzards
5.10 Evaluations

Chapter 6. Sequential Logic Circuit
6.1 Basic Concept of Sequential Logic Circuit
6.2 The Design, Simulation and Test of Synchronous Counter
6.3 The Design, Simulation and Test of Synchronous Shift Register
6.4 The Design, Simulation and Test of Synchronous Shift Count Register
6.5 The Design, Simulation and Test of Asynchronous Counter
6.6 Evaluation

Chapter 7. SIMPLE DESIGN EXAMPLES

7.1 Frequency Generator
7.2 Simple Electronic Dice
7.3 Timer
7.4 Simple Traffic Light Controller

 CPLD Logic Circuit Design and Practice Contents

 7.5 Dot Matrix Displayer Test Circuit
 7.6 Keyboard Scan and Display Scan Circuit
 7.7 LCD Interface Circuit
 7.8 Evaluations

 Chapter 8. Connecting with Analog Circuit
 8.1 A/D Converter – ADC0804
 8.2 D/A Converter – AD7528

 8.3 Single Chip – 8051
 8.4 Design Example – Connecting with ADC0804, AD7528, and 8951
 8.5 Evaluation

 Chapter 9. CPLD LOGIC DESIGN LAB PLATFORM LP-2900
 9.1 Function Description to LP-2900
 9.2 Setting up LP-2900
 9.3 The Architecture and Circuits of LP-2900
 9.4 Pin arrangement of LP-2900
 9.5 Evaluations

Appendix A. PLD Suppliers and Main Products

 A.1 PLD Suppliers and Main Products
 A.2 ALTERA’s CPLD Devices

Appendix B. The Built-in Resources of MAX+PLUS II
 B.1 Primitives
 B.2 Macrofunctions

 CPLD Logic Circuit Design and Practice Contents

CHAPTER 1

 Introduction to
Digital Logic

LEAP

1.1 Introduction to Digital Logic

In general, all physical quantities in nature such as temperature, humidity, length,
speed, and time are continuously changing. We call these continuously changing
signals as “analog” signals. In contrast to analog, there is a discrete signal called
“digital” signals. A signal processing system with use of analog signals is called
“analog system”. Signals in this kind of system continuously fluctuate over time
between high and low voltages. For example, signals are changing from –10 voltage
to +10 voltage. Similarly, a signal processing system with use of digital signals is
called “digital system”, and signals in this system can only be considered either on or
off, high or low values. For example, signals can change either 0 voltage or +5
voltage.

From above, we could know there are two systems to process signals. One is analog
system and the other is digital system. Generally, a digital system comes with more
benefits than analog. It is programmable, faster, precise, and flexible. Besides, as the
signals are discrete but not continuous, a digital system can be less affected by the
changes of elements’ natures such as the problem of a worn-out transistor. Those are
the reasons why digital systems are greatly adopted in the world.

For sure, all physical quantities in nature are shown in the form of analog signals.
They are measurable, visible and controllable. If we would like to take the advantages
of digital systems, we have to transform signals from analog to digital and process by
digital systems. The transforming process is as below:

 Analog Signals Analog Signals Digital Signals

Physical Quantity→Sensor→Analog-to-Digital Converter→Digital Processing System

Sensors can transform the natural physical quantities into electronic signals such as
voltage or current signals that are still analog signals. Electronic signals will then
been transformed into digital signals by Analog/Digital Converter. Actually,
Analog/Digital Converter is responsible for sampling and quantization. Sampling is
to take the value of a physical quantity at one point and then mark it as a digital
number, and this is what we called “Quantization”. Processed digital signals will be

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

transformed into analog signals in some circumstances to have better control on some
objectives such as flow control gates, fans, and heaters etc. The transforming process
is as below:

 Digital Signals Digital Signals

Digital Processing System → Digital-to-Analog Converter →Controlled Machines

Figure 1.1, it is the flow control diagram for a chemical factory. A/D Converter,
Digital Processing System, and D/A Converter are the key points in Figure 1.1 as
well as in this book. To introduce digital processing systems, we will discuss the
topic from the basic theory first, including Numeric System (Chapter 2), Boolean
algebra (Chapter 3), and then Basic Gate (Chapter 3), combinational logic (Chapter 5)
as well as Sequential Circuit (Chapter 6). More over, we will talk about A/D
Converter and D/A Converter in Chapter 8. In the rest of the Chapter 2, we will
introduce a new logic design environment called “Integrated Digital Logic Design
Environment”. This integrated environment will greatly give us logic design and
simulation. In Chapter 4, we will further discuss how to set up and use the EDA tool,
MAX+PLUS II.

Figure 1.1 A Flow Control Diagram for a Chemical Factory

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

1.2 Integrated Digital Logic Design

Environment

Currently, engineers can use two different chips to make PCB (Printed Circuit Board)
when they design circuits. One is standard/discrete logic such as TTL/COMS 74/54
family; the other is ASIC (Application-Specific Integrated Circuits). ASIC shown in
Figure 1.2 can be divided into 4 different catalogs: PLD (Programmable Logic
Devices), Gate Array, Cell-Based IC, and Full-Custom IC.

Standard logic is TTL/CMOS (e.g.: 74/54 family) that comes with a specific
function. This is the first device to make digital logic circuits and digital systems in
history. As the needs for digital circuits are more and more complicated and the new
technologies are developed faster than before, standard circuits gradually cannot
satisfy customers, and, as a result, a new market is there for Gate Array, Cell-Based
IC, and Full-Custom IC. All the devices use different ways to design circuits and
different process to produce circuits. For a programmable logic device (PLD), it is an
integrated circuit that has user-configuration functions, including Boolean expression
or registered function etc, to customize the circuits and meet customer’s needs. Those
functions make PLDs quite different than TTL/CMOS standard devices. As long as
the elements have the user-configuration functions, they are PLD elements, including
3 different catalogs: 1.) PAL/GAL with simple functions, low capacity, and low pin
counts, 2.) FPGA (Field-Programmable Gate Array) with high capacity, higher pin
counts, and 3.) CPLD (Complex PLD) with high capacity and high pin counts. Those
different PLDs have their own different structures and internal-memory-type design
technologies. Depended on requirements, we could choose the right devices. PAL is a
simple PLD, which has gate counts from 100 to 1000 and IC pin counts within 28-pin.
It is an old process with bipolar procedure, can only write data once, and cannot
delete old data. Its advantage is faster speed, but its disadvantage is more electrical
consumption. GAL, another simple PLD, uses CMOS as its process. It can rewrite
data and has less electrical consumption. However, its operating speed is slower than
PAL relatively.

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

Logic

Standard Logic ASIC

PLDs Gate Array Cell-Based IC Full-Custom IC

Simple PLDs FPGA/CPLD/EPLDs

PAL

GAL

PEEL

ALTERA CPLD XILINX FPGA

FLEX10K

MAX900

FLEX8000

Figure1.2 Catalogs of logic devices

FPGA/CPLD process is CMOS. Currently there are five techniques to produce
FPGA/CPLD: EPROM, EEPROM, FLASH, SRAM and Anti-Fuse. FPGA has higher
density. Compared with CPLD, it uses less logic gates and focuses on registers.
However, its routing is complicated, causing the problems of varying and longer
timing delay. For new comers or students, they definitely think FPGA is more
difficult and have to study harder and longer to understand it. Currently, XILINX,
Actel, Atmel and AT&T are the key suppliers, and, among them, XILINX has greater
market share and is the biggest FPGA supplier in the market. For CPLD, it cans
multi-erase data, program data, and fixed delay. It also allows users to apply and
design easily. The main suppliers of CPLD include AMD, ALTERA, Lattice, Cypress,
and ICT etc. Among them, AMD and ALTERA are the two key players in the market.

As the adoption of higher density and new process of PLD, the prices are gradually
decreasing, and, as a result, PLD has given consumers higher-density, more effective,

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

and cheaper devices than standard logic. In another words, we could put all
TTL/COMS standard circuits from a big board to a small piece of CPLD. It reduces
room for a big board and time for welding process, and speed the circuit up
significantly. Therefore, PLD has greatly been seen as a “super star”.

1.2.1 Techniques of Traditional Digital

Circuit Design

As we mentioned before, Standard/Discrete Logic or ASIC can be used to make
circuit board. The function of Full-Custom IC is fully user-defined, but Gate Array is
a semi-product and therefore its function is defined based on this. For Cell-Based IC,

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

Table 1.1 is the comparison for PLD, Standard/Discrete Logic, and Full-Custom IC.
Clearly, PLD has the great advances in speed, density, price, developing time,
modifiability, prototyping, development tools, integrity, and time to market.

Table1.1 Comparison of logic devices

Requirements PLD Discrete Device ASIC

(Full-Custom IC)

Speed Very Fast Slow Very Fast

Density High Low Very High

Price Cheap Expensive Very Cheap

Developing Short Proper Long

Modifiabili Very Flexible Proper Very Inflexible

Prototyping Very Easy Very Very Difficult

Tools Easy Access and Not Not Expensive

Integrity Very Small Very Big Very Small

Time to Short Proper Long

its function is to use well-defined cells in a cell base to complete circuit design.
Usually, when engineers use these kinds of ASIC chips or even add with some of
standard logic to design circuit boards, they are making PCB (Printed Circuit Board)
samples directly. In another words, after completing circuit designs by computers, we
will assign a third party to produce and weld all elements, or only ask a third party to
weld SMD (Surface Mounted Device) with high pin counts and take the rest of the
production procedures by ourselves. We might add/decrease elements to/from sample
version 1, and have line jumping or line cutting and testing to have more correct
sample boards. After completing the testing for sample version 1, we then assign a
third party to produce sample version 2, and back to test it again. To have finalized
circuits, we might have sample version 3 or version 4 if needed. If all correction has
been done and all the requirements are met, the circuit board development is
completed. We could start mass production in next. These kinds of circuits are mainly
for digital system circuit designs. Currently, most of R&D in high tech industries uses
the ways to design and produce new circuits.

The traditional ways of the design of digital logic circuit for standard logic, which is
greatly accepted by the public, is as follow:

!"Design circuits on the papers.
!"Weld or wire all elements by practice board.
!"Test circuit board by the tools such as multifunctional meter, logic probe, oscillator

display, and functional generator.
!"Correct circuit designs and circuit boards by adding or decreasing elements and by line

jumping and line cutting testing.
!"Assign a third party to produce circuit sample boards; after testing and correcting sample

boards, start mass production.

Designing circuits on papers is very ineffective and inefficient. It is not easy to edit
and make a change on papers. It is also unattractive, time consuming, and not easy to
store. Except engineers having great experience in circuit designs, without scientific
verification, there will definitely have a great of mistakes in designs. Moreover,
workers use practice board to weld or wire all elements. It is going to make the job
more complicated, time consuming, and defective. In order to weld all the elements,
the size of a board used for standard logic very big. It is hard to decrease the board
size, and, thereafter, against the market trends requiring light and small circuit boards.

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

As Standard logic is not going to be on production lines, we could predict that the
way to design circuits will not be accepted by the market soon. It is a fact. It is the
trend in the market.

1.2.2 Integrated Digital Logic Design

Environment

Because PCs functions are more and more, memory size is larger and the prices are
lower than before, the world PC users are increasing significantly. As a result,
electronic design automatic (EDA) is greatly available in the market. The EDA
software can be used in PC platform. EDA software offers the functions including
graphics, texts, and waveform entry. It offers a great user-friendly environment to
modify designs and manage files and we called this is the scientific ways to manage
files. EDA software also gives users the environment to scientifically verify circuits:
functional simulation and timing simulation. With the two simulations, new comers
or less experiencing engineers almost can precisely complete the circuit designs.

With the increase of the high-density requirement and the adoption of new process,
PLD prices are decreasing gradually. Compared with standard logic, PLD,
consequently, can give users better devices with higher density, more efficiency, and
cheaper prices. This allows us to use programmable CPLD devices with SRAM
technology to design an experimental platform. Except SRAM CPLD devices, this
platform also has power, PC downloading interface, and I/O elements such as LED,
seven segments display, buzzer, clocks, switches, pulse switches, 4×3 keyboard, 8×8
dot matrix display, LCD display, and A/D & D/A circuit modules. The main purpose
of the platform is to offer a simple and accessible environment to verify circuits and
to reduce the time of circuit design. To perform the process, we have to download the
circuits to the SRAM CPLD devices in the platform first, and then give required
clock or input signals, inspect the results to ensure if the circuits meet specifications.

To integrate PCs, EDA software, and experimental platform, we will briefly introduce
the general flow of integrated digital logic design in Figure 1.3. We use EDA
software on PC to make design entry and to simulate circuits. To verify the designed

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

circuits, we need to download “Configuration Bits” to SRAM CPLD devices in
platform by the cables connecting between PC and the platform. If there are still
defects after testing, we go back to the previous steps: modifying the designs,
re-doing the simulation, downloading the circuits and re-testing the circuits until
correct. After circuits are finalized, we then could produce the circuits.

Figure 1.3 General flow of integrated digital logic design

Figure 1.4 details the flow of integrated digital logic circuit design. For this flow, we
will briefly discuss in Section 1.4, and have further discussion with real examples in
Chapter 4. Table 1.2 to 1.5, we will compare the differences between traditional and
integrated logic circuit designs in terms of tools, elements, circuit design flow, and
study requirements.

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

Figure 1.4 Flow of integrated logic circuit design

Table1.2 Comparison of traditional and integrated digital logic design (by tools)
Types Tools

Traditional Digital Logic
Design

#" Multifunctional Meter
#" Oscillator Display
#" Logic Probe
#" Logic Analyzer
#" Experimental board and Wiring Tool or
Welding Iron
#" …

Integrated Digital Logic
Design

#" Multifunctional Meter
#" Oscillator Display
#" Logic Probe
#" PCs and EDA Design Tools
#" Experimental Platform

Design Entry Functional Compilation

Functional Simulation

Design Compilation

Floorplan

Timing Simulation

Programming
/Download and Test

OK

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

Table 1.3 Comparison of traditional and integrated digital logic design

(By elements)
Types Elements

Traditional Digital Logic
Design

#" Resister
#" Capacitor
#" LED, Seven Segment Display, Dot

Matrix Display, LCD
#" SSI, MSI, LSI
#" A/D, D/A
#" Transistor, Amplifier
#" VLSI Chips
#" Wild Spread PCB
#" …

Integrated Digital Logic
Design

#" Resister

#" Capacitor

#" LED, Seven Segment Display, Dot
Matrix Display, LCD

#" PLD components

#" A/D, D/A

#" Transistor, Amplifier

#" VLSI Chips

#" Compacted PCB

#" …

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

Table 1.4 Comparison of traditional and integrated digital logic design

(By circuit design flow)
Types Circuit Design Flow

Traditional Digital Logic
Design

#" Specification Definition

#" Circuits Design on Papers (Only
Schematic Entry)

#" Chips Selection

#" PCB Welding or Wiring

#" Circuit Testing and Modifying

電路修改Integrated Digital Logic
Design

#" Specification Definition

#" Data Input (Including Schematic, Text,
and Waveform)

#" Design Compilation

#" Design Simulation

電路驗證

Table 1.5 Comparison of traditional and integrated digital logic design

(By study requirements)
Types Study Requirements

Traditional Digital Logic
Design

#" Great Experience and Knowledge
Needed

#" Use of Various Equipment

#" Time Consuming and Great Experience
Requirement for PCB Welding or
Wiring

#" Problems with Keeping Design
Information

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

Integrated Digital Logic
Design

#" Less Experience and Knowledge
Needed

#" Decrease of Using Various Equipment

#" Time Saving, Ease of Understanding
the Knowledge, and Good Information
Maintenance, Reuse of Information,
and Convenience of Modifying Design
Data by Computer Aided Design

#" Decrease of PCB Welding or Wiring

To the integrated digital logic design flow, we have following conclusions:

1. EDA computer aided design can effectively help us to learn new knowledge

and save time. It can also keep design information well; reuse and modify

the information easily.

2. It decreases the work of welding or wiring circuit boards. It also reduces

defects from human factors.

3. It has “Design Entry→ Circuit Simulation→ Downloading Testing”

streamline process, which is just right to today faster circuit development.

4. By performing the above process, PCB samples are almost completed and

finalized, and have fewer defects. We then could decrease the possibilities

to reproduce another samples and therefore shorten the developing time.

5. Because CPLD has great programmability, we could make samples and

perform “Design Entry→ Circuit Simulation→ Downloading Testing”

process at the same time. It helps us to shorten or avoid the time to wait for

samples. (Note: LP-2900 is completed by this development mode.)

6. Because CPLD has great higher gate counts which can integrate many logic

chips in a small board.

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

The integrated digital logic design flow can also be lectured in school. Instructors can
introduce theories first, talk design and simulation next, and then prove the theories
by downloading and testing circuits. Students will well understand the theories after
taking the course. Each of theories or design examples can been proved by testing in
class immediately. Students will have great impression and understanding, and so feel
confident, willing to study further knowledge about digital logic. Unlike the flow of
integrated digital logic design, the flow of traditional digital logic design will not
have IC simulation after the introducing theories and design examples. It requires
users to weld circuits or put components on breadboards by her/himself to test
circuits. Welding process is very time consuming, plus bad connection in breadboards
and human factors can cause faulty problems and prolong the processing time.
Student might feel discouraged and only understand one or two simple logic designs
and practices. If so, there will have no hope and improvement for our digital circuit
design. Isn’t it?

1.3 Programmable Logic Device - PLD
In previous section, we have mentioned that engineers could use Standard/Discrete
Logic (e.g. TTL/COMS 74/54 family) and ASIC to make circuit boards. ASIC shown
in Figure 1.2 can be divided into 4 different catalogers: Programmable Logic Devices,
Gate Array, Cell-Based IC, and Full-Custom IC. However, higher performance,
high-density logic integration, greater cost-effectiveness, and short development
cycle are the four key factors considered by customers to buy chips. “Higher
performance” is clock speed rate or coherent signal propagation, and is closely
related to circuit process and architecture. For “high density logic integration”, it
means that the device can integrate more logic gate counts in same area. This is one
of the goals when engineers design circuits in the second run. They try to put more
circuits in a smaller area to reduce PCB space and cost. “Greater cost-effectiveness”
is of performing the same performance of circuit with less expense. “Short
development cycle”, it obviously means to shorten development period, including the
stages: design entry, compiling process, simulation, and programming as well as PCB
testing. Definitely, the shorter developed time the better to catch up time to market.
From the comparison shown in Table 1.1, PLD has greater advantages than
Standard/Discrete Logic for all comparison items, but is inferior to Full-Custom IC in
density and cost.

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

Programmable logic device (PLD) is a kind of IC. It has a user-configuration function,
which allows users to customize their logic functions including Boolean expression
and/or registered function. It is quite different from TTL/COMS standard logic that
only provides fixed functions in early stage. As PLD density is increasing and the
new process is adopted, prices are gradually decreasing, and therefore PLD has been
able to offer higher density, higher performance, and lower prices than standard logic.
It is becoming very valuable in the market.

All devices that come with user-configuration functions can be seen as PLD devices.
They include PAL/GAL devices with the simple, low-density, low-pin-count features,
field-programmable gate array (FPGA) with high-density and high-pin-count features,
and complex PLD with high-density and high-pin-count feature. Those PLDs have
their own different internal structures and internal memory design models. It is
depended on the needs and the sizes of the circuits to select devices properly. To PAL,
it is a simple programmable logic device, which has gate counts from 100 to 1000
and IC pin counts within 28 pins. Bipolar process is used for PAL, which is an old
product and can only record once and cannot delete old data. PAL has the potential of
faster speed, but it can consume more electric power. For GAL, it is also a simple
PLD, but is mad CMOS. GAL can rewrite and delete data many times. Its speed rate
is slower but power consumption is less than PAL.

FPGA and CPLD are made by CMOS. Currently there are five techniques used in
FPGA/CPLD, and those are EPROM, EEPROM, FLASH, SRAM, and Anti-Fuse.
FPGA has higher density. The difference from CPLD is of that FPGA has less logic
gates and focuses on registers. However, FPGA routing is complicated, causing the
unfixed and longer timing delay. For students, it definitely is not easy to understand,
and has to take longer to study the knowledge. Currently, there are some key
suppliers in the market such as XILINX, Actel, Atmel, and AT&T. Among them,
XILINX is the biggest supplier having the greatest market share in the market. CPLD,
on the other hand, can rewrite and delete date unlimitedly and fix timing delay. It is
also easy to use and make designs. The key CPLD suppliers include AMD, ALTERA,
Lattice, Cypress, and ICT, etc. Among them, AMD and ALTERA are the two biggest
suppliers in the market. (See Appendix A - PLD Suppliers and Main Products.)

Presently, PLD is applied in telecommunications such as mobile phones and radio
bases, etc. It is also used in data communication network such as LAN, ATM, and

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

printers as well as scanners. For sure, it will be promoted into TV game and
educational markets in the future.

PLD is constructed by configuration cell, logic cell, and interconnect. Configuration
cell is a kind of memory. Engineers can program the cell to remember the connection
processes between I/O pins and logic cells, between logic cells and logic cells, and
between logic cells and interconnect. The process of those configuration cells is
called “technology”, and all current PLD application technologies are listed in Table
1.6.

Table 1.6 Technologies of PLD configuration cell

Technologies Re-configurable Erase Methods Types Security

EPROM Yes Ultraviolet Ray Nonvolatile Yes

EEPROM Yes Electrical Erase Nonvolatile Yes

FLASH Yes Electrical Erase Nonvolatile Yes

Anti-Fuse No --- Nonvolatile Yes

SRAM Yes Power Off Volatile No

Logic cell has two main design trends. One is “Macrocell” with the structure of “sum
of production term”; the other is “logic element” with the structure of “Look-up
Table” (LUT). In Macrocell, all productions are summed up for exclusive-OR
operation and then connected to a programmable flip-flop. Thus, Macrocell has
greater logic capacity, and is only constrained by the number of productions (It also
called “P-term”.) A Marcocell usually has 20 to 40 logic gates. Logic element is
usually made with 4 to 8 input LUT circuits, 1 or 2 programmable flip-flop, one
faster carry circuit, and one sequentially-connected circuit to increase fan in (speed
will not be affected a lot after sequentially connecting.). A logic element usually has
10 to 20 logic gates, and therefore a logic element is basically smaller than Marocell.
PLD with sum of production term has more logic gates, and so is very suitable for the
circuits requiring more combination logic designs. On the other hand, PLD with logic
elements is useful for the sequential logic circuits requiring more registers.

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

Interconnect structures give channels to deliver information from I/O ports to logic
elements. Currently “FPGA segmented interconnect” and “CPLD continuous
interconnect” are two mainly connection types, and this is the key difference between
FPLD and CPLD interconnects structures. FPGA segmented interconnect uses
varying length lines connected by pass transistor or anti-fuses to connect logic cells.
Each connecting point has an on/off element to control connecting direction. To build
up required interconnection, all signals will have to pass through cells by several long
or short channels. Thus, whenever we modify a design, the routed path will be
different and delay changes, and consequently, this segment connection cannot
predict the time delay by interconnection. For continuous interconnection, it uses
metal wires to round elements in horizontal and vertical directions. Each metal wire
only can transfer one signal, and this is what we called “global” interconnection.
Several (8 to 16) logic elements are collected in one Logic Area Block, LAB.
Elements are connected to each other by local interconnection first and become LAB
blocks, and then, LAB blocks are linked together to complete the whole connection
by global interconnection. As a result of this interconnection, the delay is predictable.

To sum above, we have following conclusions:

!"Because there is a complicated wiring job to decide, the time to translate
FPGA is longer than CPLD.

!"Because CPLD interconnection is simple, it quite reduces wiring spaces,
and the number of gates can also be increased a lot by use of three-metal
process.

!" FPGA is helpful for data path application such as pipeline design. CPLD,
comparably, is useful for logic applications.

ALTERA is a US company. It is specialized in PLD and sells all different PLD products,
including PLD (Programmable Logic Device), PAL (Programmable Array Logic),
PLA (Programmable Logic Array), GAL (General Array Logic), and FPGA
(Field-Programmable Gate Arrays), etc., popular in the current market. In early age,
an electronic engineer had to use breadboard and many logic elements to verify a new
circuit design. Welding devices and correcting mistakes also made an engineer worn
out. Contrarily, today an engineer can just use PLD and remodel the circuit designs in
computer. It is just like making your own circuit devices on your own tables. It
cannot just save welding time but also avoid any mistakes caused in welding process.

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

Moreover, it can reduce the PCB space to meet the market trends requiring smaller
and lighter electronic products.

Because digital logic can be calculated by mathematics, we can use different circuits
to achieve the same circuit functions shown as in Figure 1.5. Initially, an AND-OR
can replace AND-OR-AND integrated circuit. We then assume we would like to
make a simple structure which connections can be changed, as we need.

Figure 1.5 AND-OR-AND logic circuit

Figure 1.6 PLD evolution

Similarly, the structure in Figure 1.6b is a simple single structure. It is made by
several multi-input AND gates and OR gates. Each AND gate input uses the same
input signals that can be connected to AND gate directly or inversely. However, not
all input signals will be connected to AND gates. Users can decide if input signals

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

would be connected to AND gate. For example, if we have the logic function F = {/A
& B & D} + {C & D}, we can design a circuit as Figure 1.6b. If users have
different circuit designs, they would also get different functions, and that is the first
idea for programmable logic. For further explanation, we only have to extend the
structure in Figure 1.6b, and logic functions will become more complicated
consequently. This multi-input AND gates are called as P-term. For old PLD
integrated circuit, it only has multiple P-terms like the structure in Figure 1.6b. Today,
this kind of structure cannot meet most of engineers’ demands. This is because of less
gate counts and lack of Flip-flop. Therefore, in Figure 1.7, we add Latch and channel
selection functions to the basic structure in Figure 1.6.

Until now, the general logic we have talked about is only a general structure. It
requires users to decide which connection points they would like to link together and
would not. Of course, referring to element structure, users can decide whether to
make an interconnection for all circuit functions. For elements requiring less
interconnection points, it might be acceptable. However, if elements have more than
thousand interconnection points, this job would become very tedious and users would
easily make mistakes. Thus, we need computer aids to help us to design circuits
easily, and then use the software to make interconnection plan. Thereafter, we know a
completed programmable logic world have to be done by programmable hardware
and software to help design interconnection. For the two parts, we will discuss in the
following section.

Figure 1.7 Macrocell structure

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

First, we would like to introduce ALTERA hardware. Usually PLD application is
restricted by the hardware including inner gates and I/O pins. ALTERA produces gates
from 150 to 1 million and pins from 20 pins to 560 pins for its devices. Definitely,
those numbers are still being updated, and we know ALTERA can give users broad and
various selections. Beside that, interconnection is also one of ALTERA’s unique features.
Because ALTERA uses metal wires for its interconnections, and it adds extra metal wire
connection between any two Logic Blocks. We call this connections as “continuous
interconnect”, different from “segmented interconnect”. Because of this difference,
its interconnection time delay is predictable and would not be affected by
interconnection path.

1.3.1 ALTERA CPLD:

Until 2000, ALTERA devices can be divided into 10 different families:

1. CLASSIC

2. MAX3000

3. MAX5000

4. MAX7000

5. FLASH LOGIC

6. FLEX6000

7. FLEX8000

8. MAX9000

9. FLEX10K

10. FLEX20K

MAX7000 family has members: MAX7000, MAX7000E, MAX7000S, MAX7000A
and MAX7000AE, etc. FLEX10K family has members: FLEX10K, FLEX10KA,
FLEX10KB, and FLEX10KE, etc.
In the programmable logic world, the unique feature is a logic cell can be reproduced
continuously in a chip. The difference between higher capacity and lower capacity of

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

devices in the same family is the amount of the reproduced logic cells. Therefore, we
could understand other devices from the smallest device in the same family.

Other relevant information, please see Appendix A and B.

1.4 PC Aided Digital Logic Design
In previous section, we have briefly talked about ALTERA devices, and know
ALTERA has all family devices. However, we still have many questions need
for solutions. As a device has a lot of interconnection points, if users have to make
connected-or-disconnected decisions for all points, it will obviously increase the
difficulties to the job. Thus, a good PLD must have great design software to help
users complete the work effectively and efficiently, and so ALTERA is currently more
focusing on software development while designing great family devices.

PLD Computer Aid Digital Circuit Design means engineers could use computers to
complete PLD digital circuit design. This is a new design environment. It offers an
integrated data management, hierarchical design, and multi-window environment.
The design process includes four steps: design entry, compilation process,
verification simulation, and PLD programming. The first step is “design entry”. It
includes graphic editor, text editor, and waveform editor. A hierarchical mix entry,
which is a combination with graph, text, and waveform, is the best way of design.

Compilation is the process including the testing of electric feature of entry circuits
(e.g. short cut and source less input, etc.), circuit synthesize and netlist extract for
functional simulations, circuit floorplan (that is to fit the circuit into PLD), and the
netlist extract for timing simulation as well as the creation of PLD programming files.
Verification simulation can be divided into functional simulation and timing
simulation. Functional simulation is actually timing simulation when we assume
propagation delay and setup time is zero. Timing simulation, on the other hand, is the
simulation performing based on the value of the propagation delay and setup time
from actual circuit floorplan into real PLD. Functional simulation could roughly
verify circuits first to ensure circuit functions meet specifications. Timing simulations
then further ensure the circuits work well in PLD.

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

Then after verification, programming PLD is a must process. There are two
technologies: (1) download with SRAM technologies; (2) programming with
EPROM, EEPROM, and FLASH are adopted in PLD. The download technology is
useful during R&D and learning periods; programming, however, is very helpful
when circuits are well developed already or circuits would not be modified in a short
time. No matter which technologies we would use, it needs to have development tools
to complete the work effectively and efficiently.

From a design diagram, the PLD Computer Aid Digital Circuit Design System is the
great tool for engineers or students to complete their work efficiently. Because the
systems can offer great circuit entries, verification simulation, devices programming
environments as well as integrated data management, they shorten the time to design
new circuits and catch up the time to market efficiently. Besides the above basic
functions, PLD Computer Aid Digital Circuit Design System also has the following
features:

1. Hierarchical design with mixed entries: Graphic editor is quite useful for a small
logic design. Because the transformation can easily completed from Truth table
or state diagram to logic gates by workforce. Logic gates are then entered into
the form of graphic editor. However, it will become very time consuming and
easy to make mistakes to complete the transformation by workforce when trying
to make a big logic design. Therefore, like writing any programs in C language,
we use texts to describe circuits and have computers, which specialize in
computing and mapping algorithms to handle the transformation, making circuit
modification easy. Moreover, a circuit has hundred thousand of gates, which
have great duplication, and graphic entry becomes a hard and complicated task.
No matter in terms of design or fault detection, graphic entry is more difficult
than text. Beside graphic and text entries, we could also use waveform entry to
describe circuits. By wave entry, we could know the output that input data
would be related to, if we assume the circuits as a dark box. The computers are
asked for the generation of Truth table or state diagram. Thus, the generated
circuits might not be the simplest ones. The three entries have their own benefits

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

and drawbacks. They are all useful in different areas. If we use the three
together, we could further improve efficiency in design and affectivity in
teamwork. To combine the three together, hierarchical design function, therefore,
is essential.

2. Structure independent: During the early stages of design entry, functional
compilation (including logic synthesis and minimization as well as netlist
extract for simulation), and functional simulation, engineers do not have to
concern which PLD device will be used and what the internal structure is. This
is what we called “Structure Independent”. Until the end of design
compilation, by technology mapping algorithms, we then place synthesized
circuit on the selected PLD. If the circuits are too big to be fitted in a piece of
device, we might partition the circuits before placement or change a bigger
device. This unique feature gives a great flexibility for future use of PLD.

3. Providing industry-standard LPM: LPM element is a macro-function, which
allows users to change its sizes based on parameters. For example, the length of
LPM counters and LPM adders is a parameter that can be changeable; the type
and the number of bits of LPM multiplexer and LPM register are another
changeable parameters. The LPM provides a simplified design entry and has
better circuit integration.

4. Providing time driven compilation: To increase performance of the designed
circuits is the goal for engineers in the second stage, or to meet the propagation
delay (tpd) and the speed (fmax) are defined on the deign specification. If a
development system could provide time driven compilation, it could reduce
much complicated work based on the user specification to synthesize circuit
integrate and plan as well as allocate circuits.

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

5. Providing multi-device simulation function: When designing big circuits, we

usually partition circuit into several smaller PLD devices. At this moment, a

singular-device simulation might have some problems and cannot fully and

efficiently assist engineers to complete their whole design projects. Therefore, it

would be better to have multi-device simulation functions to make design

process more smoothly, easily, and correctly.

6. Great Design-rule checking ability: In design process, if development systems

could early find some unreliable logic problems such as static hazards, race

condition, multi-level clocks and asynchronous input, etc., we could greatly

decrease circuit failures. Therefore, this feature can much shorten the leading

time to launch new circuits in the market.

7. Providing standard CAE interface: To connect with other EDA design systems,

we should systems that have interfaces able to read and write VHDL and EDIF.

Because of the interface to connect with other systems, we could share design

resources and conveniently and efficiently complete the design projects with our

team members.

In the next section, we will detail the EDA tool of ALTERA-- MAX+PLUS II.

1.4.1 ALTERA EDA Tool-MAX+PLUS II
ALTERA EDA tool is a kind of software called “ MAX+PLUS II”. Until 2000, it already
has version 9.x. This software can support designers from design entry to the creation
of programming file that programs interconnection as well as simulation process. In
another words, designers can use the same software to complete all design process.
There is no need to get another software from third party to support ALTERA hardware
devices. Once designers familiar with MAX+PLUS II, all logic design can be totally
completed by this same software. In this case, designers or students do not have to

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

continuously learn different software and therefore save more time. When designers
need same-function logic circuit, they do not have to repeat the design process again
and only have to save the circuit as an element in MAX+PLUS II firmware library.
By calling the element, designers can add the circuit into their designs, and
interconnect each of element inputs and outputs to reduce lots of work for logic
design entry.

Figure 1.8 MAX + PLUS II functional diagram and design flow

MAX+PLUS II is a window application tool. It ca be used with Windows 95/98 and
Windows NT. At the same time, ALTERA also offers a workstation edition. Therefore,
the use of MAX+PLUS II is the same as the use of general window applications.
Mostly it operates with graphs. Figure 1.8 indicates MAX+ PLUS II functional
diagram and design flow. Fundamentally, a programmable logic design has 3 major
steps:

Design entry: In previous section, we already know workforce cannot
program all interconnection points efficiently, and it will become more
difficult for a bigger circuit design. Thus, we need a user-friendly tool to
describe the logic circuit that we want. It is just like programming.
Designers can use C language to write programs. They can also use
assembly or even machine codes to write programs. It is easy to understand
the advantages and disadvantages of design entry by using C language.
Figure 1.9 indicates the graphic entry in MAX+PLUS II.

Design compilation: After design entry, incorrect description or electric faults
can be detected by compilation. Once all circuits are correct, compilers will
follow designers’ direction to synthesize circuits into selected devices (that is
logic synthesis and floorplan.), and generate programming files for programming
devices.

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

Verification and programming: After completing above two steps, we already
have a programmed device. However, there might still have some problems. For
example, design description is accurate but circuit function is incorrect. In
another words, it is because design is incorrect (logic error) or devices cannot
meet the real requirements (timing error). Therefore, it is still necessary to use
real circuits to verify the devices and ensure they are applicable in the real world.
Simulation, as a result, could identify circuit operation status without physical
circuits. It greatly helps designers to detect faulty problems in early design
process.

Figure 1.9 Graphic entry in MAX+PLUS II

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

The following is MAX + PLUS II functional description:

Design entry：Fundamentally, MAX+PLUS II has three ways to input designs. Those

three can be used together in one circuit design; that is, they can mutually use
together. Designers can choose the best ways to make each partial circuit as
“sub-circuit” separately, and combine all of them together finally. In MAX+PLUS II,
it also has had standardized 74 family functional elements. Designers can call the
elements out and use them directly. MAX+PLUS II software also provides the
features of Library of Parameterized Modules (LPM). Designers only need to set up
LPM parameters in advance. Various functional circuits will be generated
automatically with different bits and functions. For example, memory, adder, and
multiplier are parameterized.

Graphic entry: Graphic entry is the most acceptable technology by designers.
To complete design entry, it only requires interconnection between
functional blocks, like drawing circuit diagrams. Figure 1.9 is Graphic entry
in MAX+PLUS II.

Text entry: Though it is easy to design circuits by graphic entry, it pre-requires

all designs completely first, including Truth-value table or state diagram
needed to be reformed into logic circuits by workforce, and then entered in
graphs. However, once a design fault is found and needs to be corrected, we
have to redo all calculation and design entry. Contrarily, if by text editors,
we only have to correct the design fault, not to redo the whole process, and
then have computers to handle all the calculation, and that is computers’
expertise. For sure, this is just one of text entry benefits. Not like graphic
entry, text entry does not have hundreds or thousands of graphs needed to
enter. It makes the jobs easier on circuit design and error detection for
devices with thousand gates. MAX+PLUS II totally have three description
languages: ALTERA Hardware Description Language, AHDL, Very high speed
integrated circuit Hardware Description Language, VHDL, and Verilog
HDL. Figure 1.10 is Text entry in MAX+PLUS II.

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

Figure 1.10 Text entry in MAX+PLUS II

Waveform entry: Waveform is the third way of MAX+PLUS II design entries.
It allows users to describe circuit functions by drawing waveform directly.
Figure 1.11 is Waveform entry in MAX+PLUS II.

Industry-standard CAE entry: EDIF is an industry-standard CAE netlist file.

MAX+PLUS II uses this standard file format to communicate with other
CAD software such as Synopsis, Viewlogic, Cadence, and Mentor Graphics,
etc. It also offers functional library for them. Currently, MAX+PLUS II has
two standards. One is EDIF200 and the other is EDIF300.

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

Figure 1.11 Waveform entry in MAX+PLUS II

Design compilation: No matter what design technologies and ALTERA devices
are adopted, to complete logic synthesis after verifying a circuit’s electric
features, it is necessary to pass compilation process shown in Figure 1.12.
Once compilation is finished, we will get programming files and some
information such as the reports of delay status and pin count arrangement.
During this process, it also provides some convenient tools to help designers
find faults and increase efficiency. The functions of compilation are
described as below:

(1) Design-rules checking: In the early of compilation, it can detect potential

problems from design files, such as oscillation and pointing out location as a
reference for designers.

(2) Logic synthesis and fitting: This is the core part of the whole software. It can
give you logic synthesis and circuit fitting based on the PLD structures you
choose. After giving synthesis and fitting, it then decides all interconnection
for the whole circuit design.

(3) Multi-device partitioning: If a design file cannot be fitted in a certain
selected device, software will automatically divide the design file into two
more devices. This process could be fully or partially done by workforce. It

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

allows us not really separate design files, and only has to reset data for future
use.

(4) Timing-driven compilation: This function allows users to set up some timing
parameters such as delayed time and highest frequency, etc. A compiler will
follow the parameter setting and try to come out desired solutions on its best.
However, because of the structures of logic elements, designers can take
advantages of time-driven compilation only when adopting the devices of
FLEX8000 and FLEX10K families. If adopting other family devices, it is not
necessary to have this kind of function.

(5) Automatic error location: During compilation process, whenever a design fault
is found, systems will show an error message. By using automatic error
location features, the systems will automatically open the files that have errors
occurred, and then indicate the error locations clearly.

Figure 1.12 Design compilation in MAX+PLUS II

Verification and programming:
(1) Simulation: Designers can use waveform editor to define the input waveform

of the designed circuits. After entering waveforms, the software can
automatically simulate and display output waveforms for inspecting design.
In MAX+PLUS II, there are three simulations: 1.) Timing simulation
including delay time and setup time of devices selected by designers, 2.)
Functional simulation excluding delay time and setup time of devices

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

selected by designers, and 3.) Multi-device simulation allowing users
interconnect several ALTERA devices and then simulate all together.

(2) Timing analysis: This function helps designers to understand timing
performance by numbers at the beginning of design projects. The timing
performance, for example, is as delay time, setup time, and registered
performance analysis shown in Figure 1.13 to 1.17.

 Figure 1.13 Timing simulation in MAX+PLUS II

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

 Figure 1.14 Functional simulation in MAX+PLUS II

 Figure 1.15 Time analysis in MAX+PLUS II—delay time analysis

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

 Figure 1.16 Time analysis in MAX+PLUS II—setup time analysis

Figure 1.17 Time analysis in MAX+PLUS II—registered performance analysis

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

(3) Device programming: When software completes all process, configuration

data will be programmed or written into relative devices for testing

hardware.

The above is the introduction of ALTERA devices and software. Currently, ALTERA
provides free software of MAX+PLUS II for users with registration requirement. The
operation process of the free software is the same as commercial version but only
available for the devices of the families of CLASSIC, MAX5000, EPM7032,
EPM7064, and EPM7096 as well as EPF8282. Meanwhile, it does not support
waveform entry, and multi-device partitioning and simulation, etc. Other than that,
the rest of the functions are exactly the same as MAX+PLUS II commercial version.
About the user guide, MAX+PLUS II has great on-line help. We will further discuss
how to set up and use the software of MAX+PLUS II Baseline 9.23 in Chapter 4.

1.5 Experimental Platform
An experimental platform is essential in the integrated digital logic design
environment. It not just requires SRAM CPLD device, but also power, downloading
interface, and I/O elements which include LED, seven segments display, buzzer,
clocks, switches, pulse switches, 43 keyboard, 8×8 dot matrix display, liquid display,
and A/D & D/A circuit modules. The main purpose of the platform is to offer a
simple and accessible environment to test circuits and to reduce the time needed for
circuit design.

1.5.1 LP-2900 CPLD Logic Design

Experimental Platform

In Figure 1.18, LP-2900 CPLD logic design experimental platform was the new
product of Leap Company in 1999. The company currently focuses on the
development of the logic experimental platform, which has the learning environment
that integrates design, simulation, and verification. The development also has the
educational features such as easy setup, great access, quick response, and progressive

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

learning. It is based on ALTERA EPF10K10TC144-4 CPLD to develop a multi-function
logic design experimental platform. The platform has CPLD device board, I/O
element experimental board, PC download interface, and power.

$"CPLD

On the CPLD device board, there are an ALTERA 10K device, an EPROM device socket,
a reset switch, and a pin status display LED which is a surface mounted device
(SMD). ALTERA EPF10K10TC144-4 CPLD devices provide flexibility and convenience
for continuously downloading and programming new circuits. The sockets of
EPROM devices can be plugged EPROM devices programmed with “configuration
data”, providing another way to program EPF10K10TC144-4 CPLD devices. A reset
switch changes 10K devices from user mode to command mode. After circuit
configuration and circuit reset, 10K devices would back to original user mode. A pin
status display LED is a SMD device that displays the status of all pin counts, making
circuit defects easy to find out.

$"I/O element experimental board

The big board under CPLD devices is I/O element experimental board. This big
board totally has 12 different I/O elements including: 1.) 4 sets of red, yellow, and
green LED; 2.) 6 common cathode 7-segment displays; 3.) One buzzer; 4.) Two
electronic dices; 5.) One clock circuit; 6.) 3 sets of 8-bit data switches; 7.) 4 pulse
switches; 8.) One 4×3 keyboard; 9.) One 8×8 dot matrix display; 10.) One LCD
display; 11.) A/D & D/A circuit modules, and 12.) 8051 module. The experimental
board almost includes all I/O elements generally used in digital logic circuits. It
provides a whole completed learning environment or fast prototyping circuit design
environment.

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

Figure 1.18 Overview of LP-2900 CPLD logic design experimental platform

$"PC Printer Download Interface

To program 10K devices, a download interface provides a great convenient parallel
channel to download “configuration data” from a PC printer port. It is not necessary
to install or remove interface, but plug in printer cables.

$"Power

AC 90V〜260V 50/60Hz, 2A input provides power for all circuits and has short

circuit protection.

Other reference, please see Chapter 9 in this book.

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

1.6 Evaluation and Test
Please answer the following questions to review this chapter.

#" Do you know what benefits of digital systems are better than analog systems?
#" Do you know what characteristics A/D converters and D/A converters play

respectively?
#" Do you know what design environments are introduced in this chapter?
#" Could you indicate what types of devices are been used by engineers today?
#" Do you know why standard logic devices would be gradually disappeared?
#" Do you know the factors making “Integrated Digital Logic Design

Environment”?
#" Could you name some of PLD suppliers?
#" Could you explain why ALTERA 8K and 10K devices are able to continuously

download and program new circuits?

 CPLD Logic Circuit Design and Practice Introduction to Digital Logic

CHAPTER 2

Numerical System

LEAP

In the digital world, it is unavoidable to describe something by numbers. How many

numerical systems expressing numbers are in the digital world? How do they

express? In this chapter, we will focus on conversion and expression of those

numerical systems. We also will introduce binary arithmetic and BCD codes in this

chapter.

2.1 Numeric Expressions
Because humans have ten fingers and toes, naturally we would like to count

numbers by our fingers, and that is what we called “decimal system”. In another

words, each number is from 0 to 9 (unit, decimal, hundred)，and then carry to next

digits after counting to 10. Decimal system is the most popular numerical system in

our lives. Beside decimal, there also have binary, octal, and hexadecimal commonly

used in numerical systems. Table 2.1 indicates the common expressions of the

numerical systems.

A numerical system’s base is the number of the symbols included in this system.

Decimal system, for example, has 10 symbols of 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

Therefore its base is 10. Each weight in numerical systems is the multiple of the

base of its previous weight. For instance, 2725D is a four-digit number.

 5 ―――――― its weight is 100

 2 ―――――― its weight is 101 = 100 (the weight of 5)×10

 7 ―――――― its weight is 102 = 101 (the weight of 2)×10

 2 ―――――― its weight is 103 = 102 (the weight of 7)×10

 CPLD Logic Circuit Design and Practice Numerical System

Table 2.1 Numerical system common expression

Numerical System Expression Example

Decimal Add D (decimal) after the last digit (omissible) 1245D or 1245

Binary Add B (binary) after the last digit 01010101B

Octal Add O (octal) after the last digit 4767O

Hexadecimal Add H (hexadecimal) after the last digit 1A2FH

Therefore, 2725D is 2 × 103 + 7 × 102 + 2 × 101 + 5 × 100.

In general, an r-base numerical system uses the numbers from 0 to r-1. Value N

could be express by an r-base system as below:

N = an ×rn + an–1 × rn–1 + an–2 × rn–2 + an–3 × rn–3 +…+ a1 × r1 + a0 × r0

In the equation, “n” represents 0, 1, 2, 3, … The symbol “r” is the base of the

numerical system, and “a” is the number from 0 to r – 1.

For value N from 0 to 1 could be expressed:

N = a–1 × r–1 + a–2 × r–2 + a–3 × r–3 + a–4 × r–4 +…+ a–n+1 × r–n+1 + a–n × r–n

Thus, a decimal fraction 0.8125 is:

0.8125 = 0.8000 + 0.0100 + 0.0020 + 0.0005

 = 8 × 10–1 + 1× 10–2 + 2 × 10–3 + 5 × 10–4

 = a–1 × 10–1 + a–2 × 10–2 + a–3 × 10–3 + a–4 × 10–4

Where a–1 = 8, a–2 =1, a–3 =2 and a–4 =5

 CPLD Logic Circuit Design and Practice Numerical System

2.1.1 Binary
As mentioned before, a numerical system base is the number of the symbols used in

the system. For a binary system, it has 2 symbols: 0 and 1. Therefore its base is 2. In

numerical systems, each weight is the multiple of the base of the previous weight;

for example, 01001100B:

 0 ―――――― its weight is 20

 0 ―――――― its weight is 21 = 20 (the weight of 0) × 2

 1 ―――――― its weight is 22 = 21 (the weight of 0) × 2

 1 ―――――― its weight is 23 = 22 (the weight of 1) × 2

 0 ―――――― its weight is 24 = 23 (the weight of 1) × 2

 0 ―――――― its weight is 25 = 24 (the weight of 0) × 2

 1 ―――――― its weight is 26 = 25 (the weight of 0) × 2

 0 ―――――― its weight is 27 = 26 (the weight of 1) × 2

Therefore, 01001100B = 0 × 27 + 1 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 1 × 22 + 0 × 21

+ 0 × 20. For value N from 0 to 1, its binary expression is:

N = a–1 × 2–1 + a–2 × 2–2 + a–3 × 2–3 + a–4 × 2–4 +…+ a–n+1 × 2–n+1 + a–n × 2–n

The binary expression of 0.1101B is:

0.1101B = 0.1000 + 0.0100 + 0.0000 + 0.0001

 = 1 × 2–1 + 1 × 2–2 + 0 × 2–3 + 2 × 2–4

2.1.2 Octal
Because a base is the number of symbols used in a numerical system, an octal

 CPLD Logic Circuit Design and Practice Numerical System

numerical system therefore has 8 symbols including 0, 1, 2, 3, 4, 5, 6, and 7, and its

base is 8. In a numerical system, each weight is the multiple of the base of the

previous weight. For further understanding, we make an example, 37014O:

 4 ―――――― its weight is 80

 1 ―――――― its weight is 81 = 80 (the weight of 4) × 8

 0 ―――――― its weight is 82 = 81 (the weight of 1) × 8

 7 ―――――― its weight is 83 = 82 (the weight of 0) × 8

 3 ―――――― its weight is 84 = 83 (the weight of 7) × 8

Therefore, 37014O = 3 × 84 + 7 × 83 + 0 × 82 + 1 × 81 + 4 × 80

For value N from 0 to 1, its octal expression is:

N = a–1 × 8–1 + a–2 × 8–2 + a–3 × 8–3 + a–4 × 8–4 +…+ a–n+1 × 8–n+1 + a–n × 8–n

Thus, the octal of 0.2154O is:

0.2154O = 0.2000 + 0.0100 + 0.0050 + 0.0004

 = 2 × 8–1 + 1 × 8–2 + 5 × 8–3 + 4 × 8–4

2.1.3 Hexadecimal
A base of a numerical system is the number of symbols used in the system. For a

hexadecimal system, its base is 16, having 16 symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,

B, C, D, E, and F. The letters A, B, C, D E, and F represent the values of 10, 11, 12,

13, 14, and 15. Each weight is the multiple of the base of the previous weight.

702a4cH, for example, is a six-digit hexadecimal number.

 CPLD Logic Circuit Design and Practice Numerical System

 c ―――――― its weight is 160

 4 ―――――― its weight is 161 = 160 (the weight of c) × 16

 a ―――――― its weight is 162 = 161 (the weight of 4) × 16

 2 ―――――― its weight is 163 = 162 (the weight of a) × 16

 0 ―――――― its weight is 164 = 163 (the weight of 2) × 16

 7 ―――――― its weight is 165 = 164 (the weight of 0) × 16

Thus, 702a4cH is 7 ×165 + 0 ×164 + 2 ×163 + a ×162 + 4 ×161 + c ×160.

For value N from 0 to 1, its hexadecimal expression is as below:

N = a–1 × 16–1 + a–2 × 16–2 + a–3 × 16–3 + a–4 × 16–4 +…+ a–n+1 × 16–n+1 + a–n × 16–n

The hexadecimal expression of 0.2c09H is:

0.2c09H = 0.2000 + 0.0c00 + 0.0000 + 0.0009

 = 2 × 16–1 + c × 16–2 + 0 × 16–3 + 9 × 16–4

2.2 Numerical System Conversion
Usually people use decimal systems for daily bases, but computers use binary or

hexadecimal systems. It is unavoidable to make a conversion between various

numerical systems. Normally we could find binary mutually exchanging with

decimal, binary mutually converting with hexadecimal, and hexadecimal mutually

converting with decimal.

 CPLD Logic Circuit Design and Practice Numerical System

2.2.1 Binary vs. Decimal Conversion

!"Binary-to-Decimal Conversion

It is very easy to convert an r-base number to a decimal number. It only needs to

sum up the products of all digits multiplied by weight values. For example:

101011.011B = 1 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 + 0 × 2 –1 + 1 ×

 2–2 + 1 × 2–3

 = 1 × 32 + 1 × 8 + 1 × 2 + 1 + 1 × 0.25 + 1 × 0.125

 = 43.375D

!" Decimal-to-Binary Conversion

In general, a value N that we usually called is a decimal. To make a conversion

from decimal to binary, we could use binary expression to find out each “a” factor.

The conversion process is shown as below:

 N = a–n ×2n + a–n–1 × 2n–1 + a–n–2 ×2n–2 + a–n–3 × 2n–3 +…+ a1 × 21 + a0 × 20

 = (a–n × 2n–1 + a–n–1 × 2n–2 + a–n–2 × 2n–3 + a–n–3 × 2n–4 +…+ a1) × 2 + a0

 (After N divided by 2, and the remainder is a0)

 = ((a–n × 2n–2 + a–n–1 × 2n–3 + a–n–2 × 2n–4 + a–n–3 × 2n–5 +…+a–2) × 2 + a1) × 2 + a0

 (After the quotient divided by 2, and the remainder is a–1)

 = (((a–n× 2n–3 + a–n–1 × 2n–4 + a–n–2 × 2n–5 + …+ a–3) × 2 + a–2) × 2 + a1) × 2 + a0

After the new quotient divided by 2, and the remainder is a–2. We then proceed the

same process until the quotient is smaller than 2.

For further explanation, we make an example, 43D converting to binary, as below:

 CPLD Logic Circuit Design and Practice Numerical System

) 43D Lowest bit

2) 21--------1

 2) 10--------1

 2) 5--------0

 2) 2--------1

 2) 1--------0

 Highest bit

 43D = 101011B

2.2.2 Octal-to-Decimal Conversion

!"Octal-to-Decimal Conversion

We already know it is easy to convert an r-base number to a decimal number and it

only needs to sum up products of all digits multiplied by weight values. Thus,

370.14O = 3 × 82 + 7 × 81 + 0 × 80 + 1 × 8–1 + 4 × 8–2

 = 3 × 64 + 7 × 8 + 1 × 8–1 + 4 × 8–2

 = 192 + 56 + 0.125 + 0.0625

 = 248.1875D

!"Decimal-to-Octal Conversion

In general, a value N that we usually called is a decimal. To make a conversion

from decimal to octal, we could use octal expression to find out each “a” factor. The

conversion process is shown as below:

N = a–n × 8n + a–n–1 × 8n–1 + a–n–2 × 8n–2 + a–n–3 × 8n–3 +…+ a1 × 81 + a0 × 80

 = (a–n × 8n–1 + a–n–1 × 8n–2 + a–n–2 × 8n–3 + a–n–3 × 8n–4 +…+ a1) × 8 + a0

 CPLD Logic Circuit Design and Practice Numerical System

 (After N divided by 8, and the remainder is a0)

 = ((a–n×8n–2 + a–n–1 × 8n–3 + a–n–2 × 8n–4 + a–n–3 × 8n–5 +…a–2) × 8 + a1) × 8 +

a0 (After quotient is divided by 8, and the remainder is a1)

 = (((a–n × 8n–3 + a–n–1 × 8n–4 + a–n–2 × 8n–5 +…+ a–3) × 8 + a–2) × 8 + a1) × 8 + a0

The remainder of the new quotient divided by 8 is a–2; follow the same process until

quotient is smaller than 8.

For example, 243D converting to an octal number is as below:

8) 243D

8) 30-------3

 3-------6

 243D = 363O

2.2.3 Hexadecimal-to-Decimal Conversion

!"Hexadecimal-to-Decimal Conversion

We already know it is easy to convert an r-base number to a decimal number and it

only needs to sum up products of all digits multiplied by weight values. Thus,

370.14 H = 3 × 162 + 7 ×161 + 0 × 160 + 1 × 16–1 + 4 ×16–2

 = 3 × 265 + 7 × 16 + 1 × 16–1 + 4 ×16–2

 = 795 + 112 + 0.0625 + 0.015625

 = 907.078125D

!"Decimal-to-Hexadecimal Conversion
Similarly, to make a conversion from decimal to hexadecimal, we could use
hexadecimal expression to find out each “a” factor. The conversion process is
shown as below:

 CPLD Logic Circuit Design and Practice Numerical System

N = a–n×16n + a–n–1 × 16n–1 + a–n–2 × 16n–2 + a–n–3 × 16n–3 +…+ a1 × 161 + a0 × 160

 = (a–n × 16n–1 + a–n–1 × 16n–2 + a–n–2 × 16n–3 + a–n–3 × 16n–4 +…+ a1) × 16 + a0

 (After N divided by 16, the remainder is a–0)

 = ((a–n × 16n–2 + a–n–1 × 16n–3 + a–n–2 × 16n–4 + a–n–3 × 16n–5 +…+ a–2) × 16 + a1) × 16 +

a0 (After the quotient is divided by 16, and the remainder is a–1)

 = (((a–n × 16n–3 + a–n–1 × 16n–4 + a–n–2 × 16n–5 +…+ a–3) × 16 + a–2) × 16 + a1) × 16 +

a0 (After the new quotient is divided by 16, the remainder is a–2)

Follow the procedure until the quotient is smaller than 16.

For example, 542D converts to a hexadecimal number as follows:

 16) 542D

 16) 33-------E

 2-------1

 542D = 21eH

2.2.4 Binary-to-Octal Conversion

!"Binary-to-Octal Conversion

Because an octal number could be referred to three binary numbers, shown in table

2.2. Therefore, when converting a binary number to an octal number, it only needs

to partition into groups with 3 digits in a group from the right to the left of the

binary number. If there are not enough 3 digits in the last group, add “0” on the left

side of the last digit. The divided groups could be orderly changed to an octal digit

by looking up a cross-reference list. For example:

 CPLD Logic Circuit Design and Practice Numerical System

1100110001B

↓

 001 100 110 001 B

 ↓ ↓ ↓ ↓

 1 4 6 1 O

Table 2.2 Octal-to-Binary cross-reference list

Octal Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

!"Octal-to-Binary Conversion

Conversely, for an octal-to-binary conversion, it only needs to follow the

cross-reference list shown as above to convert an octal digit to three binary digits.

For example:

 3 5 7 6 3 O

 ↓ ↓ ↓ ↓ ↓

 011 101 111 110 011 B

 CPLD Logic Circuit Design and Practice Numerical System

2.2.5 Binary-to-Hexadecimal Conversion

!"Binary-to-Hexadecimal Conversion

Because a hexadecimal number could be referred to four binary numbers, shown in

table 2.3. Therefore, when converting a binary number to an hexadecimal number, it

only needs to partition into groups with 4 digits from the right to the left of the

binary number. If there are not enough 4 digits in the last group, add “0” on the left

side of the last digit. The divided groups could be orderly referred to a hexadecimal

digit by looking up a cross-reference list. For example:

1101110001B

↓

 0011 0111 0001 B

 ↓ ↓ ↓

 3 7 1 H

Table 2.3 Hexadecimal-to-Binary cross-reference list

Hexadecimal Binary

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

 CPLD Logic Circuit Design and Practice Numerical System

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

!"Hexadecimal-to-Binary Conversion

Conversely, for a hexadecimal-to-binary conversion, it only needs to follow the

cross-reference list shown as above to convert a hexadecimal number to four binary

digits. For example:

 3 C 7 E 3 H

 ↓ ↓ ↓ ↓ ↓

 0011 1100 0111 1110 0011 B

2.3 Numerical Complement

2.3.1 9’s Complement
9’s complement is a diminished complement of a decimal number. 9’s complement

of a number is determined by subtracting the number from 9.

 CPLD Logic Circuit Design and Practice Numerical System

 (1) 9’s complement of 4 (2) 9’s complement of 39

 9 99

 – 4 – 39

 5 60

 (3) 9’s complement of 517 (4) 9’s complement of 5408

 999 9999

 – 517 – 5408

 482 4591

2.3.2 10’s Complement
10’s complement is another complement of a decimal complement number. 10’s

complement of a number is the difference between 10 and the number. The other

definition of 10’s complement of a number is to subtract the number from 9 and

plus 1. For example:

(1) 10’s complement of 4 (2) 10’s complement of 39 (3) 10’s complement of 517

 9 99 999

 – 4 – 39 – 517

 5 60 482

 + 1 + 1 + 1

 6 61 483

2.3.3 1’s Complement
1’s complement is a diminished complement of a binary number. 1’s complement of

a number is determined by subtracting the number from 1. For example:

 CPLD Logic Circuit Design and Practice Numerical System

(1) 1’s complement of 010B (2) 1’s complement of 1001B (3) 1’s complement of 10101110B

 111 1111 11111111

 – 010 – 1001 – 10101110

 101 0110 01010001

2.3.4 2’s Complement

2’s complement is another binary complement number. It is defined as “ 1’s

complement of a number plus 1”. For example:

(1) 1’s complement of 010B (2) 1’s complement of 1001B (3) 1’s complement of 10101110B

 111 1111 11111111

 – 010 – 1001 – 10101110

 101 0110 01010001

 + 1 + 1 + 1

 110 0111 01010010

2.4 Negative Binary Number Expression
In digital systems such as digital calculators and digital computers, processing

positive and negative numbers is unavoidable, and, therefore, it is necessary to have

proper expression on binary positive/negative numbers. Totally there are 3 ways to

express positive/negative binary numbers described as below:

!"Signed-Magnitude Expression：

The highest bit of a binary number is sign bit, and the rest are magnitude bits to

 CPLD Logic Circuit Design and Practice Numerical System

indicate the number. For sign bits, “0” is a positive number and “1” is a negative

number. For example:

 011101 is 29

 111101 is –29

Table 2.4 is a numerical cross-reference list of 8-bit signed-magnitude expression.

Its numerical expression is from +127 to 0 and from -0 to –127. “0” in this table

could be expressed as +0 (00000000) and –0 (10000000).

Table 2.4 Numerical cross-reference list of 8-bit signed-magnitude expression

+/- Number 8-bit Signed-magnitude Expression
+127 01111111
+126 01111110
+125 01111101

… …
+4 00000100
+3 00000011
+2 00000010
+1 00000001
+0 00000000
–0 10000000
–1 10000001
–2 10000010
–3 10000011
–4 10000100
… …

–125 11111101
–126 11111110
–127 11111111

 CPLD Logic Circuit Design and Practice Numerical System

!"1’s Complement Expression:

1’s complement is the way to express a negative number. For example:

 011101 is 29

 100010 is –29

100010 is 1’s complement of 011101.

Table 2.5 is a numerical cross-reference list of 8-bit 1’s complement expression. Its

numerical expression is from +127 to 0 and from –0 to –127. “0” is expressed as +0

(00000000) and –0 (11111111).

Table 2.5 Numerical cross-reference list of 8-bit 1’s complement expression

+/- Number 8-bit 1’s Complement Expression

+127 01111111

+126 01111110

+125 01111101

… …

+4 00000100

+3 00000011

+2 00000010

+1 00000001

0 00000000

–0 11111111

–1 11111110

–2 11111101

–3 11111100

–4 11111011

 CPLD Logic Circuit Design and Practice Numerical System

… …

–125 10000010

–126 10000001

–127 10000000

!"2’s Complement Expression

2’s complement is another way to express a negative number. For example:

 011101 is 29

 100011 is –29

100011 is 2’s complement of 011101.

Table 2.6 is a numerical cross-reference list of 8-bit 2’s complement expression. Its

numerical expression is from +128 to 0 and from 0 to –127. “0” in this

cross-reference list can be only expressed as 0 (00000000). Obviously, 2’s

complement expression can have one more number for its numerical expression

than the other two described in section 2.4 and 2.5.

Table 2.6 Numerical cross-reference list of 8-bit 2’s complement expression

+/- Number 8-bit 2’s Complement Expression

+128 10000000

+127 01111111

+126 01111110

+125 01111101

… …

+4 00000100

+3 00000011

 CPLD Logic Circuit Design and Practice Numerical System

+2 00000010

+1 00000001

0 00000000

–1 11111111

–2 11111110

–3 11111101

-4 11111100

… …

–125 10000011

–126 10000010

–127 10000001

2.5 Binary Arithmetic Operations

Like decimal, in 2’s complement system, binary can have arithmetic operations:

addition, subtraction, multiplication, and division。Their arithmetic operations are

introduced in the following sections.

2.5.1 Binary Addition
Binary add operation has four basic rules as below:

 0B 0B 1B 1B

 + 0B +1B +0B +1B

 0B 1B 1B 10B

 Carry

Referring to the addition of multi-digit binary, we have to take “carry bit” into

account in the operation. For example:

 CPLD Logic Circuit Design and Practice Numerical System

 1 0 0 1 1 1 0 1B

 + 0 0 1 1 1 0 1 0B

 1 1 ← Carry Bit
1 1 0 1 0 1 1 1B

2.5.2 Binary Subtraction
As add operation, binary subtraction also has four basic rules:

 0B 0B 1B 1B

 – 0B – 1B – 0B – 1B

 0B 11B 1B 0B

 ↑

 Borrow

While subtracting multi-digit binary numbers, we have to consider “borrow bit”.

For example:

 1 0 0 1 1 1 0 1B

 – 0 1 1 1 1 0 1 0B

 1 1 1 ← Borrow Bit

 0 0 1 0 0 0 1 1B

!"Subtraction of 2’s Complement

In binary numerical arithmetic, we could use 2’s complement addition to finish

subtraction by adding minuend and 2’s complement of subtrahend together and then

ignoring end-round carry. For example:

 CPLD Logic Circuit Design and Practice Numerical System

 1 0 0 1 1 1 0 1B 1 0 0 1 1 1 0 1B

 – 0 1 1 1 1 0 1 0B + 1 0 0 0 0 1 1 0B

 1 1 1 ← Borrow → 1 1 1 1 ← Carry

 0 0 1 0 0 0 1 1B 1 0 0 1 0 0 0 1 1B

 ↑

 Ignoring end-around carry

2.5.3 Binary Multiplication
As previous arithmetic operations, binary multiplication has four basic rules:

 0B 0B 1B 1B

 ×0B × 1 B × 0 B ×1B

 0B 0B 0B 1B

To multiple multi-digit binary numbers, the calculation is the same as decimal

multiplication. For example:

 1 0 0 1 1 1B Multiplicand

 × 0 1 0 0 1 0B Multiplier

 0 0 0 0 0 0 1st Partial Product

 1 0 0 1 1 1 2nd Partial Product

 0 0 0 0 0 0 3rd Partial Product

 0 0 0 0 0 0 4th Partial Product

 1 0 0 1 1 1 5th Partial Product

 + 0 0 0 0 0 0 6th Partial Product

 0 1 0 1 0 1 1 1 1 1 0B Final Product

 CPLD Logic Circuit Design and Practice Numerical System

2.5.4 Binary Division
 Like decimal division, binary division can use long division. For example:

 1 0 B Quotient

 Divisor 11 B) 1 1 0 B Dividend

 (1) 1 1

 0 0 B Remainder

 1 1 B

 1 1 B) 1 0 0 1 B

 (2) 1 1

 1 1

 1 1

 0 0 B

 1 0. 1 B

 1 0 0 B) 1 0 1 0. 0 B

 (3) 1 0 0

 1 0 0

 1 0 0

 0 0 0 B

2.6 Binary - coded Decimal (BCD) Code

In digit logic circuit, all arithmetic processes are completed by binary. However, we

are used to decimal systems in our daily lives. In section 2.2, we have already

 CPLD Logic Circuit Design and Practice Numerical System

known binary-decimal conversion, and it is truly uneasy. Therefore, a combination

between binary and decimal codes is made, called “BCD Code” (Binary Coded

Decimal). For coding, it only uses 4-bit binary numbers from 0 to 9 shown as in

table 2.7.

Table 2.7 BCD Code-to-Decimal cross-reference list

BCD Code Decimal

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

In another words, each digit of a decimal number could be expressed as a 4-bit

binary number in BCD code. For example: a decimal number of 5168D could be

referred to a 16-bit binary number, 0101000101101000B, in BCD code. The way to

convert numbers is as below:

 3 5 7 6 3D

 ↓ ↓ ↓ ↓ ↓

 0011 0101 0111 0110 0011B

 CPLD Logic Circuit Design and Practice Numerical System

2.7 Review
Please answer the following questions to review this chapter:

#"Do you know what numerical systems are? Which numerical system is mostly

used in our daily lives?

#"Do you know what numbers or digits can be found in an octal number?

#"Do you know how to get 10’s complement of a decimal number?

#"Do you know how to get 2’s complement of a binary number?

#"Do you know how to express a negative number of a binary number?

#"Do you know the four basic rules of all binary arithmetic operations?

#"Do you know what BCD code is?

 CPLD Logic Circuit Design and Practice Numerical System

CHAPTER 3

 Basic Logic
Theories

LEAP

In this chapter, we will introduce some basic logic theories such as Boolean algebra

and theorem, Boolean algebra simplification, and basic logic gates, etc. Two major

digit logic circuits, combinational and sequential logic circuits, also will be

introduced in Chapter 5 and 6 in this book separately.

3.1 Boolean Algebra
Boolean algebra is different from general algebra. “0” and “1” are its only algebra

numbers. “NOT”, “AND”, and “OR” are its basic algebra operations shown in

Table 3.1. Therefore, “Boolean algebra” is easy. A great English mathematician

George Boolean publishes it in 1854. “1” and “0” can be seen as numbers or logic

status. Like general algebra, Boolean algebra has variables that are usually

expressed in letters such as A, B, C and D in Table 3.1. Those variables can only

represent 0/ 1 or false/true, respectively.

From basic operations, Boolean algebra shown in Table 3.2 can also define some

other compound operations.

!"Basic Operations
Table 3.1 Basic operations in Boolean algebra

Abbreviation
Symbol of

Operation
Example Explanation

NOT
Operation ’ X = A’ X is opposite to A.

AND Operation • X = A•B•C
While all of A, B, and C are
equal to “1”, X is “1”;
otherwise, X is “0”.

 CPLD Logic Circuit Design and Practice Basic Logic Theories

OR Operation

+

X = A + B + C + D

At least one of A, B, C, and D is
“1”, X is “1”; otherwise, X is
“0”.

Note：In Boolean Algebra, operational symbol “•” is usually omitted for convenience.

!"Further Developed Operations
Table 3.2 Other Boolean algebra’s operations

Abbreviation
Symbol of

Operation
Example Explanation

NAND
Operation X = (A•B•C)’ After AND operation, perform

NOT operation.
NOR
Operation X = (A + B + C)’ After OR operation, perform

NOT operation.

XOR
Operation
(Exclusive
OR)

⊕ X = A ⊕ B
 = A’B + AB’

1. NOT operation on A/B first.
2. AND operation on A’B (AB’)

later.
3. And then OR operation on

A’B and AB’

NXOR
Operation
(Inclusive
OR)

 X = (A ⊕ B)’ After XOR operation, complete
NOT operation.

In daily bases, we could also find some Boolean algebra examples. For example, If

it is “raining” (expressed by variable A) outside and I am “going out for business”

(expressed by variable B), I have to “bring my umbrella” (expressed by variable Y).

Therefore, “bring my umbrella” becomes valid only if the assumptions of “raining”

and “going out for business” are all occurred, and this is AND operation; that is, Y

= AB. For another example, if going to Dr. Sun Yat-Sen Memorial Hall, we could

“drive our own car” (expressed by variable A), “ride a motorcycle” (expressed

 CPLD Logic Circuit Design and Practice Basic Logic Theories

variable B), or “take a bus” (expressed by variable C). All transportation can take us

to our destination (expressed by variable Z). This is what we called “OR operation”;

that is, Z = A + B + C. We could take one of the three ways to go to Dr. Sun Yat-

Sen Memorial Hall.

3.1.1 Truth Table and Boolean Algebra Expression

Assume there is an issue of “if tomorrow is Sunday (A) and John asks me to see a

movie (B), I will go to see a movie with him (X).” We could use a table called

“Truth table” to list all the possible situations about the issue.

Table 3.3 Examples by Truth table

Input

A B

Output

X
Explanation

0 0 0
Since tomorrow is not Sunday and John
does not ask me out for a movie, I will
not go to see a movie with him.

0 1 0
Though John asks me out, I will not go to
see a movie with him since tomorrow is
not Sunday.

1 0 0
Though tomorrow is Sunday, I will not
go to see a movie with John since he does
not ask me out.

1 1 1
Since tomorrow is Sunday and John asks
me out, I will go to see a movie with him.

 CPLD Logic Circuit Design and Practice Basic Logic Theories

In Table 3.3, “0” in column A means “tomorrow is not Sunday” and “1” means

“tomorrow is Sunday”. “0” in column B means “John does not ask me out to see a

movie” and “1” means “John asks me out to see a movie”. “0” in column X means

“I will not go to see a movie with John” and “1” means “I will go to see a movie

with John”. From this example, we could understand that Truth table could give us

a clear idea. In the above table, A and B have two numbers (0 and 1) separately.

Therefore, totally there are 2×2 = 4 different possible situations.

The content of Truth table can be expressed by algebra expression. However, how

could we express an algebra expression of X? The answer is simple! It only needs to

find out all combinations causing output X equal to “1” and then perform “OR”

operation to link all combinations together. Therefore, X ＝ AB (omitted the

operational symbol of “•”). To verify if X is what we describe in Truth table, we

could use 0 or 1 to substitute A and B.

Let’s make another example for further understanding of how to use a Truth table.

Assume there is a committee that has 5 members going to vote. To pass the voting

issue, the committee requires reaching an agreement from a half of the members

without waiving any right to vote. Therefore, how many different situations are

there after voting the issue? Because each member has two choices: agree

(expressed by “1”) or disagree (expressed by “0”), totally there are 2 ×2× 2 × 2 × 2

= 25 = 32 different results from voting, and the Truth table is shown as Table 3.4:

 CPLD Logic Circuit Design and Practice Basic Logic Theories

 Table 3.4 Truth table for 5-member committee voting an issue
Committee Voting Result

A B C D E R
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 1 1 0
0 0 1 0 0 0
0 0 1 0 1 0
0 0 1 1 0 0
0 0 1 1 1 1
0 1 0 0 0 0
0 1 0 0 1 0
0 1 0 1 0 0
0 1 0 1 1 1
0 1 1 0 0 0
0 1 1 0 1 1
0 1 1 1 0 1
0 1 1 1 1 1
1 0 0 0 0 0
1 0 0 0 1 0
1 0 0 1 0 0
1 0 0 1 1 1
1 0 1 0 0 0
1 0 1 0 1 1
1 0 1 1 0 1
1 0 1 1 1 1
1 1 0 0 0 0
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 1

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Then we come out a question “How to express algebra expression R?” and the

answer is quite simple. It only needs to find out all combinations making output R

equal to “1” and then adopt “OR” operations to include all combinations together.

Therefore:

 R = A’B’CDE + A’BC’DE + A’BCD’E + A’BCDE’ + A’BCDE + AB’C’DE +

AB’CDE’ + AB’CD’E + AB’CDE + ABC’D’E + ABC’DE’ + ABC’DE +

 ABCD’E’ + ABCD’E + ABCDE’ + ABCDE

3.1.2 Boolean Theorems and Boolean Algebra Laws

!"Boolean Theorems
Boolean theorems are the identities such as Equations 3.1~3.9. They are developed
from Boolean algebra operation. We could use those identities also called “Boolean
theorems” to simplify the complicated Boolean algebra expressions. For example, in
section 3.1.1, algebra expression R is not the simplest expression since it dose not
come with the least variables and operations.

1. With 0/1 Operations
 OR Operation: A+0 = A ... (3.1)
 AND Operation: A•1 = A .. (3.2)
 OR Operation: A+1 = 1 .. (3.3)
 AND Operation: A•0 = 0 ... (3.4)

2. Equal theorem
 OR Operation: A + A = A .. (3.5)
 AND Operation: A•A = A ... (3.6)

3. Complementary theorem
 OR Operation: A + A’ = 1 .. (3.7)
 AND Operation: A•A’ = 0 ... (3.8)

 CPLD Logic Circuit Design and Practice Basic Logic Theories

4. Involution theorems
 (A’)’ = A .. (3.9)

 The further explanation of those theorems are described as below:

1. With 0/1 Operation

(1) A + 0 = A: The OR operation of algebra A with “0” is A. When A = 1,

OR operation of algebra A with “0” is 1; similarly, when A = 0, OR

operation of algebra A with “0” is 0.

(2) A•1 = A: The AND operation of algebra A with “1” is A. When A = 1,

AND operation of algebra A with “1” is 1; similarly, when A = 0, AND

operation of algebra A with “1” is 0.

(3) A + 1 = 1：The OR operation of algebra A with “1” is 1. When A = 1,

OR operation of algebra A with “1” is 1; similarly, when A = 0, OR

operation of algebra A with “1” is still 1.

(4) A•0 = 0：The AND operation of algebra A with “0” is 0. When A = 1,

AND operation of algebra A with “0” is 0; similarly, when A = 0, AND

operation of algebra A with “0” is still 0.

2. Equal theorem: Equal theorem can be divided into to categories: “OR equal

theorem” and “AND equal theorem”.

(1) OR equal theorem: OR operation of algebra A with A is A, and OR

equal theorem is the result of the OR operation. Therefore, OR equal

theorem is algebra A. When A = 1 and A = 1, OR operation is 1;

similarly A = 0 and A = 0, OR operation is 0.

(2) AND equal theorem: AND operation of algebra A with A is A. AND

equal theorem is the result of the AND operation. Therefore, AND equal

theorem is algebra A. When A = 1 and A = 1, AND operation is 1;

similarly, when A = 0 and A = 0, AND operation is 0.

 CPLD Logic Circuit Design and Practice Basic Logic Theories

3. Complementary theorem: Complementary theorem can also be divided into

two categories: “OR complementary theorem” and “AND complementary

theorem”.

(1) OR complementary theorem: OR operation of algebra A with A’ is 1.

OR complementary theorem is the result of the OR operation. Therefore,

OR complementary theorem is 1. When A = 1 and A’ = 0, OR operation

of A with A’ is 1; similarly, when A = 0 and A’ = 1, the OR operation is

still 1.

(2) AND complementary theorem: AND operation of algebra A with A’ is 0.

AND complementary theorem is the result of AND operation of algebra

A with A’. Therefore, AND complementary theorem is 0. When A = 1

and A’ = 0, the AND operation is 0; similarly, when A = 0 and A’ = 1,

the AND operation is still 0.

4. Involution theorems： In the theorems, algebra A will back to its original

value after running NOT operation twice.

!"Boolean Algebra Law

In Boolean algebra operation, we still need to follow some laws described as bellow:

1. Commutative law

 OR operation: A+B = B+A .. (3.10)

 AND operation: A•B = B•A .. (3.11)

2. Associative law

 OR operation: A + (B + C) = (A + B) + C (3.12)

 AND operation: (A•B)•C = A•(B•C) (3.13)

3. Distributive law

 AND operation: A•(B + C) = (A•B) + (A•C) (3.14)

 CPLD Logic Circuit Design and Practice Basic Logic Theories

 OR operation: A + (B•C) = (A + B)•(A + C) (3.15)

 The verification of Equation 3.14 is shown in Table 3.5 as below:

Table 3.5 Verification of Equation 3.14 by Truth table

Input Output

A B C A•(B + C) (A•B) + (A•C)

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 0 0

1 0 0 0 0

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

 The following is the verification of Equation 3.15:

(A + B)•(A + C) = A (A + C) + B (A + C) After apply AND

 distributive law

 = AA + AC + AB + BC............ After reapply AND

 distributive law

 = A + AC + AB + BC............... After apply equal theorem

 = A•1 + AC + AB + BC......... After apply Equation 3.2

 = A (1 + C + B) + BC............... After reapply AND

 distributive law

 = A + BC………………………After apply Equation 3.3

 CPLD Logic Circuit Design and Practice Basic Logic Theories

4. Elimination law

 OR operation: A+(A•B) = A .. (3.16)

 AND operation: A•(A+B) = A ... (3.17)

5. Demorgan’s theorem

 OR operation: (A + B)’ = A’•B’ .. (3.18)

 AND operation: (A•B)’ = A’ + B’ (3.19)

Note 1: In Boolean algebra, we usually omit the operation symbol “•” for convenience.

Note 2: We could verify Commutative law, Associative law, Elimination law, and Demorgan’s theorem by Truth table.

In Boolean algebra, commutative law and associative law tell us that the sequence

of written variables is not related to the consequence of any operations.

6. Boolean Simplification Theorem

 XY + XY’ = X ... (3.20)

 (X + Y)(X + Y’)= X ... (3.21)

 X + XY = X .. (3.22)

 X (X + Y) = X .. (3.23)

 (X + Y’) Y = XY .. (3.24)

 (XY’) + Y = X + Y ... (3.25)

 CPLD Logic Circuit Design and Practice Basic Logic Theories

The verification of Equation 3.20 is shown as below:

 XY + XY’ = X (Y + Y’) After find the common factors

 = X…………. After apply complementary

 theorem: X+X’ = 1

The verification of Equation 3.21 is as below:

 (X + Y)(X + Y’) = XX + XY + XY’ + YY’..... after apply AND

 operation, adopt

 complementary theorem

 (XX’ = 0) and equal theorem

 (XX = X), and then find the

 common factors.

 = X + X(Y＋Y’)Apply complementary

 theorem: X＋X’＝1

 = X + X Apply equal theorem: X + X

 = X

 = X

The verification of Equation 3.22 is as below:

 X + XY = X(1 + Y) After find the common factors

 = X•1 After apply Equation 3.3

 = X After apply Equation 3.2

The verification of Equation 3.23 is as below:

 X(X + Y’) = X + XY’ After apply AND

 CPLD Logic Circuit Design and Practice Basic Logic Theories

 distributive law

 = X•1 + XY’ After apply Equation 3.2

 = X(1 + Y) + XY’............. After apply Equation 3.3

 = X + X(Y + Y’) Apply Equation 3.2 and

 AND distributive law

 = X + X Apply complementary theorem:

 X+X’ = 1

 = X Apply equal theorem: X+X = X

The verification of Equation (3.24):

 (X + Y’)Y = XY + YY’ After apply AND

 distributive law

 = XY + 0 Apply complementary theorem:

 XX’ = 0

 = XY After apply Equation 3-1

The verification of Equation 3.25:

 (XY’) + Y = XY’ + Y(1 + X) After apply Y•1 = Y; X + 1 = 1

 = XY’ + Y + XY After apply AND

 distributive law

 = X(Y + Y’) + Y After apply commutative law and

 multiplication distributive law

 = X + Y After apply complementary

 theorem: Y+Y’ = 1

 CPLD Logic Circuit Design and Practice Basic Logic Theories

7. Consensus theorem

 XY+ YZ+ X’Z = XY +X’Z ... (3.26)

 (X+Y)(Y+Z)(X’+Z) =(X+Y)(X’+Z)...................................... (3.27)

The verification of Equation 3.26 is shown as below:

 XY + YZ + X’Z = XY + 1•YZ +X’Z.................. After apply Equation 3.2

 = XY + (X + X’)YZ + X’Z......... After apply

 complementary theorem

 Y + Y’ = 1

 = XY + XYZ + X’YZ + X’ZAfter apply AND

 distributive law

 = XY(1 + Z) + X’Z(Y + 1)After apply AND

 distributive law

 = XY•1 + X’Z•1After apply Equation 3.3

 = XY + X’ZAfter apply Equation 3.2

The term of “YZ “eliminated in Equation 3.26 is called “consensus”. Actually,

“consensus” is a term found in both of XY and X’Z, and consequently we could

eliminate “consensus” for less production terms, but how to find out “consensus” in

an Equation? First, we could check if it has a variable expressed in one production

term and its complement in other production term. If it has, we then eliminate the

variable and its complement after multiplying both terms. For example: (XY) (X’Z)

＝ XX’YZ ＝YZ.

The following is the verification of Equation 3.27:

 (X + Y)(Y + Z)(X’ + Z) = (Y + Z) (X + Y) (X’ + Z)

 = (Y + Z) (X’Y + XZ)

 CPLD Logic Circuit Design and Practice Basic Logic Theories

 = X’Y + X’YZ +XYZ +XZ

 = X’Y +XZ

 = (X + Y)(X’ + Z)

The term “Y+Z” eliminated in Equation 3.27 is called “consensus”. It actually can

be found in both of terms “X + Y” and “X’ + Z”, causing a repeating status.

Therefore, to reduce sum, we could eliminate “consensus” by checking if it has a

variable expressed in one sum term and its complement in other term. If it does

have, we could eliminate the variable and its complement after adding (OR) both

terms. For example:

 (X + Y) + (X’ + Z) = X＋X’＋Y＋Z ＝ Y＋Z

8. Multiplication and factor theorem

 (X + Y) (X’ + Z) = XZ + X’Y ... (3.28)

 XY + X’Z = (X + Z) (X’ + Y) ... (3.29)

The following is the verification of Equation 3.28:

 (X + Y) (X’ + Z) = (X + Y)X’ + (X + Y)ZAfter apply AND

 distributive law

 = X’Y + YZ + XZAfter apply

 complementary theorem:

 XX’ = 0

 = X’Y + XZAfter apply Equation 3.26

 of Consensus theorem

 Equation 3.29 will not be discussed in this book. We would like to invite readers to

verify by themselves.

 CPLD Logic Circuit Design and Practice Basic Logic Theories

9. Duality theorem

 (x + y + z + …)D = xyz .. (3.30)

 (xyz…)D = x + y + z +… .. (3.31)

Duality theorem is defined as:

If x + y + z = x • z is true,

 ↓ ↓ ↓ + →•,•→ +, 1 → 0, 0 →1

 x •y • z = x + z is existing.

In equal theorem, we could find out this kind of duality such as:

 OR operation: A+A = A ... (3.5)

 ↓

 AND operation: A•A = A ... (3.6)

In complementary theorem, we also could find out duality. For example:

 OR operation: A+A’ = 1 .. (3.7)

 ↓

 AND operation: A•A’ = 0 .. (3.8)

Duality exists in 0/1 operation, communicative law, associative law, distributive law,

simplification law, multiplication and factor law, and Demorgan’s theorem.

Therefore, knowing duality can help readers to understand other theorems and laws

more easily.

 CPLD Logic Circuit Design and Practice Basic Logic Theories

3.1.3 Types of Boolean Algebraic Expression
Boolean algebraic expression usually can be divided into two classes: SOP (Sum of

Production) and POS (Production of Sum). The ways to express SOP are:

 X = ABC + AB’

 Y = AB + A’BC ＋ BCD’ + BC’

 Z = AB’ + A’B + C’D + CD’

In another words, SOP is an algebra expression that sums up several production

terms together.

POS, another type of Boolean algebra expression, can be expressed as below:

 X = (C + A) (B’＋A’)

 Y = (B + A’) (C + D’ + B)

 Z = (B’ + A’) (B + C’) (D + C)

Like SOP, POS is an algebra expression that multiplies several sum terms together.

In general, SOP is more popular than POS because it is easier to get from Truth

tables by describing questions. For example: if there is a Boolean algebra Truth

table shown in Table 3.6, first we could write down all productions as AB’ and A’B

in Table 3.6 when the output Y is 1. We then sum up all productions (OR operation)

to get the SOP expression, Y = AB’ + A’B.

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Table 3.6 SOP Truth table

Input Output

A B Y

0 0 0

0 1 1

1 0 1

1 1 0

→ AB’ (1)

→ A’B (2)

!"Minterm and Maxterm

For algebra with n variables, minterm is the production of n variables. Each of the

variables can only be shown out once by its original or complementary expression.

For example: all of the following productions in the algebra expression are

minterms.

f = A’BC + AB’C’ + AB’C + ABC’ + ABC

For algebra with n variables, maxterm is the sum of n variables. Each of the

variables can only be shown out once by its original or complementary expression.

For example: all of the following sums in the algebra expression are maxterms.

f = (A + B + C) (A + B + C’) (A + B’ + C)

For Boolean algebra expression expressed by minterms, we could use the symbol

“m” to represent each of its minterms. For example, m1 = A’B’C and m5 =AB’C.

Thus:

f = A’BC + AB’C’ + AB’C + ABC’ + ABC

 CPLD Logic Circuit Design and Practice Basic Logic Theories

 ↓ expressed by symbol “m”

 f (A,B,C) = m3 + m4 + m5 + m6 + m7

 ↓ further abbreviated

 f (A,B,C) =Σm (3, 4, 5, 6, 7)

For Boolean algebra expression expressed by maxterms, we could use the symbol

“M” to represent each of its maxterms. For example: M1 = A’ + B’ + C and M5 = A

+ B’ + C. Thus:

f = (a + b + c) (a + b + c’) (a + b’ + c)

 ↓ expressed by symbol “M”

f (A, B, C) = M5 M6 M7

 ↓ further abbreviated

f (A, B, C) = ΠM (5, 6, 7)

3.2 Boolean Algebra Simplification

f (x1, x2, x3,…, xn) is a Boolean algebra which is combined with some Boolean

variables x1, x2, x3,…, xn and some algebra operations of AND, OR and NOT

operations. For example:

f (x,y,z) = xy + x’z + y’z

This is a three-Boolean-variable algebra. In this algebra equation, if x = 0, y = 0,

and z = 1, f is then equal to 1. To verify the above, we use 0 to substitute x and y

and 1 to substitute z in xy + x’z + y’z. The verification process is shown as below:

 CPLD Logic Circuit Design and Practice Basic Logic Theories

f (0, 0, 1) = 0•0 + 0’•1 + 0’•1

 = 0•0 + 1•1 + 1•1

 = 0 + 1 + 1

 = 1

For an n-Boolean-variable Boolean algebra, we could also use Truth table to

describe it. Because each Boolean variable has the numbers of “0” (false) and “1”

(true), there should be 2n combinations of variables. Table 3.7 is the Truth table of

Boolean algebra equation f (x, y, z) = xy + x’z + y’z.

Table 3.7 Truth table of the Boolean algebra expression

 f (x, y, z) = xy + x’z + y’z

X Y Z f (x, y, z)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

To here, we have to understand that there is not only one Boolean equation having

the Truth table described as above (in this case, the equation that we talked before is

f (x, y, z) = xy + x’z + y’z). In deed, f (x, y, z) = xy + z also has the Truth table

shown in Table 3.7. In another words, f (x, y, z) = xy + x’z + y’z is not the simplest

Boolean algebra equation because it has 3 productions and 6 variables, more than

 CPLD Logic Circuit Design and Practice Basic Logic Theories

the equation f (x, y, z) = xy + z that has 2 productions and 3 variables. Therefore, it

is necessary to simplify Boolean algebra equation to “reduce productions and

variables”. In the following sections, we will discuss Boolean theorem

simplification in Section 3.2.1, Karnaugh Map simplification in Section 3.2.2, and

Quine-McCluskey Method in Section 3.2.3.

3.2.1 Boolean Theorem Simplification
Obviously, Boolean theorem simplification is to simplify Boolean algebra

expression by Boolean theorem. This simplification requires users understand the

theorem very well and have great experience on it, and so we could maximize the

theorem’s efficiency and effectiveness. In general, the simplification has some rules

as below:

1. Term combination: Use XY + X’Y = X to combine terms together. For

example:

ABCD’ + ABC’D’ = ABD’

and

AB’C + ABC + A’BC = AB’C + ABC + ABC + A’BC

 = AC + BC

2. Term elimination: Use X + XY = X to eliminate redundant terms or use

Consensus theorem to eliminate consensus. For example:

AB’ + AB’ C = AB’

and

 A’BC’ + BCD + A’BD = A’BC’ + BCD A’BD is consensus

3. Variable eliminate: Use X + X’Y = X + Y to eliminate redundant variables.

For example:

 CPLD Logic Circuit Design and Practice Basic Logic Theories

A’B + A’B’C’D’ + ABCD’ = A’(B + B’C’D’) + ABCD’

 =A’(B + C’D’) + ABCD’

 =A’C’D’ + ABCD’ + A’B

 =A’C’D’ + B(A’ + ACD’)

 =A’C’D’ + A’B + BCD’

4. Adding extra terms for combining or eliminating other terms: The ways to

add terms includes: (1) add XX’; (2) multiply (X + X’); (3) multiply YZ

with (XY + X’Z); (4) Add repeating terms, or (5) add XY to X. For

example: if there is a 5-memenber committee going to vote an issue, in

Boolean algebra expression, we could add many extra terms (repeating

terms) to increase chances of combining terms.

R = A’B’CDE + A’BC’DE + A’BCD’E + A’BCDE’ + A’BCDE + AB’C’DE +

AB’CDE’ + AB’CDE + AB’CD’E + ABC’D’E + ABC’DE’ + ABC’DE +

ABCD’E’ + ABCD’E + ABCDE’ + ABCDE
 = A’B’CDE + AB’CDE + A’BCDE + ABCDE +

 ABC’DE’ + ABCDE’ +

 ABCDE’ + ABCD’E’ +

 A’BCDE + A’BCD’E + ABCD’E + ABCDE +

 ABCD’E + ABCDE + AB’CDE + AB’CD’E +

 ABC’DE + ABCDE + AB’C’DE + AB’CDE +

 ABCDE + ABC’DE+ A’BCDE + A’BC’DE +

 ABCDE + ABCDE’+ A’BCDE + A’BCDE’ +

 AB’CDE + AB’CDE ’+ ABCDE + ABCDE’ +

 ABC’D’E + ABC’DE + ABCD’E + ABCDE

 = CDE + ABDE’ + ABCE’ + BCE + ACE + ADE + BDE + BCD + ACD +

 ABE

 CPLD Logic Circuit Design and Practice Basic Logic Theories

 After some practices, we could come out some conclusions:

1. Boolean theorem simplification is not a systematic and easy simplification.

It requires users understand the theorem and have great experience on it to

maximize efficiency and effectiveness.

2. Boolean theorem simplification cannot clearly identify if a Boolean algebra

expression has been simplified.

3. Boolean theorem simplification can only be properly used in Boolean

algebra simplification with a few of variables.

3.2.2 Karnaugh Map of Simplification
Karnaugh Map is another 2-dimension Truth table. It can be used to express

Boolean expression. It is also a great tool to simplify Boolean algebra. Karnaugh

Map can be classified as dual-variable, 3-variable, 4-variable, 5-variable, and even

6-variable Karnaugh Maps based on the numbers of variables in the algebra

expression. While variables more than six, it is too difficult to express as Karnaugh

Map. The different kinds of Karnaugh Map simplification will be introduced in the

following sections.

!"Dual Variables

If there is a Boolean equation Z = X’ + XY, we could express it by Karnaugh Map

in Table 3.8a. X-axis represents variable X and y-axis represents variable Y.

Step 1: Draw a dual-variable Karnaugh Map and fill in input/output variables and

variable's values shown as Table 3.8b. The vertical columns show the

input value of Y and the horizontal rows show the input value of X.
Table 3.8a Application of Dual-variable Karnaugh Map

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Z = X’ + XY

Input Y Output

Z 0 1

0 1 1 Input

X 1 0 1

← The possible value

of Y

Table 3.8b Dual-variable Karnaugh Map- unfilled table

InputY Ouput

Z 0 1

0 Input

X 1

Step 2: Fill in output variable values in the fields where the output value is equal

to 1 first and then in the fields where the output value is equal to 0. X’

represents X’Y’ and X’Y. Then mark “1” in the fields where input X is

“0” and input Y is “0” (“00” field) and where input X is “0” and input Y is

“1” (“01” field). Beside the two situations described above, output Z is

equal to “1” while input X is “1” and input Y is “1”. Mark “1” in the “11”

field also. For the rest of unfilled fields (or empty entries), fill with “0”

shown as in Table 3.8e.

Table 3.8c Application of Dual-variable Karnaugh Map, Z = X’ +XY

Input Y Output

Z 0 1

0 1 1 Input

X 1 0 1

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Step 3: Find out the ways to combine most of terms and eliminate most of

variables. For example: in Table 3.8d, xy and x’y can combine together to

be Y (the field bordered with double lines). In Table 3.8e, x’y’ and x’y

can combine together to be X’ (the field bordered with double lines). To

combine terms together, we come out two rules: 1.) From left to right or

from up to down, select two, four, or eight of “1” which are next to each

other combine together to be a production; 2.) Choose the biggest

combination that can combine most of terms together.

 Table 3.8d Application of Dual-variable Karnaugh Map, Z = Y + ？

Input Y Output

Z 0 1

0 1 1 Input

X 1 1

Table 3.8e Application of dual variable Karnaugh Map, Z = X’ + ？

Input Y Output

Z 0 1

0 1 1 Input

X 1 0 1

Step 4: Sum up (OR) each independent terms and combinational term. Therefore,

we have Z = X’＋Y as below:

Z = X’ + XY → Z = X’ + Y

2 terms 3 literals 2 terms 2 literals

 CPLD Logic Circuit Design and Practice Basic Logic Theories

!"3 Variables

If there is a Boolean equation Z = AB + A’BC’ + BC, we could express it by

Karnaugh Map in Table 3.9a.

Table 3.9a Application of 3-variable Karnaugh Map, z = ab + a’bc’ + bc

Input AB Output

Z 00 01 11 10

0 1 1 Input

C 1 1 1

←The possible
combinational values of
AB

Step 1: Draw a 3-variable Karnaugh Map and fill in input/output variables and

variable's values shown as Table 3.9b. The vertical columns show the

input values of AB and the horizontal rows show the input values of C.

Table 3.9b 3-variable Karnaugh Map- unfilled table

Input AB Output

Z 00 01 11 10

0 Input

C 1

Step 2: Fill in output variable values in the fields where the output value is 1 first

and then in the fields where the output value is 0. AB represents ABC and

ABC’. Then mark “1” in the “111” and “110” fields. Beside the above two

fields, output Z will be equal to “1” by A’BC’, and “010” field will be

marked with “1” also. Similarly, BC represents ABC and A’BC. Mark “1”

in the “111” and “011” fields. For the rest of unfilled fields, mark with “0”

(or leave empty boxes) shown as in Table 3.9e.

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Table 3.9c Application of 3-variable Karnaugh Map, Z = AB + A’BC’ + BC

Input AB Output

Z 00 01 11 10

0 1 1 Input

C 1 1 1

Step 3: Find out the ways of combining most of terms to eliminate most of

variables. For example: in Table 3.9d, ABC, ABC’, A’BC, and A’BC’ can

be combined together to be B (the field bordered with double lines). In

order to combine terms together, we come out two rules: 1.) Select two,

four, or eight of “1” next to each other from left to right or from up to

down and combine them together to be a production; 2.) Choose the

biggest combination that can combine most of terms together.

Table 3.9d Application of 3-variable Karnaugh Map, Z = AB + A’BC’ + BC

Input AB Output

Z 00 01 11 10

0 1 1 Input

C 1 1 1

Step 4：Sum up (OR) each independent terms and combinational terms. Therefore,

we could simplify Z = B as below:

Z = AB + A’BC’ + BC → Z = B

 3 terms 7 literals 1 terms 1 literal

 CPLD Logic Circuit Design and Practice Basic Logic Theories

!"4 Variables

If there is a Boolean algebra expression Z = A’B’ + B’C’ + CD + A’D’, we could

express it by Karnaugh Map in Table 3.10a.

Table 3.10a Application of 4-variable Karnaugh Map,

z = A’B’ + B’C’ + CD + A’D’

Input AB Output

Z 00 01 11 10

00 1 1 1

01 1 1

11 1 1 1 1

Input

CD

10 1 1

←the possible value
of AB

Step 1: Draw a 4-variable Karnaugh Map and fill in input/output variables and

variable's values shown in Table 3.10b. The vertical columns show the

input values of AB and the horizontal rows show the input values of CD.

Table 3.10b 4-variable Karnaugh Map- unfilled table

Input AB Output

Z 00 01 11 10

00

01

11

Input

CD

10

Step 2: Fill in output variable values in the fields where the output value is 1 first

and then in the fields where the output value is 0. A’B’ represents

 CPLD Logic Circuit Design and Practice Basic Logic Theories

A’B’C’D’, A’B’C’D, A’B’CD’ and A’B’CD. Then mark “1” in the

“0000”, “0001”, “0010” and “0011” fields shown in Table 3.10c.

Similarly, BC represents A’B’C’D’, A’B’C’D, AB’C’D’ and AB’C’D.

Mark “1” in the “0000”, “0001”, “1000” and “1001” fields shown in Table

3.10d. CD represents A’B’CD, A’BCD, AB’CD and ABCD. Mark “1” in

the “0011”, “0111”, “1011” and “1111” fields shown in Table 3.10e. A’D’

represents A’B’C’D’, A’B’CD’, A’BC’D’ and A’BCD’. Mark “1” in the

“0000”, “0010”, “0100” and “0110” fields shown in Table 3.10f. For the

rest of unfilled fields, fill with “0” (or leave empty boxes).

Table 3.10c Application of 4-variable Karnaugh Map,

Z = A’B’ + B’C’ + CD + A’D’

Input AB Output

Z 00 01 11 10

00 1

01 1

11 1

Input

CD

10 1

Table 3.10d Application of 4-variable Karnaugh Map,

Z = A’B’ + B’C’ + CD + A’D’

Input AB Output

Z 00 01 11 10

00 1 1

01 1 1

11 1

Input

CD

10 1

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Table 3.10e Application of 4-variable Karnaugh Map,

Z = A’B’ + B’C’ + CD + A’D’

Output Input AB

 00 01 11 10

00 1 1

01 1 1

11 1 1 1 1

Input

CD

10 1

Table 3.10f Application of 4-variable Karnaugh Map,

Z = A’B’ + B’C’ + CD + A’D’

Input AB Output

Z 00 01 11 10

00 1 1 1

01 1 1

11 1 1 1 1

Input

CD

10 1 1

Step 3: Find out the ways of combining most of terms to eliminate most of

variables. For example: in Table 3.10g, A’B’C’D’, A’B’CD’, A’BC’D’

and A’BCD’ can be combined together to be A’D’ (the field bordered

with double lines). Like Table 3.10g, Table 3.10h indicates that A’B’CD,

A’BCD, AB’CD and ABCD can be combined together to be CD (the field

bordered with double lines). In Table 3.10i, A’B’C’D’, A’BC’D,

AB’C’D’ and AB’C’D can be combined together to be B’C’ (the field

bordered with double lines). In order to combine terms together, we come

out two rules: 1.) Select two, four, or eight of “1” next to each other from

 CPLD Logic Circuit Design and Practice Basic Logic Theories

left to right or from up to down and combine them together to be a

production; 2.) Choose the biggest combination that can combine most of

terms together.

Table 3.10g Application of 4-variable Karnaugh Map,

Z = ？ + A’D’
Input AB Output

Z 00 01 11 10

00 1 1 1
01 1 1
11 1 1 1 1

Input
CD

10 1 1

Table 3.10h Application of 4-variable Karnaugh Map, Z = ？ + cd + A’D’

Input AB Output
Z 00 01 11 10

00 1 1 1
01 1 1

11 1 1 1 1

Input
CD

10 1 1

Table 3.10i Application of 4-variable Karnaugh Map, Z = b’c’ + cd + A’D’

Input AB Output
Z 00 01 11 10

00 1 1 1
01 1 1
11 1 1 1 1

Input
CD

10 1 1

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Step 4: Sum up (OR) each independent terms and combinational terms. Therefore,

we could simplify Z = B’C’ + CD + A’D’ Z = B’C’ + CD + A’D’ as

below:

Z = A’B’ + B’C’ + CD + A’D’ → Z = B’C’ + CD + A’D’

 4 terms 8 literals 3 terms 6 literals

!"5-variable Karnaugh Map

If there is a Boolean algebra expression for over 5 committee members voting an

issue:

 R = A’B’CDE + A’BC’DE + A’BCD’E + A’BCDE’ + A’BCDE + AB’C’DE +

 AB’CDE’ + AB’CDE + AB’CD’E + ABC’D’E + ABC’DE’ + ABC’DE +

 ABCD’E’ + ABCD’E + ABCDE’ + ABCDE

We could express it by Karnaugh Map as Table 3.11a.

Table 3.11a Karnaugh Map of Boolean algebra expression for over 5 committee

members voting an issue

Input CD R

00 01 11 10

E = 0 00

E = 1 1

E = 0 1 01

E = 1 1 1 1

E = 0 1 1 1

Output

AB
11

E = 1 1 1 1 1

 CPLD Logic Circuit Design and Practice Basic Logic Theories

E = 0 1 10

E = 1 0 1 1 1

Step 1: Draw a 5-variable Karnaugh Map and fill in input/output variables and

variable's values shown in Table 3.11b. The vertical columns show the

input values of CD and the horizontal rows show the input values of AB

and E.

Table 3.11b Karnaugh Map of Boolean algebra expression for over 5 committee
members voting an issue- unfilled table

Input CD R

00 01 11 10

E=0 00

E=1

E=0 01

E=1

E=0 11

E=1

E=0

Output

AB

10

E=1

Step 2: Fill in output variable values in the fields where the output value is 1 first

and then in the fields where the output value is 0. Because this is a vote

passed by over half of 5 committee members, it only needs to fill in “1” at

the fields shown in Table 3.11a. For example: ABCD’E’ has three “1” (A,

B, and C).

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Step 3: Find out the ways of combining most of terms to eliminate most of

variables such as Table 3.11c~3.11L.

Table 3.11c Karnaugh Map of Boolean algebra expression for over 5 committee
members voting an issue, R = ？ + ABE

Input CD R

00 01 11 10

E=0 00

E=1

E=0 01

E=1

E=0 11

E=1 1 1 1 1

E=0

Input

AB

10

E=1

Table 3.10d Karnaugh Map of Boolean algebra expression for over 5 committee

members voting an issue, R = ？ + ACD + ABE

Input CD R

00 01 11 10

E=0 00

E=1

E=0 01

E=1

E=0 1 11

E=1 1

Input

AB

10 E=0 1

 CPLD Logic Circuit Design and Practice Basic Logic Theories

 E=1 1

Table 3.11e Karnaugh Map of Boolean algebra expression for over 5

committee members voting an issue, R = ？＋BCD +ACD + ABE

Input CD R

00 01 11 10

E=0 00

E=1

E=0 1 01

E=1 1

E=0 1 11

E=1 1

E=0

Input

AB

10

E=1

Table 3.11f Karnaugh Map of Boolean algebra expression for over 5 committee

members voting an issue, R = ？ + BDE + BCD +ACD + ABE

Input CD R

00 01 11 10

E=0 00

E=1

E=0 01

E=1 1 1

E=0 11

E=1 1 1

E=0

Input

AB

10

E=1

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Table 3.11g Karnaugh Map of Boolean algebra expression for over 5 committee

members voting an issue, R + ？ + ADE + BDE + BCD + ACD + ABE

Input CD R

00 01 11 10

E = 0 00

E = 1

E = 0 01

E = 1

E = 0 11

E = 1 1 1

E = 0

Input

AB

10

E = 1 1 1

Table 3.11h Karnaugh Map of Boolean algebra expression for over 5 committee
members voting an issue, R = ？ + BCE + ADE + BDE + BCD + ACD + ABE

Input CD R

00 01 11 10

E = 0 00

E = 1

E = 0 01

E = 1 1 1

E = 0 11

E = 1 1 1

E = 0

Input

AB

10

E = 1

Table 3.11i Karnaugh Map of Boolean algebra expression for over 5 committee

 CPLD Logic Circuit Design and Practice Basic Logic Theories

members voting an issue, R = ？ + ACE + BCE +ADE + BDE + BCD + ACD +
ABE

Input CD R

00 01 11 10

E = 0 00

E = 1

E = 0 01

E = 1

E = 0 11

E = 1 1 1

E = 0

Input

AB

10

E = 1 1 1

Table3.11j Karnaugh Map of Boolean algebra expression for over 5 committee

members voting an issue, R = ？ + ABDE’ + ACE + BCE + ADE + BDE + BCD
+ ACD + ABE

Input CD R

00 01 11 10

E = 0 00

E = 1

E = 0 01

E = 1

E = 0 1 1 11

E = 1

E = 0

Input

AB

10

E = 1

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Table3.11k Karnaugh Map of Boolean algebra expression for over 5 committee
members voting an issue, R = ？ + ABCE’ + ABDE’ + ACE + BCE + ADE +

BDE + BCD + ACD + ABE

Input CD R

00 01 11 10

E = 0 00

E = 1

E = 0 01

E = 1

E = 0 1 1 11

E = 1

E = 0

Input

AB

10

E = 1

Table 3.11l Karnaugh Map of Boolean algebra expression for over 5 committee
members voting an issue, R = CDE + ABCE’ + ABDE’ + ACE + BCE + ADE +

BDE + BCD + ACD + ABE

Input CD R

00 01 11 10

E = 0 00

E = 1 1

E = 0 01

E = 1 1

E = 0 11

E = 1 1

E = 0

Input

AB

10

E = 1 1

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Step 4: Sum up (OR) each independent terms and combinational terms. Therefore,

R = CDE + ABDE’ + ABCE’ + BCE + ACE + ADE + BDE + BCD + ACD + ABE

The result from simplification:

R = A’B’CDE + A’BC’DE + A’BCD’E + A’BCDE’ + A’BCDE + AB’C’DE +

 AB’CDE’ + AB’CDE + AB’CD’E + ABC’D’E + ABC’DE’ + ABC’DE +

 ABCD’E’ + ABCD’E + ABCDE’ + ABCDE

 16 terms 80 literals

↓

R = CDE + ABDE’ + ABCE’ + BCE + ACE + ADE + BDE + BCD + ACD + ABE

 10 terms 32 literals

!"6-variable Karnaugh Map

For 6-variable Karnaugh Map, we only introduce the ways to draw its unfilled table

shown as in Table 3.12a. Because there are too many variables, it is hard to find out

any variables that really express next to each other. (In reality, it has already

happened to 5-variable Karnaugh Map.) Therefore, except the real next-to-next

relationship, we try to identify any possible areas that seemly have next-to-next

relationship as in Table 3.12b and Table 3.12c. As long as the areas have the same

numbers, they then have next-o-next relationship, and just try to express their

relative locations. Therefore, it is very important that readers have to understand

what is the real meaning of next-to-next relationship. Don’t misunderstand it!

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Table 3.12a Unfilled table and next-to-next area identification of 6-variable
Karnaugh Map

Input AB

00 01 11 10

R

C = 0 C = 1 C = 0 C = 1 C = 0 C = 1 C = 0 C = 1

F = 0 00

F = 1

F = 0 01

F = 1

F = 0 11

F = 1

F = 0

Input

DE

10

F = 1

Table 3.12b Next-to-next area identification of 6-variable Karnaugh Map

Input AB

00 01 11 10

R

C = 0 C = 1 C = 0 C = 1 C = 0 C = 1 C = 0 C = 1

F = 0 2 8 5 6 6 8 00

F = 1 8 4 6 6 8

F = 0 2 5 01

F = 1 4 7 7

F = 0 3 3 5 11

F = 1 4 7 7

F = 0 3 3 5 6 6

Input

DE

10

F = 1 4 6 6

 CPLD Logic Circuit Design and Practice Basic Logic Theories

 Table 3.12c Next-to-next area identification of 6-variable Karnaugh Map
(Continuous)

Input AB

00 01 11 10

R

 C = 0 C = 1 C = 0 C = 1 C = 0 C = 1 C = 0 C = 1

F = 0 14 14 12 14 14 00

F = 1 14 14 11 11 14 14

F = 0 9 9 01

F = 1

F = 0 9 13 13 9 11

F = 1 10 10

F = 0 12

Input

DE

10

F = 1 10 11 11 10

To here, we could understand:

1. Karnaugh Map can systematically and easily simplify Boolean equation

expression.

2. Karnaugh Map can clearly identify Boolean equation expression has been

minimization.

3. Karnaugh Map is better used in Boolean minimization with less than 6

variables. If algebra expressions have more than 6 variables, Quine-

McCluskey Method is then needed, and in the next section, we will discuss

the new minimization, “Quine-McCluskey Method”.

 CPLD Logic Circuit Design and Practice Basic Logic Theories

3.2.3 Quine-McCluskey Method
Quine-McCluskey Method can simplify minterm algebra expression to the simplest

SOP. (Note: it must be a minterm algebra expression.) The simplification can

systematically minimize a multi-variable algebra expression, great for paper work

and easy to write down calculator programs. This simplification can cover the

Karnaugh Map’s drawbacks. Before introducing “Quine-McCluskey Method”, there

are three terms need to define first: implicant, prime implicant, and essential prime

implicant.

1. Implicant: In Boolean expression, the production term that can be combined

with other production term(s) are called as “Implicant of Boolean

Expression”.

2. Prime implicant: In Boolean expression, the production term that cannot be

combined with other production term(s) to eliminate variables are called as

“Prime Implicant of Boolean Expression”.

3. Essential prime implicant: If an algebra minterm only belongs to a prime

implicant, the implicant is then called as “Essential Prime Implicant”.

 The main ideas of Quine-McCluskey Method is:

1. Express Boolean algebra by minterm tables.

2. Systematically apply the theorem xy + xy’ = x to eliminate variables and

derive all prime implicants.

3. Use prim implicant table, choose one group, which has the simplest prime

implicants, and then sum up (OR operation) all those terms to represent

original Boolean expression and have the smallest numbers of variables.

 CPLD Logic Circuit Design and Practice Basic Logic Theories

For example, use the Boolean expression f (a, b, c, d) =Σm (0, 1, 2, 5, 6, 7, 8, 9, 10,

14) to further explaining Quine-McCluskey Method.

Step 1: Group Boolean algebra minterms as Table 3.13 minterm table. There is no

“1” in the group 0; one “1” in the group 1; two “1” in the group 2, and so

on and so forth. Please notify that Quine-McCluskey Method must be

started from minterm.

Table 3.13a Minterm table of f (a,b,c,d) =Σm (0, 1, 2, 5, 6, 7, 8, 9, 10, 14)

Group m Implicant Non-prime Implicant

Group 0 0 0000 ˇ

Group 1

1

2

8

0001

0010

1000

ˇ

ˇ

ˇ

Group 2

5

6

9

10

0101

0110

1001

1010

ˇ

ˇ

ˇ

ˇ
Group 3 7

14

0111

1110

ˇ

ˇ

Step 2: Find out prime implicant by theorem xy + xy’ = x:

1. Try to simplify all implicants in the groups 0 and 1 by the theorem xy + xy’

= x. If the implicants can be simplified, new implicants (or prime implicants)

will be derived and then filled in the group 0 in new table (shown as Table

3.13). Symbol “–” means the variables have been simplified. Meanwhile, in

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Table 3.13a, the symbol “ˇ” in the column of non-prime implicant

indicates that the implicant is a non-prime implicant. Then, try again to

simplify all the implicants in the groups 1 and 2, and fill in the group 1 in

the new Table 3.13b. For the groups 2 and 3, perform the same

simplification process again and fill in the group 2 in the new Table 3.13b,

and so on and so forth.

2. In the same group of the new table, erase repeating combinational terms

and mark with double cross-out lines. (Note: there is no repeating terms in

Table 3.13b)

Table 3.13b First simplified table

Group
Simplifying

Resources
New

Implicants

Non-prime

Implicant

0, 1 000– ˇ

0, 2 00–0 ˇ

Group 0

0, 8 –000 ˇ

1, 5 0–01

1, 9 –001 ˇ

2, 6 0–10 ˇ

2, 10 –010 ˇ

8, 9 100– ˇ

Group 1

8, 10 10–0 ˇ

5, 7 01–1

6, 7 011–

6, 14 –110 ˇ
Group 2

10, 14 1–10 ˇ

 CPLD Logic Circuit Design and Practice Basic Logic Theories

3. If new tables such as Table 3.13b still could be found, repeat a and b

processes again. Otherwise, it means the process of finding prime

implicants has been completed.
Table 3.13c Second simplified table

Group Simplifying
Resources

New
Implicants

Non-prime

Implicant

0, 1, 8, 9 –00–

0, 2, 8, 10 –0–0

0, 8, 1, 9 –00–
Group 0

0, 8, 2, 10 –0–0

2, 6, 10, 14 ––10
Group 1

2, 10, 6, 14 ––10

Step 3: Create a prime implicant table, and identify essential prime implicants.

Use the prime implicants from step 2, create a prime implicant table such

as Table 3.13d shown as below. Minterms are shown on the top of the

vertical part of the table, prime implicants are on the left side of the

horizontal part of the table, and the minterms covered by each prime

implicant are in the mid part of the table. According to essential prime

implicant definition, both (0, 1, 8, 9) and (0, 2, 8, 10) are essential prime

implicants since m9 and m14 only belongs to (0, 1, 8, 9) and (0, 2, 8, 10),

respectively.

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Table 3.13d Prime implicant table

Minterm of Boolean Expression Type of Prime
Implicant Simplifying

Resources
Prime

Implicant
0 1 2 5 6 7 8 9 10 14

(0, 1, 8, 9) –00– x x x x
Essential Prime

Implicant

(0, 2, 8, 10) –0–0 x x x x

(2, 6, 10, 14) ––10 x x x x
Essential Prime

Implicant

(1, 5) 0–01 x x

(5, 7) 01–1 x x

(6, 7) 011– x x

Step 4: Select the solution having the fewest prime implicants and Boolean

variables to completely cover all minterms to represent the Boolean

expression. The details of the selecting process is:

1. Choose essential prime implicants first, and eliminate the covered minterms.

For example, in Table 3.13e, select the two essential prime implicants, (0, 1,

8, 9) and (2, 6, 10, 14).

2. Choose the prime implicants covering most of the minterms. For example,

in Table 3.13f, m5 and m7 are the only two uncovered minterms, and just can

be covered by (5, 7).

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Table 3.13e Prime implicant table

Minterm of Boolean Expression Type of Prime
Implicant Simplifying

Resources
Prime

Implicant
0 1 2 5 6 7 8 9 10 14

(0, 1, 8, 9) –00– x x x x
Essential Prime

Implicant

(0, 2, 8, 10) –0–0 x x x x

(2, 6, 10, 14) ––10 x x x x
Essential Prime

Implicant

(1, 5) 0–01 x x

(5, 7) 01–1 x x

(6, 7) 011– x x

Step 5: Sum up (OR operation) all the selected prime implicants to find out the

simplest Boolean expression.

f (a, b, c, d) =Σm (0, 1, 2, 5, 6, 7, 8, 9, 10, 14)

 = B’C’ + CD’ + A’BD

Note: The simplest expression might not be the only one; that is, there might be

another simplest expressions.

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Table 3.13f Prime implicant table

Minterm of Boolean Expression Type of Prime
Implicant Simplifying

Resources
Prime

Implicant
0 1 2 5 6 7 8 9 10 14

(0, 1, 8, 9) –00– x x x x
Essential Prime

Implicant

(0, 2, 8, 10) –0–0 x x x x

(2, 6, 10, 14) ––10 x X x x
Essential Prime

Implicant

(1, 5) 0–01 x x

(5, 7) 01–1 x x

(6, 7) 011– X x

For “don’t care” terms of Boolean expression, how could we use Quine-McCluskey

Method to simplify the expression?

The following equation is the example to help us understand how Quine-McCluskey

Method can do with “don’t care” terms of Boolean expression.

f (a, b, c, d) = Σm (2, 3, 7, 9, 11, 13) +Σd (1, 10, 15)

Step 1: Group minterms and “don’t care” terms of Boolean equation are shown in

Table 3.14a. We could not find “1” in the group 0, but a “1” in the group 1

and two “1” in the group 2, and so on and so forth.

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Table 3.14a f (a, b, c, d) = Σm (2, 3, 7, 9, 11, 13) +Σd (1, 10, 15)

Minterm and “Don’t Care” term table

Group m d Implicant Non-prime Implicant

Group 1

2

1 0001

0010

ˇ

ˇ

Group 2

3

9

10

0011

1001

1010

ˇ

ˇ

ˇ

Group 3

7

11

13

0111

1011

1101

ˇ

ˇ

ˇ

Group 4 15 1111 ˇ

Step 2: Find prime implicants by the theorem, xy + xy’ = x .

1. Try to use the theorem xy + xy’ = x to simplify all implicants in the groups

1 and 2. If new implicants (or prime implicants) are found after

simplification, fill them in the group 1 of new table (Table 3.14b), and

symbolize “–” to indicate the variables are simplified already. Meanwhile,

in Table 3.14a, mark “ˇ” in the column of non-prime implicant to indicate

the implicant is a non-prime implicant. Then, try to simplify all the

implicants in the groups 2 and 3, and fill them in the group 2 in the new

table (Table 3.14b). Repeat the same process for the groups 3 and 4 shown

in Table 3.14b, and so on and so forth.

2. In the same group of the new table, erase the repeating combinational terms

and mark with double cross-out lines. (Note: there are no repeating terms in

Table 3.14b.)

 CPLD Logic Circuit Design and Practice Basic Logic Theories

3. If there is still a new table, repeat the processes 1 and 2 for the new table

(Table 3.14b). Otherwise, the process of finding prime implicants is

completed. Table 3.14c is the result from repeating the processes 1 and 2.

Table 3.14b First simplified table

Group
Simplifying
Resources

New Implicant
Non-prime
Implicant

(1, 3) 00–1 ˇ

(1, 9) –001 ˇ

(2, 3) 001– ˇ

Group 1

(2, 10) –010 ˇ

(3, 7) 0–11 ˇ

(3, 11) –011 ˇ

(9, 11) 10–1 ˇ

(9, 13) 1–01 ˇ

Group 2

(10, 11) 101– ˇ

(7, 15) –111 ˇ

(11, 15) 1–11 ˇ

Group 3
(13, 15) 11–1 ˇ

Step 3: Create a prime implicant table and inidcate the essential prime implicants.

Use the prime implicants resulted from step 2 to establish a prime implicant

table as Table 3.14d. Please be aware of that only minterm can be listed in

the table, not “don’t care” terms. According to the prime implicant

definition, (2, 3, 10, 11), (3, 7, 11, 15) and (9, 11, 13, 15) are essential

prime implicants since m2, m7, and m13 only belong to (2, 3, 10, 11), (3, 7,

11, 15) and (9, 11, 13, 15), seperately.

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Table 3.14c Second simplified table

Group
Simplifying
Resources

Non-prime
Implicant

(1, 3, 9, 11) –0–1

(1, 9, 3, 11) –0–1

(2, 3, 10, 11) –01–

Group 1

(2, 10, 3, 11) –01–

(3, 7, 11, 15) ––11

(3, 7, 11, 15) ––11

(9, 11, 13, 15) 1––1

Group 2

(9, 11, 13, 15) 1––1

Table 3.14d Prime implicant table

Minterm of Boolean Expression Simplifying
Resources

Prime
Implicant 2 3 7 9 11 13

Type of Prime
Implicant

(1, 3, 9, 11) -0-1 x x x

(2, 3, 10, 11) -01- x x x
Essential Prime

Implicant

(3, 7, 11, 15) --11 x x x
Essential Prime

Implicant

(9, 11, 13, 15) 1--1 x x x
Essential Prime

Implicant

Step 4: Select the solution, which comes out the fewest prime implicants and

Boolean variables to completely cover all the minterms to represent the

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Boolean expression. To start the selection, first choose essential prime

implicants and delete covered minterms. For example, in Table 3.14e,

select the three essential prime implicants: (2, 3, 10, 11), (3, 7, 11, 15), and

(9, 11, 13, 15), and luckily they already cover all the minterms.

Step 5: Sum up (OR operation) all the selected prime implicants and the summation

is the simplest Boolean expression.

 f (a, b, c, d) =Σm (2, 3, 7, 9, 11, 13) +Σd (1, 10, 15)

 = B’C + CD + AD

Table 3.14e Prime implicant table

Minterm of Boolean Expression Type of Prime Implicant Simplifying
Resources

Prime
Implicant

2 3 7 9 11 13

(1,3,9,11) -0-1 x x x

(2,3,10,11) -01- X x x Essential Prime Implicant

(3,7,11,15) --11 x x x Essential Prime Implicant

(9,11,13,15) 1—1 x x x Essential Prime Implicant

 CPLD Logic Circuit Design and Practice Basic Logic Theories

3.3 Logic Gate
Logic gate is a digit circuit to make Boolean operation become real. Totally, there

are three basic Boolean operations: AND, OR, and NOT operations, and therefore

logic gates can be divided into AND gate, OR gate, and NOT gate. In another words,

we could complete all digit logic circuits by the three basic logic gates. In the next

sections, we will not only introduce basic logic gates but also other derivative logic

gates such as NAND, NOR, and XOR gates.

3.3.1 AND Gate
AND gate is a digital logic gate performing Boolean AND operation (or also called

as “production operation”). Compared to dual-variable production, three-variable

production, and four-variable production, etc., AND gate also can be classified as

dual-input AND gate, three-input AND gate, and four-input AND gate, etc. An

AND gate output can be “1” only when all AND gate inputs are equal to “1”;

otherwise, the output must be “0”. A and B switches in Figure 3.1, for example,

must be “ON” at the same time to connect the circuits and lighten the bulbs. From

previous chapter, we already know that Truth table is a great tool to describe the

relationship between inputs and outputs of Boolean equation. Actually, it is also

good to describe logic gates. The AND gate functions described by Truth table are

shown as below:

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Figure 3.1 AND gate physical definition

!"Dual-input AND Gate

For a dual-input AND gate, we could use Truth table (Table 3.15) to describe its

functions. Obviously, output Y will be “1” only when A and B are equal to “1” at

the same time; otherwise, output Y will be “0”. This kind of dual-input AND gate is

usually represented by the circuit symbol in Figure 3.2.

Table 3.15 Truth table of dual-input AND gate

Input Output

A B Y

0 0 0

0 1 0

1 0 0

1 1 1

Figure 3.2 Circuit symbol of dual-input AND gate

 CPLD Logic Circuit Design and Practice Basic Logic Theories

!"Three-input AND Gate

Similarly, for a three-input AND gate, we could also use Truth table to describe its

functions as Table 3.16. Clearly, output Y will be equal to “1” only when A, B, and

C are equal to “1”; otherwise, output Y must be equal to “0”. This kind of three-

input AND gate is usually represented by the circuit symbol shown in Figure 3.3.

Table 3.16 Truth table of three-input AND gate

Input Output

A B C Y

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

Figure 3.3 Circuit symbol of three-input AND gate

!"Four-input AND Gate

For a four-input AND gate, we could use Truth table (Table 3.17) to describe the

gate functions. Obviously, output Y can be equal to “1” only when A, B, C, and D

are equal to “1”; otherwise, output Y must be equal to “0”. We usually use the

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Circuit symbol shown in Figure 3.4 to symbolize this kind of four-input AND gate.

Table 3.17 Truth table of four-input AND gate

Input Output

A B C D Y

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1

Figure 3.4 Circuit symbol of four-input AND gate

 CPLD Logic Circuit Design and Practice Basic Logic Theories

3.3.2 OR Gate
An OR gate is a digital logic gate performing Boolean OR operation (or called as

“sum operation”). Like dual-variable sum, three-variable sum, and four-variable

sum, etc., an OR gate also can be divided into dual-input, three-input, and four-

input OR gates, etc. To have output equal to “1”, one of OR gate inputs has to be

equal to “1”. Otherwise, output will be “0”. For example, either A or B switch in

Figure 3.5 is “ON”. The circuits are still connected and the bulbs are still lightened.

Like AND gate functions, all OR gate functions can be described by Truth tables,

and we will discuss further in the following sections.

Figure 3.5 OR gate physical definition

!"Dual-input OR Gate

For a dual-input OR gate, we could use Truth table (Table 3.18) to describe its

functions. Obviously, output Y is equal to “1” when there is at least one of A and B

is equal to “1”; otherwise, output Y is equal to “0”. This kind of dual-input OR gate

is usually symbolized by Circuit symbol shown in Figure 3.6.

Table 3.18 Truth table of dual input OR gate

Input Output

A B Y

 CPLD Logic Circuit Design and Practice Basic Logic Theories

0 0 0

0 1 1

1 0 1

1 1 1

Figure 3.6 Circuit symbol of dual-input OR gate

!"Three-input OR Gate

Similarly, for a three-input OR gate, we could also use Truth table (Table 3.19) to

describe the gate functions. Obviously, output Y is equal to “1” when there is at

least one of A, B and C equal to “1”; otherwise, output Y must be equal to “0”. This

three-input OR gate can be symbolized by the Circuit symbol in Figure 3.7.

Table 3.19 Truth table of three-input OR gate

Input Output
A B C Y
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Figure 3.7 Circuit symbol of three-input OR gate

!"Four-input OR Gate

The functions of a four-input OR gate can also be described by Truth table (Table

3.20). Like previous gates, the output Y of a four-input OR gate can be equal to “1”

when there is at least one of A, B, C, and D equal to “1”; otherwise, output Y must

be equal to “0”. The Circuit symbol in Figure 3.8 can be used to symbolize the four-

input OR gate usually.

Table 3.20 Truth table of four-input OR gate

Input Output
A B C D Y
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1

 CPLD Logic Circuit Design and Practice Basic Logic Theories

1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

Figure 3.8 Circuit symbol of four-input OR gate

3.3.3 NOT Gate
A NOT gate is a mono-input logic gate. It is also a digital logic gate performing

Boolean NOT operation (or called as “complementary operation”). Like AND gate,

we use Truth table as Table 3.21 to describe the NOT gate functions. Clearly, output

Y is equal to “0” when A is equal to “1”; otherwise, output Y is equal to “1”.

Usually, we use the circuit symbol in Figure 3.9 to symbolize NOT gate.

Table 3.21 Truth table of NOT gate

Input Output

A Z

0 1

1 0

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Figure 3.9 Circuit symbol of NOT gate

3.3.4 XOR Gate
A XOR (Exclusive OR) gate is a logic gate but not a basic logic gate. It is mad with

several basic logic gates, and performs Boolean XOR operation. Table 3.22 shows

Truth table of XOR gate. For “Exclusive OR” gate with dual inputs, output Z is

equal to “1” only when A and B are not simultaneously equal to the same value;

otherwise, output Z is equal to “0”. Figure 3.10a is XOR circuit symbol. From

Table 3.22, Figure 3.10b shows XOR equal-effect circuits made with basic logic

gates.

Table 3.22 Truth table of XOR gate

Input Output

A B Z

0 0 0

1 0 1

0 1 1

1 1 0

Figure 3.10a Circuit symbol of XOR gate

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Figure 3.10b Equal-effect circuit of XOR gate

3.3.5 NAND Gate
A NAND gate is a logic gate but not a basic logic gate. It is made with AND and

NOT basic logic gates, and performs Boolean AND and NOT operations, which are

production operation and complementary operation. Compared to production of

dual variables, three variables, and four variables… etc., a NAND gate can also be

divided into dual input, three-input, and four-input NAND gates. Identically, we

will use Truth table to describe NAND gate functions.

!"Dual-input NAND Gate

For a dual-input NAND gate, we could use Truth table in Table 3.23 to describe

NAND gate functions. Its output Y is equal to “0” only when both A and B are

equal to “1”; otherwise, output Y must be equal to “1”. The dual-input NAND gate

can be usually shown by the circuit symbol in Figure 3.11a. The small circle at the

output pin means inverse directions or complements. According to the information

in Table 3.23, Figure 3.11b identifies the equal-effect NAND circuits made with

basic logic gates. From the equal-effect circuits, the small circle could be defined

more clearly at the output pin.

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Table 3.23 Truth table of dual input NAND gate

Input Output

A B Y

0 0 1

0 1 1

1 0 1

1 1 0

Figure 3.11a Circuit symbol of dual-input NAND gate

Figure 3.11b Equal-effect circuit of NAND gate

!"Three-input NAND Gate

Likewise, for a three-input NAND gate, we could use Truth table (Table 3.24) to

describe the gate functions. Output Y will be equal to “0” only when all of A, B,

and C are equal to “1”; otherwise, output Y must be equal to “1”. Usually we use

the Circuit symbol in Figure 3.12a to represent a three-input NAND gate. Figure

3.12b is based on Table 3.24 to show equal-effect NAND circuits made with basic

logic gates.

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Table 3.24 Truth table of three-input NAND gate

Input Output

A B C Y

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

Figure 3.12a Circuit symbol of three-input NAND gate

Figure 3.12b Equal-effect circuit of NAND gate

!"Four-input NAND Gate

For a four-input NAND gate, we could use Truth table (Table 3.25) to describe the

 CPLD Logic Circuit Design and Practice Basic Logic Theories

gate functions. Output Y will be equal to “0” only when all of A, B, C, and D are

equal to “1”; otherwise, output Y must be equal to “1”. Usually we use the Circuit

symbol in Figure 3.13a to represent a four-input NAND gate. Figure 3.13b is based

on Table 3.25 to show equal-effect NAND circuits made with basic logic gates.

Table 3.25 Truth table of four-input NAND gate

Input Output

A B C D Y

0 0 0 0 1

0 0 0 1 1

0 0 1 0 1

0 0 1 1 1

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Figure 3.13a Circuit symbol of four-input NAND gate

Figure 3.13b Equal-effect circuit of four-input NAND gate

3.3.6 NOR Gate
A NOR gate is another logic gate but not a basic logic gate. It is made with OR and

NOT basic logic gates, and performs Boolean OR and NOT operations, which are

OR operation and complementary operation. Similarly, a NAND gate has dual-input,

three-input, and four-input NOR gates.

!"Dual-input NOR Gate

For a dual-input NOR gate, we could use Truth table (Table 3.26) to describe the

gate functions. Output Y will be equal to “0” when there is at least one of A and B

equal to “1”; otherwise, output Y must be equal to “1”. Usually we use the Circuit

symbol in Figure 3.14a to represent the NOR gate. Figure 3.14b is based on Table

3.26 to show equal-effect NOR circuits made with basic logic gates.

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Figure 3.14a Circuit symbol of dual-input NOR gate

Table 3.26 Truth table of dual input NOR gate

Input Output

A B Y

0 0 1

0 1 0

1 0 0

1 1 0

Figure 3.14b Equal-effect circuit of dual-input NOR gate

!"Three-input NOR Gate

Likewise, we could use Table 3.27 for describing the function of three-input NOR

gate functions. Output Y will be equal to “0” when there is at least one of A, B, and

C equal to “1”; otherwise, output Y must be equal to “1”. Usually, the circuit

symbol, in Figure 3.15a, be used to represent three-input NOR gates. Figure 3.15b,

based on Table 3.27, shows that the equal-effect circuit of three-input NOR gates

made with basic logic gates.

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Figure 3.15a Circuit symbol of three-input NOR gate

Table 3.27 Truth table of three-input NOR gate

Input Output

A B C Y

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

Figure 3.15b Equal-effect circuit of three-input NOR gate

 CPLD Logic Circuit Design and Practice Basic Logic Theories

!"Four-input NOR Gate

The functions of a four-input NOR gate can also be described by Truth table (Table

3.28). Obviously, output Y will be equal to “1” when there is at least one of A, B, C,

and D equal to “1”; otherwise, output Y must be equal to “0”. Usually the circuit

symbol, in Figure 3.16a, be used to represent a three-input NOR gates. Figure 3.16b

is based on Table 3.28 to show equal-effect circuits of four-input NOR gates made

with basic logic gates.

Table 3.28 Truth table of four-input NOR gate

Input Output

A B C D Y

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Figure 3.16a Circuit symbol of four-input NOR gate

Figure 3.16b Equal-effect circuit of four-input NOR gate

3.3.7 NXOR Gate
A XNOR (Inclusive OR) gate is a digital logic gate but not a basic logic gate. It is

combined with XOR and NOT basic logic gates, and performs Boolean XNOR

operation. Its Truth table is shown as Table 3.29. For an Inclusive OR gate with

dual inputs, its output Z will be equal to “1” only when A and B are simultaneously

equal to the same value; otherwise, output Z will be equal to “0”. Figure 3.17a

shows XNOR Circuit symbol. Figure 3.17b is based on Table 3.29 to show XNOR

equal-effect circuits made with logic gates.

Table 3.29 Truth table of XNOR gate

Input Output

A B Z

0 0 1

 CPLD Logic Circuit Design and Practice Basic Logic Theories

1 0 0

0 1 0

1 1 1

Figure 3.17a Circuit symbol of XNOR gate

Figure 3.17b Equal-effect circuit of XNOR gate

3.3.8 Demorgan’s Equal-effect Circuit
In section 3.12, we have discussed Demorgan’s theorem. For illustration, we list the

equations as below:

 OR operation: (A + B)’ = A’•B’ .. (3.18)

 AND operation: (A•B)’ = A’ + B’ (3.19)

According to Demorgan’s theorem, we could derive equal-effect circuits. The

following is a dual-input example. For multi-inputs, its derivative process is the

same as dual inputs.

 CPLD Logic Circuit Design and Practice Basic Logic Theories

!"Equal-effect Circuit of Demorgan’s NAND Gate (Figure 3.18)

 Figure 3.18 Circuit symbol and equal-effect circuit of Demorgan’s NAND gate

!"Equal-effect Circuit of Demorgan’s NOR Gate (Figure 3.19)

Figure 3.19 Equal-effect circuit and circuit symbol of Demorgan’s NOR gate

 CPLD Logic Circuit Design and Practice Basic Logic Theories

3.4 Applications of Logic Gate
In Section 3.1, we have introduced Boolean algebra, including the basic concepts of

Boolean algebra definition, theorems, Truth tables and expressions. In Section 3.2,

we introduce minimization methodologies usually used in Boolean algebra,

including Boolean minimization, Karnaugh Map minimization, and Quine-

McCluskey method. Once familiar with those minimization methodologies, it is

easy to simplify Boolean algebra to have the fewest productions and variables. In

section 3.3, we discussed logic gates. We know that logic gates are the equal digital

circuits performing Boolean operations. Any Boolean algebra expression can

operate equally by logic gates. Therefore, the goal in Section 3.2 is “use the fewest

logic gates and the fewest connections to perform Boolean algebra operations.” The

followings are some examples of logic gate applications to complete Boolean

algebra operations.

!"Logic Gate Application 1

The following is the simplified Boolean algebra expression in the Section 3.2.3:

f (a, b, c, d) =Σm (2, 3, 7, 9, 11, 13) +Σd (1, 10, 15)

 = B’C + CD + AD

Use logic gates to perform the simplified Boolean algebra expression.

Figure 3.20 is the logic circuit diagram performing f (a, b, c, d) = B’C + CD + AD

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Figure 3.20 Logic circuit diagram of f (a, b, c, d) = B’C + CD + AD

!"Logic Gate Application 2

The following is the simplified Boolean algebra expression in the section 3.2.3:

f (a, b, c, d) =Σm (0, 1, 2, 5, 6, 7, 8, 9, 10, 14)

 = B’C’ +CD’ +A’BD

Use logic gates to perform the simplified Boolean algebra expression.

Figure 3.21 is the logic circuit diagram performing f (a, b, c, d) = B’C’ + CD’ +

A’BD.

 CPLD Logic Circuit Design and Practice Basic Logic Theories

Figure 3.21 Logic gate circuit diagram of f (a, b, c, d) = B’C’ + CD’ + A’BD

!"Logic Gate Application 3

Use logic gates to perform the simplified Boolean algebra expression, R = CDE +

ABDE’ + ABCE’ + BCE + ACE + ADE + BDE + BCD + ACD + ABE, in the

Section 3.2.1. Figure 3.22 is the logic circuit diagram for performing R = CDE +

ABDE’ + ABCE’ + BCE + ACE + ADE + BDE + BCD + ACD + ABE.

Figure 3.22 Logic Gate Circuit Diagram of R = CDE + ABDE’ + ABCE’ + BCE

 + ACE + ADE + BDE + BCD + ACD + ABE

 CPLD Logic Circuit Design and Practice Basic Logic Theories

3.5 Practices

1. Please find out and delete the consensus terms of the following expressions:

ABC’D + A’BE + BC’DE；

 (A’ + B + C) (A + D) (B + C + D)；

 AB’C + A’BD + BCD’ + A’BC；

 A’B’C + BC’D’ + A’CD + AB’D’ + BCD + AC’D’。

 2. Please try to verify the Equation 3-29.

 3. Please multiply the following expressions and express in POS:

 (A + B) (A + C’) (A + D) (BC’D + E)；

 (A + B’ + C) (B’ + C + D) (A + C)；

 (A’ + BE’) (BE’ + C + D) (E + C’)。

 4. Express the next expressions in SOP:

 AB’C + D；

 BC’D + A’BE + BEF；

 W + X’Y + VZ。

 5. Use Truth tables to prove the next algebra expressions are true:

 (A + CD) (A’ + B) = A’CD + AB。

 6. Please use Boolean theorems to simplify the following expressions:

 XY + X’YZ’ + YZ；

 (XY’ + Z) (X + Y’) Z；

 XY’ + Z + (X’ + Y) Z；

 CPLD Logic Circuit Design and Practice Basic Logic Theories

 A’D (B’ + C) + A’D’ (B + C’) + (B’ + C) (B + C’)；

 W’X’ + X’Y’ + YZ + W’Z’。

 7. Use Karnaugh Map to simplify Z = Y’ + X’Y’.

 8. Use Karnaugh Map to minimize Z = (AB’ + C) (A + B’) C.

 9. Use Karnaugh Map to minimize Z = AB’ + C + (A’ + B) C’.

 10. Use Karnaugh Map to minimize the following expressions:

 XY + X’YZ’ + YZ；

 (XY’ + Z) (X + Y’) Z；

 XY’ + Z + (X’ + Y) Z；

 A’D (B’ + C) + A’D’ (B + C’) + (B’ + C) (B + C’)；

 W’X’ + X’Y’ + YZ + W’Z’。

 11. Please use Quine-McCluskey Method to minimize Boolean algebra expression

as below:

 f (a, b, c) =Σm (0, 1, 2, 5, 6, 7)。

 CPLD Logic Circuit Design and Practice Basic Logic Theories

3.6 Review
Please answer the following questions to review this chapter.

#" Do you know what Boolean algebra is?

#" Could you describe and verify 10 Boolean theorems?

#" Could you describe all Boolean algebra expressions?

#" Could you point out three Boolean algebra minimization methods introduced in

this chapter?

#" Do you know the key points to adopt the simplifications of Boolean theorems?

#" Do you know which simplification is the most systematic and good for

minimize multi-variables?

#" Do you know the basic logic gates?

#" Could you plot a Demorgan’s equal-effect circuit of an NAND gate?

 CPLD Logic Circuit Design and Practice Basic Logic Theories

CHAPTER 4

A New Design
Methodology —
PC Aided Digital

 Logic Design Using
MAX+PLUS II

Baseline(Version 9.23)

LEAP

In this chapter, we will focus on MAX+PLUS II Baseline version 9.23. Graphic-

edited circuit entry technology will be introduced in Section 4.3, circuit functional

simulation in Section 4.4, floorplan and design compilation in Section 4.5, and

device programming and circuit verification in Section 4.6. To further understand

LP-2900 CPLD logic design experimental platform, we will give examples with

graphic edit technologies in Section 4.7 and review the following topic:

1. Design (circuit) entry

2. Compilation and error location

3. Functional simulation

4. Floorplan

5. Design compilation, which is the generation and conversion of

“Configuration Data”, and then

6. Download to FLEX10K experimental platform to complete circuit

verification

4.1 MAX+PLUS II Baseline Setup and
Start

Before we set up the program, please make sure your PC has at least 64 MB DRAM

and 200 MB hard disk space after installing Windows 95/98 or Windows NT. For

sure, the faster CPU speed the better. A MAX+PLUS II Baseline version 9.23 CD

can download from http://www.altera.com/. The following is the short description

of Baseline setup process (version 9.23):

1. First, please check your PC has at least 200 MB HD space and 64 MB

DRAM after install Windows 95/98.

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

2. Create a sub-directory in C drive as C:\baseline.

3. Download “baseline923.exe” from http://www.altera.com/ and save in

C:\baseline.

4. Select “Start”, click “Run”, and type “C:\BaseLine\baseline923.exe” to run

the command as Figure 4.1a and Figure 4.1b.

5. Please enter your name and your company name (or school name) as Figure

4.1c.

6. To set up directory path, type “C:\BaseLine\MAXPLUS2” and

“C:\BaseLine\MAX2WORK” in dialog and then follow the directions

shown from Figure 4.1d to Figure 4.1f.

7. After start running MAX+PLUS II Baseline, read the license agreement as

Figure 4.2a and 4.2b. Copy protection information will be shown out as in

Figure 4.2c since we haven’t had authority and software guard key yet.

Click “Yes” and find the message as Figure 4.2d. You will know the

Baseline restrictions and ways of getting the license.

 Figure 4.1a Baseline 9.23 setup

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.1b Baseline 9.23 setup (continue)

Figure 4.1c Baseline 9.23 setup (continue)

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.1d Baseline 9.23 setup (continue)

Figure 4.1e Baseline 9.23 setup (continue)

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.1f Baseline 9.23 setup (continue)

Figure 4.2a Baseline 9.23 license obtainment and setup

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.2b Baseline 9.23 license obtainment and setup (continue)

Figure 4.2c Baseline 9.23 license obtainment and setup (continue)

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.2d Baseline 9.23 license obtainment and setup (continue)

8. To have Baseline 9.23 license, please choose “Option” and then “License

Setup” as in Figure 4.2e. Click “System Info…” later as in Figure 4.2f. You

could find your hard drive serial number and write it down as in Figure 4.2g.

We need the number to apply the license on ALTERA website.

9. Go to the http://www.altera.com/ website as Figure 4.2h. Select

“MAX+PLUS II Licenses & Authorization Codes” on the web site

indicated as in Figure 4.2h. Click the first item “Free MAX+PLUS II

Baseline software” on MAX+PLUS II Licensing web page as in Figure 4.2i.

Carefully enter your hard drive serial number in the blank area circled as in

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.2j, and fill out your information as in Figure 4.2k. Make sure you

give correct email account before send your application. You will get

confirmation from ALTERA soon after ALTERA receives your application.

Figure 4.2e Baseline 9.23 license obtainment and setup (continue)

 Figure 4.2f Baseline 9.23 license obtainment and setup (continue)

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.2g Hard drive serial number obtainment

Figure 4.2h Baseline 9.23 license obtainment and setup (continue)

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.2i Baseline 9.23 license obtainment and setup (continue)

Figure 4.2j Baseline 9.23 license obtainment and setup (continue)

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.2k Baseline 9.23 license obtainment and setup (continue)

10. When you receive the mail from ALTERA, save “license.dat” in C:\baseline.

11. Please re-start MAX+PLUS 9.23 BaseLine, click the buttons “Option” and

“License Setup”. You will see Figure 4.2f appearing on your screen. Enter

“C:\baseline\license.dat”. It will show as Figure 4.2L, and click OK.

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.2L Baseline 9.23 installation procedures and licensing acquisition

(continue)

Congratulation, you are now already download MAX+PLUS 9.23 BaseLine, and

are authorized to use this program.

4.2 How to Use Mouse
Mouse is widely used in the PC world. The advantage of using mouse as one kind

of computer appliance is it is able to create mutual communication for both users

and computer. Nowadays, mouse is acknowledged as most efficient way to scan

desktop and to deliver messages. Mouse is especially more effective in graphic

design environment. In this case, a regular two-button mouse could be adopted in

MAX+PLUS II environment.

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

!"Mouse Operations

 Cursor: Indicate the place where mouse located on the

screen; in different context mouse has shown on

different shapes and different meanings.

 Click: Fast press once and release button.

 Double click: Fast press twice and release the left button.

 Drag: Hold down the bottom and move.

 Drag-drop: Position the mouse pointer over an object on your

screen then press and hold down the button, move

the mouse to where you want to place the object

then release the button.

!"Shapes of Cursor and Useful Functions

 Arrow: This is an arrow in NNW direction. The main function of arrow

is to click selection, the objects, or items.

 Hourglass: When hourglass appears on the screen, you might have to wait a

while, because it shows MAX+PLUS II is currently processing.

Insertion-Point: This is an I-shape arrow shows you where the next characters you

type will appear on the screen.

 Finger: This is appears in standard toolbar to provide assistant options.

Question mark: Press F1 to show the mouse.

 Square-icon: In Graphic Editor, press this button and draw a square

shape.

 Cross-icon: This shows the connection point.

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

4.3 Graphic Entry

Graphic entry is easy to learn and apprehend, the standard application procedure as

follows:

1. Identify project name

2. Create new file name

3. Set up and display guideline

4. Enter primitives and macro functions

5. Remove, delete, recover and duplicate on circuit symbol

 6. Connect pins

 7. Identify the names of I/O pin and netlist

 8. Save and check basic errors

 9. Create a default symbol

10. Compile for functional simulation (“Functional compilation” will be used in

the following discussion.)

11. Close the design file

 We take the following case as an example of preventing keypad bouncing.

 1. Identify project name

First of all, click the file button, press the project button, you will see Figure

4.3a. At this point, select the “name” icon once again, and Figure 4.3b will

be shown. You can type “disbounce” under the project name or select

“disbounce” if the project name has existed. Then click OK. You are now

complete the process of selecting the project name. We always take “File >

Project > Name” to represent the above procedures, and always remember to

click “File” first; then click “Project”, and finally hit the “Name” button.

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

 2. Create new file name (two methods)

(1)Method one:

a.) In the function bar, select “File” and click “New” as shown in Figure

4.4;

b.) In “File Type” dialog, click “Graphic Editor file” and “OK”, as

shown in Figure 4.4b;

c.) Under “File”, click “Save As...” button as this procedure shows in

Figure 4.4c;

d.) Type “disbounce.gdf” into the file name column, as it shown in

Figure 4.4d.

(2) Method two:

a) MAX+PLUS II > Graphic Editor to start graphic editor as Figure

4.4e;

b) File > SaveAs...;

c) Type “disbounce.gdf” into File Name field.

Figure 4.3a Identify project name

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.3b Identify project name (continue)

Figure 4.4a Create a new file (1)—select “New” under File function

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.4b Create new file (2)—select “Graphic Editor file” and click OK in File

Type dialog

Figure 4.4c Create new file (3)—select “Save As...” in file function

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.4d Create new file (4)—type “disbounce.gdf” in File Name dialog

Figure 4.4e Create new file (5)—select “Graphic Editor” in MAX+PLUS II

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

 Figure 4.5 Graphic Editor environment illustration

3. Set up and display guideline

As Figure 4.5 shown, middle section is the main working area, where we

construct circuit diagram. Over the top of working area, menu bar will

appear and standard toolbar will be on left edge of the screen. They both

provide various functions to assist constructing circuit diagram. You will see

toolbar on the left side of the window, which displays a list of functional

buttons to assist you drawing circuit diagram. When you point one of the

buttons on the toolbar, it will describe functions of this particular icon on the

left bottom of the window. You might click help on-line icon and select

objects you want to have more information. Figure 4.6 shows how to use on-

line help. Another way for help is to press F1 on your keyboard shown as in

Figure 4.7.

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.6 On-line help

On the “Options” bar, click “Show Guidelines” button, to display grid and

guide lines. Spacing between XY-axis in grid and guidelines is able to set up

by selecting “Guideline Spacing” under the “Options”. As Figures 4.8a and

4.8b, click “Color Palette” under Options, and you will see the information

as in Figure 4.9 to select the colors of grid and guidelines. Under “Options”,

you will see different functional options like Font、Text Size、Line Style

and Rubber band

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.7 F1 function in Graphic Editor

Figure 4.8a Set up spacing between XY-axis in grid and guide lines

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.8b Set up spacing between XY-axis in grid and guide lines (continue)

Figure 4.9 Set up the color of grid and guide lines

 4. Enter primitives and macro functions

When you are in blank spaces in Graphic Editor window, click the left

button of the mouse twice. You will see the window shown exactly the same

as Figure 4.10, and you can type primitive names. Figure 4.11 shows that the

DFF primitives have been entered. Please redo the same procedure for

INPUT, VCC, NOT, and OUTPUT primitive entries. Those primitives are

shown as Figure 4.12.

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.10 Primitive entry

Figure 4.11 Primitive entry—DFF primitive

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.12 Completion of primitive entry

 5. Delete, Remove, Retrieve, Copy Primitives and Macro Functions

(1) Remove: If you wish to remove the primitive, use mouse to select an

object, (the object will be framed by red lines) and drag the object to

where you want to place.

(2) Delete & recover: In order to delete a primitive, click the primitive first

and press Del, (or select scissors icon) then you can delete this primitive.

If you want to recover the object, press Ctrl + Z on your keyboard to get

back.

(3) Copy: Copying circuits are also frequently used in MAX+PLUS II

environment. First, select the primitive, press Alt and Ctrl, then point at

the object and drag it to where you want to place then release the button.

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

You could also pick the object first, and press Ctrl + C to copy the object,

and move mouse to the place where you want and press Ctrl + V to paste

the copied object.

 6.Pin connection

In order to construct circuit connection, select “Line Style” under the

“Options”, as shown in Figure 4.13. A thin line stands for singular

connection, a bolder line represents for Bus connection. (Please be

caution to click the bar appearing after selecting Line Style). Move the

mouse to connection point (a cross cursor will show up). Click the left

side button of the mouse and drag the mouse to where you want to route

and connect. As the same method, draw the lines until a circuit is

constructed. Figure 4.14 shows the connecting process and Figure 4.15

shows the final result of the connection.

Figure 4.13 Selection of line style

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

7.Name I/O pin and netlist

As shown in Figure 4.5, to change or name the connection, click the left

button on the mouse, click “PIN_NAME” to change the names of I/O pins.

For naming netlist, move the cursor to the netlist and click it. The netlist

will become red and a small square will show up. Start to enter a new name.

Once naming is finished, if any changes are needed, double click the name

again (the area will inverse). Then, you can now enter the new name.

Figure 4.14 Pin connection

8.Save and check basic errors

Once you completed all the editing processes, select File > Project > Save & Check

(or press Ctrl + K) to save the document and check all the basic errors. Figure 4.16a

indicates this operation. After MAX+PLUS II checks all of the circuit, there might be

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

signals showing error messages in the diagram. You might follow the instruction to

make correction. Then save and check again until no more errors exist (Figure 4.16b)

before next steps. Please be aware of that File > Save (or Ctrl + S) can only save your

document, but not check any basic errors.

Figure 4.15 Final result of the connection

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.16a Save and check basic errors

Figure 4.16b Completion of save and check

 9.Create a default symbol

When you complete a new circuit or there are any changes on the names or

counts of I/O pins, click File > Create Default Symbol to create a new

symbol representing the newest circuit diagram for the upper circuit layer

calling. Figure 4.16c shows the operation of creating a new symbol of the

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

circuit. Figure 4.16d shows the symbol for disbounce.gdf. Click File ＞

Edit Symbol to make necessary steps of editing symbols.

Figure 4.16c Creating a new circuit symbol after completing save and check

basic errors

 Figure 4.16d Disbounce.gdf symbol and symbol edit window

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

 10.Functional Compilation

Congratulations! You have successfully reached to this step. The following

are prepare steps for functional simulation:

(1) Open compiler window by selecting MAX+PLUS II > Compiler as

(2) Select Processing > Functional SNF Extractor to choose the compiler

needed as Figure 4.18.

(3) Click the start button to run compilation as Figure 4.19.

Make any error correction as needed. If there are no errors, congratulation,

you have successfully completed the circuit diagram entry. Now, you can

start the next functional simulation directly, or you might have a break from

your desktop!

Figure 4.17 Compiler calling

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.18 Select functions of compiler

Figure 4.19 Start the functional compilation for functional simulation

 11. Close the file

Click “File > Close “ to close the document, or click the close icon on the

window.

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

4.4 Functional Simulation

As we introduced the utilities of compilation in Section 4.3, the functional

module of Functional SNF Extractor have prepared data for the functional

simulation of the circuit. However, it required further definition and

identification of input signals and which output or internal nodes should be

put extra notification. In general, it can be illustrated as textual files or

waveform files. ALTERA provides both of these illustrations and it is easier to

learn and understand by waveform illustration. Therefore, the functional

simulation procedures using waveform illustration are as follows:

Open new file;

1. Select inputs, internal nodes, and outputs;

2. Define the waveforms of inputs;

3. Activate functional simulator to implement functional simulation;

4. Manage the errors and inspect simulation results;

5. Close file.

The following is an example of simulating a disbounce circuit. The whole

procedures are illustrated by figures.

 1. Open new file

Please open a new file by File > New, and click Waveform Editor File

(Please note the extension file name is .SCF), as shown in Figure 4.20, to

open a Waveform Editor file. Graphic 4.21 is an untitled waveform editor

file. Please save this file and use the name of the project by “File > Save

As...” as shown in Figure 4.22. Figure 4.23 illustrates another way to open

an untitled waveform editor file by MAX+PLUS II > Waveform Editor.

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

 Figure 4.20 Open a new waveform editor file

Figure 4.21 An untitled waveform editor file

Figure 4.22 Use File > Save As...to name a waveform editor file

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.23 Another way to open an untitled waveform editor file

2. Select inputs, internal nodes, and outputs

The most convenient way to select the inputs, nodes, and outputs is to select

these nodes from a SNF file, which is generated from the above section.

Figure 4.24 shows the demonstration. From the menu of “Node” to select

Enter Nodes from SNF...the windows of Figure 4.25a, Figure 4.25b would

appear. Please note that the order of Node > Enter Nodes from SNF can

work only after implementing the order of File > Save As.

In Figure 4.25a, click “(1)”, List, the SNF file would show proper node type

(Type) and name (“*” demonstrate all the file names) and would list the

available nodes and groups for you to choose. In this example, please press

the left button on the mouse at “(2)” in the block of “Available Nodes and

Groups” and drag to “(3)”. This action means you are ready to select the

nodes of KEYIN [I], CLKIN [I] and KEYOUT [O]. At this time, please

click “=>”, the result would come up, as shown in Figure 4.25b. Click OK to

complete the selection process. Figure 4.26 is the result of the selected

inputs, nodes, and outputs. Figures 4.27a and 4.27b are for setting up grid

size by “Options > Grid Size…”.

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.24 Select input, internal, and output nodes

Figure 4.25a Nodes selection window

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.25b Node selection window

Figure 4.26 The result of the selected inputs, nodes, and outputs and the names

of the columns

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.27a Options > Grid Size...Command to set grid size

Figure 4.27b Setting End Time

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.27c Set grid size by using Option> Grid Size… command.

Figure 4.27d Set Grid Size equal to 15 ns

 3. Input waveform definition

After completing the above steps, some original waveform data would be

saved in the waveform file. Therefore, we have to utilize the following tools

to define he waveform input for the later functional simulation. Please

double click “Edit” in the Menu for the following operations, as shown in

Figure 4.28.

(1) Undo: Undo the last action. Can be done by Edit > Undo or Ctrl+Z.

(2) Cut: Cut the selected waveform data block to clip board. Can be done

by Edit > Cut or Ctrl+X.

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.28 Waveform “Edit” menu

(3) Copy: Copy the selected waveform data block. Can be done by Edit >

Copy or Ctrl+C.

(4) Paste: Paste the copied data once. Can be done by Edit > Paste or

Ctrl+V.

(5) Delete: Delete the selected data. Can be done by Edit > Delete or Del.

(6) Overwrite: Overwrite the waveform data onto the selected waveform

data block. Can be done by Edit > Overwrite. There are nine overwrite

functions: Logic “1” signal, Logic “0” signal, unknown signal (x),

High impedance signal (Z), invert signal, clock signal, counter value,

group and state name overwrite. Please refer to Figure 4.28 and Figure

4.29a.

(7) Insert: Insert the waveform data to the selected block. Can be done by

Edit > Insert.

(8) Align to Grid: Align the selected data to the grid. Can be done by Edit

> Align to Grid or Ctrl+Y.

(9) Repeat: Repeat the selected waveform block. Can be done by Edit >

Repeat….

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

(10)Grow or Shrink: Horizontally grow or shrink the selected waveform

data. It can be done by Edit > Grow or Shrink.

To the selected waveform data, there are three types also:

(1)A block: As shown in Figure 4.29a. Press the left button of the mouse

at the start point “(3)” and drag to “(2)”.

(2)A Node: As shown in Figure 4.29b. Press the left button of the mouse

at the start point “(1)” and the selected area will be blocked.

(3)Nodes: As shown in Figure 4.29b. Press the left button of the mouse at

“(1)” and drag to “(2)”.

 Figure 4.29a Select a waveform data block

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

 Figure 4.29b Select a node or several nodes data block

In Figure 4.29a, in order to overwrite the signal data, please click the left

button of the mouse at “(1)” and drag to “(2)” to block the area. Then click

the left button of the mouse at the left banner of the window to choose the

overwritten signal type. This function can also apply to the data block in

Figure 4.29b. Figure 4.29c and 4.29d illustrate the fast generation of clock

waves. Another waveform editor is waveform edit cursor. Figure 4.30a and

4.30b demonstrate the situation of edit KEYIN signal. Please form the

KEYIN waveform and save it by “File > Save As…”.

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

 Figure 4.29c Clock waveform generation

Figure 4.29d Clock waveform generation(continue)

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.30a Edit KEYIN wave by waveform cursor

Figure 4.30b Edit KEYIN wave by waveform cursor (continue)

4. Activate functional simulator to implement functional simulation

After completing the definition of simulation waveform, we can activate the

simulator by MAX+PLUS II > Simulator, as shown in Figure 4.31. At this

time, click Start button to activate ALTERA functional simulation. Please note

the file name of simulation input.

5. Manage the errors and inspect simulation results

If there are errors of the simulation results, please read the error signals, and

modify the errors. If there are no errors, click the waveform window to

inspect the output waveform of simulation result, as shown in Figure 4.33.

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

If the simulation result does not meet the functions, please choose the file

and go back to Section 4.3 to modify and compile the circuit. Then,

implement the functional simulation instructed in this section until the result

meets the functions. In Figure 4.33, the disbounce signal has been

eliminated.

6. Close file: Please close current file by File > Close.

 Figure 4.31 Activate functional simulation of MAX+PLUS II

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

 Figure 4.32 Functional simulation window

Figure 4.33 Functional simulation result

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

4.5 Floorplan and Design Compilation
Floorplan is the arrangement of circuit into FPGA chip, which includes chip

assignment, the arrangement of input and output pins, and the arrangement of LAB

(Logic Array Block) of the circuits…etc. However, not until implementing

functional simulation of the circuits can these functions work. For a beginner, the

priority is to familiarize with chip assignment, the arrangement of input and output

pins. The critical issue is that all the floorplans are managed by Floorplan Editor

which can be done by MAX+PLUS II > Floorplan Editor. The procedures are as

follows:

Figure 4.34a mod16.gdf

 1. Setting up the processing of the compiler

 2. Selecting FPGA chip

 3. Floorplan

 4. Design compilation after floorplan.

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Let’s take the file of mod16.gdf, Figure 4.34a and 4.34b, as an example to illustrate

the whole procedure.

Figure 4.34b div1000.gdf sub-circuit in mod16.gdf

First of all, please edit the circuit of div1000.gdf, Figure 4.34b, by the graphic editor,

and complete the functional simulation, Figure 4.34c and Figure 4.34d, by the

functional simulator. At the mean time, generate an internal circuit symbol for using

in mod16.gdf. Figure 4.34e is the relevant passive circuit. We can directly download

the configuration data.

 1. Setting up compiler process

If the window of Figure 4.35 shows up when you are using the compiler,

please click Function SNF Extractor of “Process” to make it turns to Figure

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

4.35, which has more compilation functional modules. From left to right are

Compiler Netlist Extractor, Database Builder, Logic Synthesizer, Partitioner,

Fitter, Timing SNF Extractor and Assembler. From here, we can understand

that the Processes of ALTERA compiler can be set to meet any kind of

requirement. The Compiler’s Processes will be described in detail in the

following chapter.

 Figure 4.34c Simulation result of div1000.gdf sub-circuit

 Figure 4.34d Simulation result of div1000.gdf sub-circuit

(Magnify the circle in Figure 4.34c)

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

 Figure 4.34e Peripheral passive circuit of mod16.gdf

Figure 4.35 Simple compiler window of functional simulation

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.36 Compiler window

 2. Selecting FPGA device

Please follow the instructions of Figure 4.37a and Figure 4.37b to choose

EPF10K10TC144-4 of FLEX 10K family, which is a SRAM 144-pin chip.

 Figure 4.37a Assigning FPGA device

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.37b Assigning FPGA device

 3. Floorplan

Figure 4.38 is the last compilation, the below half figure is the device

overview. Another way to view the chip is through a LAR view, which

allows checking the arrangement in the selected chip and the arrangement of

the pins. It would spontaneously offer the relevant information as long as the

cursor moves to the circuit block that you intend to check. On the other hand,

the device view can only offer the information of pin arrangement. Both of

these views can switch the functions of each view as long as double click the

left bottom of the mouse at the location of the cursor, as shown in Figure

4.38

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.38 Device view of the last compilation

If you are not really satisfied with your pin arrangement or even would like

to make any changes, you could re-plan the pin assignment by Layout >

Current Assignments as Figure 4.39. Once the window is there, you could

use the left bottom of your mouse, select the pin from the block at the upper-

right corner, and drag it to the desired pin in the lower part of the window.

Release the button to reassign I/O pin. We also could select any pin from

lower of the window and drag it to another desired pin and release it to

change pin assignment. As Figure 4.34b, please move CLKIN to Pin 55,

KEYIN to the Pin 47, Q1 to Pin 7, Q2 to Pin 8, Q3 to Pin 9, Q4 to Pin 10,

and LED_COM output to Pin 141, which is Common anode. The

EPF10K10TC144-4 pin assignments are listed as Table 4.1.

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Table 4.1 EPF10K10TC144-4 pin assignments

Name of Signal Line Pins of EPF10K10TC144-4

CLKIN Pin 55

KEYIN Pin 47

Q1 Pin 7

Q2 Pin 8

Q3 Pin 9

Q4 Pin 10

LED_COM Pin 141

 4. Design Compilation After Floorplanning

By floorplanning, please open Compiler window as Figure 4.36 after

complete the latest pin assignment. Select “Processing > Total Recompile”

to start Compiler. If there is no error message displayed, you will get a file

named “mod16.sof”, which we will use in the next section to program

EPF10K10TC144-4 chip. However, if an error message is shown out, please

back to the step 3 and modify the pin assignment as well as the compilation

until all correct.

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.39 Compiler —current assignments

4.6 Device Programming and Circuit
Testing

For ALTERA device programming, it requires users check what type of the

reconfigurable element is used in the selected device. The type of the reconfigurable

element could be EPROM, EEPROM, FLASH, or SRAM. Different types will use

different programming approaches. Since we already talked about EPF10K-

10TC144-4 CPLD in the last section, we will use it as our programming example.

EPF10K-10TC144-4 CPLD is an ALTERA SRAM device. All of the configuration

data has to be installed into the circuit completely after the system powers on. In

another words, FLEX10K family offers users a great flexibility to reconfigure

different circuits with different re-configuration data. To complete the

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

reconfiguration when the system powers on, ALTERA offers ALTERA’s serial

configuration EPROM which can save configuration data for FLEX10K family and

install configuration data to complete circuit configuration when the system is

starting process. In Table 4.2a, we list the types and specifications of the typical

examples applying ALTERA‘s serial configuration EPROM.

Table 4.2a Typical application examples of ALTERA’s serial configuration EPROM

FLEX10K Device Serial Configuration EPROM

EPF10K10, EPF10K10A EPC1 or EPC1441

EPF10K20 EPC1 or EPC1441

EPF10K30, EPF10K30A, EPF10K30B EPC1 or EPC1441

EPF10K40 EPC1

EPF10K50, EPF10K50V, EPF10K50B EPC1

EFP10K70 EPC1

EPF10K100, EPF10K100A, EPF10K100B EPC1 ×2

EPF10K130V, EPF10K130B EPC1 ×2

EPF10K180B EPC1 ×3

EPF10K250A, EPF10K250B EPC1 ×4

EPF8282A EPFC1, EPC1441, EPC1213 or EPC1064

EPF8282AV EPFC1, EPC1441 or EPC1064V

EPF8452A EPFC1, EPC1441, EPC1213 or EPC1064

EPF8636A EPFC1, EPC1441 or EPC1213

EPF8820A EPFC1, EPC1441 or EPC1213

EPF81188A EPFC1, EPC1441 or EPC1213

EPF81500A EPFC1, EPC1441 or EPC1213 ×2

EPF6016, EPF6016A EPFC1 or EPC1441

EPF6024A EPFC1 or EPC1441

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Table 4.2b Types and characteristics of ALTERA‘s serial configuration EPROM

Serial Configuration Description

EPFC1 1,046,496 bits, Voltage: 5.0V or 3.3V

EPC1441 440,800 bits, Voltage: 5.0V or 3.3V

EPC1213 212,942 bits, Voltage: 5.0V

EPC1064 65,536 bits, Voltage: 5.0V

EPC1064V 65,536 bits, Voltage: 3.3V

To make it easy to use ALTERA MAX+PLUS II and help new users adopt FLEX10K

devices, Leap Company gives a great LP-2900 CPLD logic design experimental

platform, which has two major hardware components as below:

!"CPLD Device Board

This module has the circuits including:

 1. Programming circuit: The circuit made by a target chip EPF10K10TC144.

Its function is to receive the configuration data from programmer or

EPROM, to program EPF10K10TC144, and to drive the outside circuit.

2. Download circuit: Its function is to send the “configuration data” to a

“programming circuit” to easily program EPF10K10TC144. Totally there

are many various programming technologies, and here we only introduce

three as below:

(1)It can be done via PC printer parallel port to receive “configuration data”,

and forward to a “programming circuit”. Definitely, it requires users to

run MAX+PLUS II Programmer by PC to send “configuration data”.

(2) It can be done by EPROM, which has an EPROM 2764 socket on the

board, to receive “configuration data” and forward the data to a

“programming circuit”.

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

(3) Without “download circuits”, it can also be done by ByteBlaster

connection bus to download the configuration data. ByteBlaster

connection bus can connect between PC printer parallel ports and

ByteBlaster plugs on the CPLD-EPF10K10 device board. It also requires

MAX+PLUS II Programmer on PC to send “configuration data”.

!"I/O Element Experimental Platform

The module has some input buttons or selection switches and some output display

circuits such as LED, Dot Matrix, and LCD. The experimental platform also has

A/D converter, D/A converter, and an 8051 microprocessor. For the details of the

information, please refer to the explanation in Chapter 9.

By Leap Company’s LP-2900 CPLD logic design experimental platform, new users

can use the following technologies to program FLEX10K10 devices:

 1. Download via printer parallel port:

(1) Use connection bus to connect between PC printer parallel port and LP-

2900 experimental platforms.

(2) After power on the experimental platform, LED D1 at the upper-left

corner is lightened up, and then press RESET button.

(3)In MAX+PLUS II, start programmer window by selecting MAX+PLUS

II ＞ Programmer as Figure 4.40. Because we haven’t finished the

“programming hardware setting”, “Programming hardware is not

installed.” will be shown up, and please click “Yes”.

(4) Double click for Hardware Setup window by selecting Option >

Hardware Setup as Figure 4.41. After starting Hardware Setup window,

please find “Hardware Type” and drag down to select “ByteBlaster” as

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.42a and Figure 4.42b. Once complete the hardware setting, it is

unnecessary to redo the setting process except we make some changes to

the downloading technologies.

Figure 4.40 Starting Programmer window at first time by MAX+PLUS II

＞ Programmer

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.41 Starting Hardware Setup window

Figure 4.42a Hardware Setup window

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.42b Hardware Setup window (continue)

Figure 4.42c Hardware Setup (continue)

(5) Start Multi-device JTAG Chain Setup by selecting JTAG > Multi-Device

JTAG Chain Setup as Figure 4.43. In Multi-device JTAG Chain Setup

window, please drop down the “Device Name” column and select

“EPF10K10” as Figure 4.44a. Then click “Select Programming File”,

choose the “mod16.sof” file as Figure 4.44b, and then click “Add” and

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

“Ok” as Figure 4.44c to close Multi-device JTAG Chain Setup window. If

the message as Figure 4.44d is found, Multi-device JTAG Chain Setup

mode is then closed completely, and so please click “Yes”.

Figure 4.43 Starting Multi-device JTAG Chain Setup window

Figure 4.44a Multi-device JTAG Chain Setup

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.44b Multi-device JTAG Chain Setup (continue)

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

 Figure 4.44c Multi-device JTAG Chain Setup (continue)

Figure 4.44d Multi-device JTAG Chain Setup (continue)

(6) Back to Programmer window, click “Configure” as Figure 4.45 to

download circuit.

 Once the programming is completed, the OK light on the CPLD device

board will be on; otherwise ERROR light will be. Click PS1 at lower-

bottom corner in LP-2900 CPLD logic circuit experimental platform as

Figure 4.46. Meanwhile, check L1 to L4 LED at the upper-right corner on

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

the experimental platform to know if it has changes from binary 0, 1, 2,

3, …, 15 to 0, 1, 2, 3, …….

Figure 4.45 Download circuit to LP-2900

Figure 4.46 PS1 location in LP-2900

Congratulation! First Time is Always Unforgettable…

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

2. Download by parallel EPROM

 After the design file is totally compiled, please select File > Convert

SRAM Object Files as Figure 4.47 to convert programming files into

Single-Device.HEX format. In another words, in Convert SRAM Object

Files window, click “Add” in Input File column as Figure 4.48, and then

click “Ok” after select “.hex (Single-Device)” in Output File column. The

data will be programmed into EPROM (in this case, it is 2764.) and then

insert it onto LP-2900 experimental platform.

 At that point, it is not necessary to connect between the experimental

platform and a PC printer parallel port. It only requires to power on the

experimental platform, and LED D1 will be on. Click “Reset” button.

The OK light on the successfully downloaded CPLD-EPF10K10 will be

on; otherwise, ERROR light will be on and we have to repeat the steps 1

and 2.

Figure 4.47 Starting Convert SRAM Object Files window by using

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

File > Convert SRAM Object Files

Figure 4.48 Converting programming file into Single-Device format

4.7 Use Graphic Entry to Complete
LEDTEST Example

In this section, we will give you an example to review (1) graphic-entry circuit

design; (2) functional simulation; (3) floorplan and design compilation; (4) the

practice of device programming and circuit verification via LP-2900 CPLD logic

circuit experimental platform. Because the clock used in LP-2900 CPLD logic

experimental platform is 10 MHz, we need one or two Frequency Division circuits

and 12-bit Ripple Counters. First, use graphic-entry circuit design to complete the

three sub-circuit designs, LEDTEST.GDF design, and some required simulations.

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

To start the practice, please complete the following direction and refer to previous

sections when needed.

Step 1: As Figure 4.49a, please make graphic entry for the sub-circuit DIV10.GDF.

Create a default symbol as Figure 4.49b. For the related operational

process, please see Section 4.3.

Step 2: Please complete the functional simulation of the sub-circuit DIV10.GDF

as Figure 4.49c. For the related operational process, please see Section

4.4.

Step 3: Please use the two elements of div1000 and div10, enter the sub-circuit

CLKGEN.GDF as Figure 4.50a, and create a default symbol as Figure

4.50b. For the related operational information, please see Section 4.3.

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.49a Sub-circuit DIV10.GDF (File: DIV10.GDF)

Figure 4.49b Default symbol of sub-circuit DIV10.GDF (File: DIV10.SYM)

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.49c Functional simulation results of sub-circuit DIV10.GDF (File:

DIV10.SCF)

Step 4: Please enter the sub-circuit RING12.GDF as Figure 4.51a, and create a

default symbol as Figure 4.51b. For the related operation information,

please see Section 4.3.

Figure 4.50a Sub-circuit CLKGEN.GDF (File: CLKGEN.GDF)

Figure 4.50b Default symbol of sub-circuit CLKGEN.GDF (File: CLKGEN.SYM)

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.51a Sub-circuit RING12.GDF (File: RING12.GDF)

Figure 4.51b Default symbol of RING12.GDF sub-circuit (File: RING12.SYM)

Step 5: Please complete the functional simulation of the sub-circuit RING12.GDF

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

as Figure 4.51c. For the related operational information, please see

Section 4.4.

Figure 4.51c Functional simulation results of sub-circuit Ring12.GDF (File:

ring12.SCF)

Step 6: Please use the two elements, CLKGEN and RING12 to complete

LEDTEST design entry. For the related operational information, please

see Section 4.3.

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.52 Main circuit LEDTEST.GDF (File: LEDTEST.GDF)

Step 7: Please refer to Section 4.5.

1. Call out the compiler by MAX+PLUS II > Compiler.

2. Ensure the design compilation by Processing > Timing SNF Extractor.

3. Select the device family (FLEX10K) and the device (EPF 10K10TC144-4)

by Assign > Device.

4. Start compiler for free compilation.

5. Start floorplan by MAX+PLUS II > Floorplan, and then go to pin current

assignment window by Layout > Current Assignment. Use Table 4.3 to do

pin assignment.

6. After pins are planned already, redo the compilation. Select Layout > Last

Compilation for Floorplan Editor to ensure the last compilation is what we

expected.

Step 8: Please refer to Section 4.6.

1. Assemble LP-2900 CPLD logic design platform, and connect well with a

printer bus.

2. Power on, and click “Reset” bottom. LED D1 will be lightened up.

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Table 4.3 Pin assignment of EPF10K10TC144-4

Name of Signal
EPF10K10TC144-4

Pin Count
Name of Signal

EPF10K10TC144-4

Pin Count

CLKIN Pin 55 Q6 Pin 13

CLRN Pin 47 Q7 Pin 14

Q0 Pin 7 Q8 Pin 17

Q1 Pin 8 Q9 Pin 18

Q2 Pin 9 Q10 Pin 19

Q3 Pin 10 Q11 Pin 20

Q4 Pin 11

Q5 Pin 12 LED_COM Pin 141

3. In MAX+PLUS II, start Programmer window by MAX+PLUS II ＞

Programmer as Figure 4.40. Because the “hardware setting” is totally

completed, the information “Programming hardware is not installed.” will

not be found. However, if the information is still there, please refer to

“programming hardware setting” in Section 4.6.

4. Start Multi-Device JTAG Chain Setup window by JTAG > Multi-Device

JTAG Chain Setup as Figure 4.43. After go into the window, if there are still

some old programming files (in this case, it should be MOD16.SOF), please

delete them as Figure 4.53. Select the device “EPF10K10” from “Device

Name” as Figure 4.44a. Click “Select Programming File” and choose the

file “LEDTEST.sof” as Figure 4.44b. Click “Add” and then “Ok” to exit the

Multi-device JTAG Chain Setup window as Figure 4.44c. If the Figure

4.44d is found, it tells us that Multi-device JTAG Chain Setup mode is

closed, and, therefore, click “Yes” please.

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

Figure 4.53 Delete old programming file “MOD16.SOF”

5. Use your mouse to click “Configure” in Programmer window, and start to

download programming. If the download is not successful, please repeat the

steps 1 to 4.

6. If the download is successfully completed, please click SW1 (CLRN) and

check if LED is running well. If not, (1) please check if the pin assignment

is correct; (2) please download LEDTEST.SOF from CD to check if the

clock is correct.

〜〜〜〜 Congratulation! You have Completed Another Practice!〜〜〜〜

Similarly, we would like to suggest you repeat the steps from 1 to 8. For sure, you

will improve a lot next time.

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

4.8 Review
Please answer the following questions to review this chapter.

#" Do you know the name of EDA software introduced in this chapter? Do you

know how to set it up?

#" Do you know what functional simulation is?

#" Do you know what floorplan is?

#" Do you know what device programming is? Which programmable device is

discussed in this chapter?

#" Do you know any other design entries except graphic entry?

 CPLD Logic Circuit Design and Practice PC Aided Digital Logic Design MAX+PLUS II

CHAPTER 5

 Combinational

 Logic Circuit

LEAP

Combinational logic circuit is main category of logic circuit. This circuit main

character is that output relates to now input and no relate to past input. If output

relates to now input and past input circuit, it is called sequential logic. We main

topic is combinational logic circuit in this chapter.

5.1 The Design, Simulation and Test of
 General Combinational Logic Circuit
The design of combinational logic circuit main goal is constructing circuit of
conformable circuit behave specification by using the less logic gate and the less
input. The design step is as follows,

1. Establish Truth table, Karnaugh map or Boolean expression by circuit
specification

2. From Truth table or Karnaugh map drives Boolean expression of sum-of-
product or product-of-sum

3. Minimize Boolean expression possibly
4. According to Boolean expression, in EDA tool (this book main use

MAX+PLUS II) use appropriate logic gate to complete design entry by
graphic editor (design entries also includes text and waveform, but this
book main uses Figure editor)

5. Then simulation this circuit and check whether the functions meet the
specification

After floorplan, downloads this circuit into selected device and performs the circuit
test

Now, we use reality example to explain all process. If we have following circuit
“the circuit includes four inputs and one output and when input is two or beyond
two “1”, the output is “1”, or output is “0”. ”

 CPLD Logic Circuit Design and Practice Combinational Logic

Step 1：Establish Truth table, like Table 5.1 (hypothetically, four input variable

are A.B.C.D, and output variable is Z) or Karnaugh map of Table5.2.

Table 5.1 Truth table of circuit

Input Output

A B C D Z

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

 CPLD Logic Circuit Design and Practice Combinational Logic

Table 5.2 Karnaugh map of circuit

CD Z

00 01 11 10

 00 0 0 1 0

AB 01 0 1 1 1

 11 1 1 1 1

 10 0 1 1 1

Step 2：To drive Boolean expression of sum-of-product or product-of-sum from

Truth table, Table 5.2

 Z = A’B’CD + A’BC’D + A’BCD’ + A’BCD + AB’CD’ + AB’C’D + AB’CD +

 ABCD’ + ABC’D’ + ABCD + ABC’D …………………….…………….(5-1)

Step 3: Minimize Boolean expression possibly (or getting minimum Boolean

expression by Karnaugh map). For minimum, we will lead some repeat

terms into expression (5-1) (the terms of underline), and rewrite

expression (5-3).

Z = A’B’CD + A’BCD + AB’CD + ABCD + ABC’D’ + ABC’D + ABCD +

 ABCD’ + A’BC’D + ABC’D + A’BCD + ABCD + AB’C’D + AB’CD +

 ABC’D + ABCD + A’BCD’ + A’BCD + ABCD’ + ABCD + AB’CD’

 + AB’CD+ ABCD’+ ABCD ... (5-2)

Z = (A’B’ + A’B + AB’ + AB) CD + AB (C’D’ + C’D + CD + CD’) + BD

 (A’C’ + AC’ + A’C + AC) + AD (B’C’ + B’C + BC’ + BC) + BC (A’D’

 + A’D + AD’ + AD) + AC (B’D’ + B’D + BD’ + BD)

 = AB + AC + AD + BC + BD + CD ... (5-3)

 CPLD Logic Circuit Design and Practice Combinational Logic

 or like Karnaugh map minimization of Table 5.3a〜Table 5.3f (note:

please choice in same table when drawing figure)：

Table 5.3a Z = AB + ？

CD
Z

00 01 11 10

00 0 0 1 0

01 0 1 1 1

11 1 1 1 1

AB

10 0 1 1 1

Table 5.3b Z = AB + CD + ？

CD
Z

00 01 11 10

00 0 0 1 0

01 0 1 1 1

11 1 1 1 1

AB

10 0 1 1 1

Table 5.3c Z = AB + CD + AD + ？

CD
Z

00 01 11 10

00 0 0 1 0

01 0 1 1 1

11 1 1 1 1

AB

10 0 1 1 1

 CPLD Logic Circuit Design and Practice Combinational Logic

Table 5.3d Z = AB + CD + AD + BD + ？
CD

Z
00 01 11 10

00 0 0 1 0

01 0 1 1 1

11 1 1 1 1

AB

10 0 1 1 1

Table 5.3e Z = AB + CD + AD + BD + BC + ？

CD
Z 00 01 11 10

00 0 0 1 0

01 0 1 1 1

11 1 1 1 1

AB

10 0 1 1 1

Table 5.3f Z = AB + CD + AD + BD + BC + AC
CD

Z 00 01 11 10

00 0 0 1 0

01 0 1 1 1

11 1 1 1 1

AB

10 0 1 1 1

 CPLD Logic Circuit Design and Practice Combinational Logic

Step 4：According to Boolean expression, in MAX+PLUS II, uses appropriate

logic gate to complete circuit entries of Figure 5.1 by graphic editor.

Figure 5.1 Circuit diagrams of ex1.gdf by using graphic entries in MAX+PLUS II

(document：ex1.gdf)

Step 5：Then simulation this circuit and check whether the functions meet the

specification. The Table 5.2 is simulation result of Table 5.1 circuit, we

can know requirement of circuit specifications from result of simulation

“ the output is ”1” when inputs have two or more two “1”, otherwise

output is “0”.”

Figure 5.2 Simulation result of ex1.gdf circuit (document：ex1.scf)

 CPLD Logic Circuit Design and Practice Combinational Logic

Step 6：After floorplan, download the circuit into selected device and performance

the circuit test are needs. For downloading test, we use LEDs on panel of

LP-2900 are grouped into common anode then connect to pin 141 of

EPF10K10TC144. Therefore, the pin 141 must be connected to Vcc for

LED common anode. In other words, the circuit of Figure 5.1 need to be

modified to become Figure 5.3 then compiles it again. (in the future, if

needs to use LED downloading test, this modified is necessary, the reader

must note it) After modified, we can use floorplan technique described in

Section 4.6, then select chip EPF10K10TC144-4 and use Table 5.4 pin

assignment reference。

After assemble platform LP-2900, we download this circuit to chip

EPF10K10TC144-4, then try to press SW1, SW2, SW3 and SW4 (left-

bottom of LP-2900) and note changes of L1 (Z).

 Table 5.4 Pin assignment of EPF10K10TC144-4 on LP-2900

Name of Signal Pin of EPF10K10TC144-4

A Pin 47

B Pin 48

C Pin 49

D Pin 51

Z Pin 7

LED_COM Pin 141

 CPLD Logic Circuit Design and Practice Combinational Logic

Figure 5.3 The ex1.gdf circuit of after modified

5.2 The Design, Simulation and Test of Adder
Generally, the adder divides into Half Adder and Full Adder. Half Adder includes

two inputs (add and addend), the output sum and carry. The Full Adder also

includes carry as input, the output sum and carry. We proceed to the design,

simulation and test of adder.

5.2.1 The Design, Simulation and Test of Half Adder
The circuit specification of Half Adder is “ circuit includes two inputs A and B, and

one Sum output and Cout carry output. The Sum outputs “0” and the Cout outputs

“0” when input is “00”；the Sum outputs “1” and the Cout outputs “0” when input

is “01”；the Sum outputs “1” and the Cout outputs “0” when input is “10”；the

Sum outputs “0” and Cout outputs “1” when input is “11” .”. According to the

procedure illustrated in above section, we design as follows：

 CPLD Logic Circuit Design and Practice Combinational Logic

Step 1：Establish Truth table, like Table 5.5 (hypothetically, two inputs are A and

B, and outputs are Sum and Cout).

Table 5.5 Truth table of Half Adder

Input Output

A B Sum Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Step 2：To drive Boolean expression of sum-of-product or product-of-sum from

Truth table, Table 5.5

 Sum = AB’ + A’B = A ⊕ B .. (5-4)

 Cout = AB ... (5-5)

Step 3：Minimize Boolean expression possibly. Because the expression (5-4) and

expression (5-5) had been minimized, they will not be minimized.

Step 4：According to Boolean expression, in MAX+PLUS II, uses appropriate

logic gate to complete circuit entries of Figure 5.4 by graphic editor.

Step 5：Then simulation this circuit and check whether the functions meet the

specification. The Table 5.5 is simulation results of Half Adder, and makes

sure function specification of conformable.

 CPLD Logic Circuit Design and Practice Combinational Logic

Figure 5.4 Circuit diagrams and symbol by using graphic entries in

 MAX+PLUS II (document：halfadd.gdf)

Figure 5.5 Simulation result of halfadd.gdf circuit (document：halfadd.scf)

Step 6：After floorplan, download the circuit into selected device and performance

the circuit test are needs. For downloading test, we use LEDs on panel of

LP-2900 to group into common anode then connect to pin 141 of

EPF10K10TC144. Therefore, the pin 141 must be connected to Vcc for

LED common a node. In other words, the circuit of Figure 5.5 need to be

modified to become Figure 5.6 then compiles it again. After modified, we

 CPLD Logic Circuit Design and Practice Combinational Logic

can use floorplan technique of Section 4.6, then select chip

EPF10K10TC144-4 and use Table 5.6 pin assignment reference. After

assemble platform LP-2900, we download Half Adder to chip

EPF10K10TC144-4. Please try to push SW1 and SW2 on left-bottom of

LP-2900, and please note the changes of L1 (Sum) and L2 (Cout).

Figure 5.6 The halfadd.gdf circuit of after modified

Table 5.6 Pin assignment of chip EPF10K10TC144-4

Name of Signal Pin of EPF10K10TC144-4

A Pin 47

B Pin 48

Sum Pin 7

Cout Pin 8

LED_COM Pin 141

5.2.2 The Design, Simulation and Test of Full Adder
Now, we proceed to the design, simulation and test of Full Adder. The circuit
specification of Full adder is “ circuit includes three inputs (A, B, and Cin), one

 CPLD Logic Circuit Design and Practice Combinational Logic

Sum output and Cout output. The Sum outputs “0” and the Cout outputs “0” when
input is “000”；the Sum outputs “1” and the Cout outputs “0” when input is
“010”；the Sum outputs “1” and the Cout outputs “0” when input is “100”；the
Sum outputs “0” and Cout outputs “1” when input is “101” ；the Sum outputs “0”
and the Cout outputs “1” when input is “110” ；the Sum outputs “1” and the Cout
outputs “1” when input is “111””. As the Half Adder, we design Full Adder as
follows：

Step 1：Establish Truth table like Table 5.7 (hypothetically, three inputs are A, B

and Cin, and outputs are Sum and Cout).

Table 5.7 Truth table of Full Adder

Input Output

A B Cin Sum Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Step 2： To drive Boolean expression of sum-of-product or product-of-sum from

Truth table, Table 5.7

 Sum = A’B’Cin + A’BCin’ + AB’ Cin’ + ABCin (5-6)

 CPLD Logic Circuit Design and Practice Combinational Logic

 Cout = A’Bcin + AB’Cin + ABCin’ + ABCin (5-7)

Step 3： Minimize Boolean expression possibly.

 Sum = A’B’Cin + A’BCin’ + AB’Cin’ + ABCin

 = (A’B’ + AB) Cin + (A’B + AB’) Cin’

 = (A ⊕ B)’ Cin + (A ⊕ B) Cin’

 = A ⊕B ⊕ Cin .. (5-8)

 Cout = A’Bcin + AB’Cin + ABCin’ + ABCin

 = (A ⊕ B) Cin + (Cin + Cin’) AB

 = (A ⊕ B) Cin + AB ... (5-9)

Step 4：According to Boolean expression, in MAX+PLUS II, uses appropriate

logic gate to complete circuit entries of Figure 5.7 by graphic editor.

Figure 5.7 Circuit diagrams and symbol by using graphic entries in

 MAX+PLUS II (document：fulladd.gdf)

 CPLD Logic Circuit Design and Practice Combinational Logic

Step 5：Then simulation the circuit and check whether the functions meet the

specification. Figure 5.8 is simulation result of Full adder.

Figure 5.8 Simulation result of fulladd.gdf circuit (document：fulladd.scf)

Step 6：After floorplan, download Full Adder and perform the circuit test are needs.

As circuit modified that showed in Figure 5.6 of Section 5.2.1, please

modify Full adder circuit of Figure 5.8. Please re-compile it after

modifying, and adapt the floorplan techniques in Section 4.6, select chip

EPF10K10TC144-4 and use Table 5.8 pin assignment reference. After

assemble Lab platform LP-2900, download Full Adder to chip

EPF10K10TC144-4. Please try to push SW1 (A), SW2 (B) and SW3 (Cin)

on left-bottom of LP-2900, and please note the changes of L1 (Sum) and

L2 (Cout)

Table 5.8 Pin assignment of EPF10K10TC144-4

Name of Signal Pin of EPF10K10TC144-4

A Pin 47

B Pin 48

Cin Pin 49

Sum Pin 7

Cout Pin 8

LED_COM Pin 141

 CPLD Logic Circuit Design and Practice Combinational Logic

5.2.3 The Design, Simulation and Test of Ripple Carry
Adder

In primary two sections, the adder only deals with add of one-bit, but actual circuit

usual completes addition of four-bit and beyond four-bit. In multiple bits addition,

if carry bit of each addition state uses carry out of previous addition stage. This is

called Ripple Carry Adder as Figure 5.9. The simulation result is as Figure

5.10 。

Figure 5.9 Circuit diagrams of Ripple Carry Adder by using graphic entries in

MAX+PLUS II (document：rip_add.gdf)

Figure 5.10 Simulation result of circuit rip_add.gdf (document：rip_add.scf)

Step 1: Establish Boolean expression. According to expression (5-8) and

expression (5-9), we can drives Boolean expression of S0〜S3 and C1〜

C4 .

 CPLD Logic Circuit Design and Practice Combinational Logic

 S0 = A0 ⊕ B0 ⊕ C0 .. (5-10)

 C1 = (A0 ⊕ B0) C0 + A0B0 .. (5-11)

 S1 = A1⊕ B1⊕ C1 .. (5-12)

 C2 = (A1⊕ B1) C1+ A1B1 .. (5-13)

 S2 = A2 ⊕ B2 ⊕ C2 .. (5-14)

 C3 = (A2 ⊕ B2) C2 + A2B2 ... (5-15)

 S3 = A3 ⊕ B3 ⊕ C3 ... (5-16)

 C4 = (A3 ⊕ B3) C3 + A3B3 ... (5-17)

Step 2：Minimize Boolean expression possibly. The expression (5-10) and (5-17)

had been minimized, it will not be minimized.

Step 3：According to Boolean expression, in MAX+PLUSII, uses appropriate logic

gate to complete circuit entries by graphic editor. We use one Full adder to

complete expression 5-10 and expression 5-11; use another Full adder to

complete expression 5-12 and expression 5-13；use the other Full adder

to complete expression 5-14 and expression 5-15；use last Full adder to

complete expression 5-16 and expression 5-17；The circuit be illustrated

as Figure 5.9.

Step 4：Then simulation the circuit and check whether the functions meet the

specification. Figure 5.10 is simulation result of Ripple Carry Adder.

Step 5：After floorplan, download this circuit into selected device and performance

the circuit test are needs. As circuit modified that showed in Figure 5.6 of

Section 5.2.1, please modify Full Adder circuit of Figure 5.9. Please re-

 CPLD Logic Circuit Design and Practice Combinational Logic

compile it after modifying, and adapt the floorplan techniques in Section

4.6, select chip EPF10K10TC144-4 and use Table 5.9 pin assignment

reference. After assemble Lab platform LP-2900, download Ripple Carry

Adder to chip EPF10K10TC144-4. Please try to push SW12~SW9 (MSB)

and SW20~SW17 (LSB) on left-bottom of LP-2900, and please note the

changes of L5~L1, for example, you push 5+2 and see if it becomes

“00111”

Table 5.9 Pin assignment of EPF10K10TC144-4

Name of Signal
Pin of

EPF10K10TC144-4 Name of Signal
Pin of

EPF10K10TC144-4

A0 Pin 68 S0 Pin 11

A1 Pin 67 S1 Pin 10

A2 Pin 65 S2 Pin 9

A3 Pin 64 S3 Pin 8

B0 Pin 81 C4 Pin7

B1 Pin 80 B3 Pin78

B2 Pin 79 LED_COM Pin 141

Note： There are no pin assignment for C1, C2 and C3.

Discussion ：If the propagation delay of AND gate, XOR gate (exclusion) and

OR gate are tpd , then we can get accurate time required of S0〜S3 and C1〜C4 as

Table 5.10,

 CPLD Logic Circuit Design and Practice Combinational Logic

Table 5.10 Table of time required getting accurate S0〜S3 and C1〜C4
Output Signal Time Required Description

S0 2 tpd Propagation delay of two XOR gates

C1 3 tpd Propagation delay of one XOR, one AND and one OR

S1 4 tpd Propagation delay of add one XOR after showed C1

C2 5 tpd Propagation delay of add one AND and one OR after

h d CS2 6 tpd Propagation delay of add one XOR after showed C2

C3 7 tpd Propagation delay of add one AND and one OR after

S3 8 tpd Propagation delay of add one XOR after showed C3

C4 9 tpd Propagation delay of add one AND and one OR after

For a N-bit adder, we can drive propagation delay of Cn

 2n + 1, n = 1~N .. (5-18)

And propagation delay of Sm

 (m + 1)*2, m = 0~(N–1) ... (5-19)

We get truth from expression (5-18) and expression (5-19), it is when N is

large and propagation delay of Sm and Cn is more. In other words, the Ripple

Carry Adder needs more time to finish addition, because serial connected cause

this result.

5.2.4 The Design, Simulation and Test of Carry Look-
ahead Adder

In Section 5.2.3, we understand that Ripple Carry Adder has the more serial bit

connection the more finish time required. For reduced time of add operation, the

 CPLD Logic Circuit Design and Practice Combinational Logic

parallel connected is good way, which carry input can’t use previous stage carry

output and causes propagation wait. In other word, we need use special design to

get carry input, this approach is called Look-ahead Carry.

Step 1：Establish Boolean expression, if we define two functions as follows,

 generation function：Gi = AiBi .. (5-20)

 propagation function：Pi = Ai ⊕ Bi .. (5-21)

 and take expression (5-20) and (5-21) into (5-11), we can drive

Boolean algebra expression C1 as follows：

 C1 = P0C0 + G0 ... (5-22)

 Taking expression (5-22) into expression (5-13), we can drive Boolean

algebra expression C2 as follows：

 C2 = P1P0C0 + P1G0 + G1 .. (5-23)

 Taking expression (5-23) into expression (5-15), we can drive Boolean

algebra expression C3 as follows：

 C3 = P2P1P0C0 + P2P1G0 + P1G1 + G2 (5-24)

 Taking expression (5-24) into expression (5-17), we can drive Boolean

algebra expression C4 as follows：

 C4 = P3P2 P1 P0C0 + P3 P2P1G0 + P3P2G1 + P3G2 +G3 (5-25)

 CPLD Logic Circuit Design and Practice Combinational Logic

 then we can get accurate time required of S0〜S3 and C1〜C4 as Table 5.11

Table 5.11 Time required for getting accurate S0〜S3 and C1〜C4 in

Carry Look-ahead
Output Signal Time Required Description

S0 2 tpd Propagation delay of two XOR gates

C1 3 tpd Propagation delay of one XOR, one AND and one OR

S1 4 tpd Propagation delay of add one XOR after showed C1

C2 3 tpd Propagation delay of add one XOR, one AND and one OR

S2 4 tpd Propagation delay of add one XOR after showed C2

C3 3 tpd Propagation delay of add one XOR, one AND and one OR

S3 4 tpd Propagation delay of add one XOR after showed C3

C4 3 tpd Propagation delay of add one XOR, one AND and one OR

From Table 5.11, we can understand that the finish time required for

addition is fix-value, not relative to bit length of Carry Look-ahead Adder.

The time required of Carry Look-ahead Adder is less then Ripple Carry

Adder.

Step 2：Minimize Boolean expression possibly. The expression (5-22) and (5-25)

had been minimized, they will not be minimized.

Step 3 ：According to Boolean expression, in MAX+PLUS II , uses appropriate

logic gate to complete circuit entries by graphic editor. For achievement

Carry Look-ahead Adder, we design new adder of Figure 5.11. It includes

Sum, Count output, propagation function output and generation function

output. Design circuit of Figure 5.12 Carry Look-ahead Adder by using

this new Full Adder and basic of expression of (5-22)〜(5-25)

 CPLD Logic Circuit Design and Practice Combinational Logic

Step 4：Then simulation this circuit and check whether the functions meet the

specification. Figure 5.13 is simulation result of Carry Look-ahead Adder.

Figure 5.11 New Full Adder and symbol(document：fadd_gp.gdf)

 CPLD Logic Circuit Design and Practice Combinational Logic

Figure 5.12 Carry of Carry Look-ahead Adder by using graphic entries in

MAX+PLUS II (document：lah_add.gdf)

Figure 5. 13 Simulation result of circuit lah_add.gdf (document：lah_add.scf)

 CPLD Logic Circuit Design and Practice Combinational Logic

Step 5：After floorplan, download this circuit into selected device and perform the

circuit test are needs. As circuit modified that showed in Figure 5.6 of

Section 5.2.1, please modify circuit of Figure 5.12. Please re-compile it

after modifying, and adapt the floorplan techniques in Section 4.6, select

chip EPF10K10TC144-4 and use Table 5.12 pin assignment reference.

After assemble Lab platform LP-2900, download Carry Look-ahead Adder

to chip EPF10K10TC144-4. Please try to push SW12~SW9 (MSB) and

SW20~SW17 (LSB) on left-bottom of LP-2900, and please note the

changes of L5~L1, for example, you push 5+4 and see if it becomes

“00111”

Table 5.12 Pin assignment of EPF10K10TC144-4

Name of Signal
Pin of

EPF10K10TC144-4 Name of Signal
Pin of

EPF10K10TC144-4

A0 Pin 68 S0 Pin 11

A1 Pin 67 S1 Pin 10

A2 Pin 65 S2 Pin 9

A3 Pin 64 S3 Pin 8

B0 Pin 81 C4 Pin7

B1 Pin 80 B3 Pin78

B2 Pin 79 LED_COM Pin 141

Note: There are no pin assignments for C1, C2 and C3.

 CPLD Logic Circuit Design and Practice Combinational Logic

5.3 The Design, Simulation and Test of
 Subtractor

5.3.1 The Design, Simulation and Test of Half
Subtractor

The circuit specification of Half Subtractor is ”the circuit includes two inputs (X,

Y), one different output and borrow output. When input is “00” , the different

output is “0”, the borrow output is “0”；when input is “01” , the different is “1”,

the borrow is “1”；when input is “10” , the different is “1”, the borrow is “0”；

when input is “11” , the different is “0”, the borrow output is “0”.” According to the

procedure described Section 5.1, we design as follows,

Step 1：Establish Truth table as Table 5.13 (hypothetically, the two inputs are X

and Y, and output is different and borrow)

Table 5.13 Truth table of Half Subtractor circuit

Input Output

X Y Dif Bo

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

Step 2：To drive Boolean expression of sum-of-product or product-of-sum from

Truth table.

 Dif = XY’ + X’Y = X ⊕ Y ... (5-26)

 CPLD Logic Circuit Design and Practice Combinational Logic

 Bo = X’Y .. (5-27)

Step 3： Minimize Boolean expression possibly. Since the expression (5-26) and

expression (5-27) had been minimized, they will not be minimized.

Step 4：According to Boolean expression, in MAX+PLUS II, uses appropriate

logic gate to complete circuit entries of Figure 5.14 by graphic editor.

Step 5：Then simulation this circuit and check whether the functions meet the

specification. Figure 5.15 is simulation result of Half Subtractor

Figure 5.14 Circuit of Half Subtractor by using graphic entries in MAX + PLUS II

(document：halfsub.gdf)

Figure 5.15 Simulation result of halfsub.gdf circuit (document：halfsub.scf)

Step 6：After floorplan, download this circuit into selected device and perform the

circuit test are needs. As circuit modified that showed in Figure 5.6 of

Section 5.2.1, please modify Half Subtractor circuit of Figure 5.14. Please

re-compile it after modifying, and adapt the floorplan techniques in

 CPLD Logic Circuit Design and Practice Combinational Logic

Section 4.6, select chip EPF10K10TC144-4 and use Table 5.14 pin

assignment reference. After assemble Lab platform LP-2900, download

Half Subtractor to chip EPF10K10TC144-4. Please try to push SW1 and

SW2 on left-bottom of LP-2900, and please note the changes of L1 (Dif)

and L2 (Bo).

Table5.14 Pin assignment of EPF10K10TC144-4

Name of Signal Pin of EPF10K10TC144-4

X Pin 47

Y Pin 48

Dif Pin 7

Bo Pin 8

LED_COM Pin 141

5.3.2 The Design, Simulation and Test of Full
Subtractor

Now, we progress the design, simulation and test of Full Subtractor. The circuit

specification of Full Subtractor is ”the circuit includes three inputs (X, Y and Bin),

one different output and borrow output. When input is “000” , the different output is

“0”, the borrow output is “0”；when input is “001” , the different output is “1”, the

borrow output is “1”；when input is “010” , the different output is “1”, the borrow

output is“1”；when input is “011” , the different output is“0”, the borrow output is

“1”；when input is “100” , the different output is “1” ,the borrow output is “0”；

when input is“101” , the different output is “0”, the borrow output is “0” ;when

input is “110” , the different output is “0”,the borrow output is “0” ；when input is

 CPLD Logic Circuit Design and Practice Combinational Logic

“111” , the different output is “1”,the borrow output is “1”.” Like Half Subtractor,

we design of Full Subtractor as follows:

Step 1：Establish Truth table as Table 5.15 (hypothetically, the three inputs are X a

Y and Bin and output is Dif and Bo)

Table 5.15 Truth table of circuit

Input Output

X Y Bin Dif Bo

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Step 2： To drive Boolean expression of sum-of-product or product-of-sum from

Truth table.

 Dif = X’Y’Bin + X’YBin’ + XY’Bin’ + XYBin (5-28)

 Bo = X’Y’Bin + X’YBin’ + X’Ybin + XYBin (5-29)

 CPLD Logic Circuit Design and Practice Combinational Logic

Step 3： Minimize Boolean expression possibly.

 Dif = X’Y’Bin + X’YBin’ + XY’Bin’ + XYBin

 = (X’Y’ + XY) Bin + (X’Y + XY’) Bin’

 = (X ⊕ Y)’Bin + (X ⊕ Y) Bin’

 = X ⊕ Y ⊕ Bin ... (5-30)

 Bo = X’Y’Bin + X’YBin’ + X’Ybin + XYBin

 = X’ (Y’Bin + YBin’) + YBin

 = X ’ (Y ⊕ Bin) + YBin ... (5-31)

Step 4：According to Boolean expression, in MAX+PLUS II, uses appropriate

logic gate to complete circuit entry of Figure 5.16 by graphic editor.

Figure 5.16 Circuit of Full Subtractor by using graphic entries in MAX+PLUS II

(document：fullsub.gdf)

Step 5：Then simulation this circuit and check whether the functions meet the

specification. The Figure 5.17 is simulation result of Full Subtractor.

 CPLD Logic Circuit Design and Practice Combinational Logic

Figure 5.17 Simulation result of circuit fullsub.gdf (document：fullsub.scf)

Step 6：After floorplan, download this circuit into selected device and perform the

circuit test are needs. As circuit modified that showed in Figure 5.6 of

Section 5.2.1, please modify Full Subtractor circuit of Figure 5.16. Please

re-compile it after modifying, and adapt the floorplan techniques in

Section 4.6, select chip EPF10K10TC144-4 and use Table 5.16 pin

assignment reference. After assemble Lab platform LP-2900, download

Full Subtractor to chip EPF10K10TC144-4. Please try to push SW1 (X),

SW2 (Y) and SW3 (Bin) on left-bottom of LP-2900, and please note the

changes of L1(Dif) and L2(Bo).

Table 5.16 Pin assignment of EPF10K10TC144-4

Name of Signal Pin of EPF10K10TC144-4

X Pin 47

Y Pin 48

Bin Pin 49

Dif Pin 7

Bo Pin 8

LED_COM Pin 141

 CPLD Logic Circuit Design and Practice Combinational Logic

5.3.3 The Design, Simulation and Test of 2’s
Complement Subtractor

In Chapter two, we understand it all new digital system use 2’s complement system.

In other words, we can use 2’s complement addition to complete subtraction. In

Chapter two, the 2’s complement can been completed by 1’s complement plus one

as Figure 5.18(a). So 2’s complement of B can be completed by taking NOT from

B0〜B3 and setting C0 to 1. Figure 5.18(b) is circuit of 2’s Complement Subtractor,

and Figure 5.19 is simulation result.

Figure 5.18 Circuit of 2’s Complement Subtractor (document：compsub.gdf)

Figure 5.19 Simulation result of circuit 2’s Complement Substracter (document：

compsub.scf)

 CPLD Logic Circuit Design and Practice Combinational Logic

5.4. The Design, Simulation and Test of
Comparator

The comparator decides the relationship between input A and input B. It compares
input of two n-bit binary number and produces three possible relation outputs (G, E
and L). The specification of comparator is ”when 2 bits X value is greater than 2
bits Y value, the G output is “1” otherwise G output is “0”；when 2 bits X value is
equal to 2 bits Y value, the E output “1”, otherwise E output is “0”；when 2 bits X
value is less 2 bits Y value , the L output is “1”, otherwise L output is “0”.”. After
having those specifications, we can start to design the circuit.

Step 1：Establish Karnaugh map, as Table 5.17a〜5.17c。

Table 5.17a Karnaugh map of output G

Y1Y0
G 00 01 11 10

00 0 0 0 0

01 1 0 0 0

11 1 1 0 1

X1X0

10 1 1 0 0

Table 5.17b Karnaugh map of output E

Y1Y0
E 00 01 11 10

00 1 0 0 0

01 0 1 0 0

11 0 0 1 0

X1X0

10 0 0 0 1

 CPLD Logic Circuit Design and Practice Combinational Logic

Table 5.17c Karnaugh map of output L

Y1Y0
L

00 01 11 10

00 0 1 1 1

01 0 0 1 1

11 0 0 0 0

X1X0

10 0 0 1 0

Step 2： To drive minimum Boolean expression from Truth table

 G = X1Y1’ + X0Y1’ Y0’ + X1X0Y0’ .. (5-32)

 E = X1’X0’Y1’Y0’ + X1’X0Y1’Y0 + X1X0Y1Y0 + X1’X0Y1’Y0 (5-33)

 L = X1’Y1 + X1’X0’Y0 + X0’Y1Y0 .. (5-34)

Step 3： Minimize Boolean expression possibly. Because the expression (5-32)

and (5-32) and expression (5-33) had been minimized, they will not be

minimized.

Step 4：According to Boolean expression, in MAX+PLUS II, uses appropriate

logic gate to complete circuit entries of Figure 5.20 by graphic editor.

Step 5：Then simulation this circuit and check whether the functions meet the

specification. Figure 5.21 is simulation result of Comparator.

 CPLD Logic Circuit Design and Practice Combinational Logic

Figure 5.20 Circuit of Comparator by using graphic entries in MAX+PLUS II

(document：compr.gdf)

 CPLD Logic Circuit Design and Practice Combinational Logic

Figure 5.21 Simulation result of circuit compr.gdf (document：compr.scf)

Step 5：After floorplan, download this circuit into selected device and performance

the circuit test are needs. As circuit modified that showed in Figure 5.6 of

Section 5.2.1, please modify Comparator circuit of Figure 5.20. Please re-

compile it after modifying, and adapt the floorplan techniques in Section

4.6, select chip EPF10K10TC144-4 and use Table 5.18 pin assignment

reference. After assemble Lab platform LP-2900, download Comparator

circuit to chip EPF10K10TC144-4. Please try to push SW1 (X1), SW2

(X2), SW7 (Y1) and SW8 (Y0) on left-bottom of LP-2900, and please note

the changes of L1 (G), L2 (E) and L3 (L).

Table5.18 Pin assignment of EPF10K10TC144-4

Name of Signal Pin of EPF10K10TC144-4

X0 Pin 48

X1 Pin 47

Y0 Pin 63

Y0 Pin 62

G Pin 7

E Pin 8

L Pin 9

LED_COM Pin 141

 CPLD Logic Circuit Design and Practice Combinational Logic

5.5 The Design, Simulation and Test of
Encoder

Because the memory cell of calculator is 2-state memory way, the calculator

external character set (alphabet, numeric and symbol) need to encode by binary,

then save in memory. This encoding movement usual needs encoding circuit to

finish. On the other hand, the encoded code which get from memory need to be

decoded for output in its original form. Figure 5.22 illustrates the procedure from

input, save in binary, process and output data. Generally, the character set not only

express in binary, but also binary encoding. The reason is reduced binary bit length.

We see this situation from Table 5.19, the binary of alphabetic character set“0”〜

“9” need ten-bit and binary encoding only need four-bit.

Figure 5.23 shows that key encoded in binary after expressed in binary. After

understanding Encoder, we will complete the design, simulation and test of Encoder

as Figure 5.23.

Figure5.22 Input, save in binary, process and output data process flows.

 CPLD Logic Circuit Design and Practice Combinational Logic

Table 5.19 Compare binary expression of alphabet character set “0”〜“9” with
binary encoding of alphabet character set “0”〜“9”

Character Binary Expression Binary

0 0000000001 0000

1 0000000010 0001

2 0000000100 0010

3 0000001000 0011

4 0000010000 0100

5 0000100000 0101

6 0001000000 0110

7 0010000000 0111

8 0100000000 1000

9 1000000000 1001

Figure 5.23 The application of key binary encoding after binary expression

Step 1：Establish Truth table as Table 5.20。

 CPLD Logic Circuit Design and Practice Combinational Logic

Table 5.20 Truth table of Encoder

Input Output

D9~D0 O3~O0

0000000001 0000

0000000010 0001

0000000100 0010

0000001000 0011

0000010000 0100

0000100000 0101

0001000000 0110

0010000000 0111

0100000000 1000

1000000000 1001

Step 2： To drive minimum Boolean expression from Truth table

O0 = D9’D8’D7’D6’D5’D4’D3’D2’D1D0’ + D9’D8’D7’D6’D5’D4’D3D2’D1’D0’ +

 D9’D8’D7’D6’D5D4’D3’D2’D1’D0’ + D9’D8’D7D6’D5’D4’D3’D2’D1’D0’ +

 D9D8’D7’D6’D5’D4’D3’D2’D1’D0’ ... (5-35)

O1 = D9’D8’D7’D6’D5’D4’D3’D2D1’D0’ + D9’D8’D7’D6’D5’D4’D3D2’D1’D0’ +

 D9’D8’D7’D6D5’D4’D3’D2’D1’D0’ + D9’D8’D7D6’D5’D4’D3’D2’D1’D0’

 .. (5-36)

O2 = D9’D8’D7’D6’D5’D4D3’D2’D1’D0’+ D9’D8’D7’D6’D5D4’D3’D2’D1’D0’ +

 D9’D8’D7’D6D5’D4’D3’D2’D1’D0’ + D9’D8’D7D6’D5’D4’D3’D2’D1’D0’

 .. (5-37)

 CPLD Logic Circuit Design and Practice Combinational Logic

O3 = D9’D8D7’D6’D5’D4’D3’D2’D1’D0’+ D9D8’D7’D6’D5’D4’D3’D2’D1’D0’

 ... (5-38)

Step 3： Minimize Boolean expression possibly.

 O0 = (D9’D7’D5’D3’ D1 + D9’D7’D5’D3D1’ + D9’D7’D5D3’D1’ + D9’D7D5’D3’D1’ +

 D9 D7’ D5’ D3’ D1’) D8’ D6’ D4’ D2’D0’ ... (5-39)

 O1 = (D7’D6’D3’D2 + D7’D6’D3D2’ + D7’D6D3’D2’ + D7D6’D3’D2’)

 D9’D8’ D5’D4’D1’D0’ ... (5-40)

 O2 = (D7’D6’D5’D4 + D7’D6’D5D4’ + D7’D6D5’D4’ + D7D6’D5’D4’)

 D9’D8’D3’ D2’D1’D0’ ... (5-41)

 O3 = (D9’D8 + D9D8’) D7’D6’D5’D4’D3’D2’D1’D0’ (5-42)

Step 4：According to Boolean expression, in MAX + PLUS II, uses appropriate

logic gate to complete circuit entries of Figure 5.24 by graphic editor.

Step 5：Then simulation this circuit and check whether the functions meet the

specification. Figure5.25 is simulation result of Encoder.

 CPLD Logic Circuit Design and Practice Combinational Logic

Figure5.24 Circuit of Encoder by using graphic entries in MAX + PLUS II

(document：encod10.gdf)

Figure5.25 Simulation result of circuit encod10.gdf (document：encod10.scf)

Step 6：After floorplan, download this circuit into selected device and performance

the circuit test are needs. As circuit modified that showed in Figure 5.6 of

 CPLD Logic Circuit Design and Practice Combinational Logic

Section 5.2.1, please modify Encoder circuit of Figure 5.24. Please re-

compile it after modifying, and adapt the floorplan techniques in Section

4.6, select chip EPF10K10TC144-4 and use Table 5.21 pin assignment

reference. After assemble Lab platform LP-2900, download Encoder to

chip EPF10K10TC144-4. Please try to push SW1 (D0), SW2 (D1)〜SW10

(D9) on left-bottom of LP-2900, and please note the changes of L1 (O3) ,

L2 (O2), L3 (O1) and L4 (O0).

Table 5.21 Pin assignment of EPF10K10TC144-4

Name of Signal
Pin of

EPF10K10TC144-4 Name of Signal
Pin of

EPF10K10TC144-4

D0 Pin 47 D8 Pin 64

D1 Pin 48 D9 Pin 5

D2 Pin 49 O0 Pin 10

D3 Pin 51 O1 Pin 9

D4 Pin 59 O2 Pin 8

D5 Pin 60 O3 Pin 7

D6 Pin 62 LED_COM Pin 141

D7 Pin 63

5.6 The Design, Simulation and Test of
Decoder

An n bit to 2n Decoder can decode n bits to 2n data. Figure 5.26 is an application

decoder drives 16 LEDs. We see each LED connecting current-limit resistor and

 CPLD Logic Circuit Design and Practice Combinational Logic

showing common anode connected in Figure 5.26. So the Decoder output “0” can

cause LED on and bright. Because it is input “0101”, the sixth LED is bright.

5.6.1 The Design, Simulation and Test of 4 to 16
Decoder

Figure 5.26 is a 4 to 16 Decoder. Please complete the design, simulation and test of

this Decoder.

Figure 5.26 Four-bit encoder drives 16 LEDs

Step 1: Establish Truth table as Table 5.22

Step 2：From Truth table of Table 5.22To drives Karnaugh map of Table 5.23a〜

5.23p.

 CPLD Logic Circuit Design and Practice Combinational Logic

Table 5.22 Truth table of Decoder

Input Output

D3~D0 O15~O0

0000 1111111111111110

0001 1111111111111101

0010 1111111111111011

0011 1111111111110111

0100 1111111111101111

0101 1111111111011111

0110 1111111110111111

0111 1111111101111111

1000 1111111011111111

1001 1111110111111111

1010 1111101111111111

1011 1111011111111111

1100 1110111111111111

1101 1101111111111111

1110 1011111111111111

1111 0111111111111111

Table 5.23a Karnaugh map of output O0

D1D0
O0 00 01 11 10

00 0 1 1 1

01 1 1 1 1

11 1 1 1 1

D3D2

10 1 1 1 1

 CPLD Logic Circuit Design and Practice Combinational Logic

Table 5.23b Karnaugh map of output O1

D1D0
O1 00 01 11 10

00 1 0 1 1

01 1 1 1 1

11 1 1 1 1

D3D2

10 1 1 1 1

Table 5.23c Karnaugh map of output O2

D1D0
O2 00 01 11 10

00 1 1 1 0

01 1 1 1 1

11 1 1 1 1

D3D2

10 1 1 1 1

Table 5.23d Karnaugh map of output O3

D1D0
O3 00 01 11 10

00 1 1 0 1

01 1 1 1 1

11 1 1 1 1

D3D2

10 1 1 1 1

 CPLD Logic Circuit Design and Practice Combinational Logic

Table 5.23e Karnaugh map of O4

D1D0
O4 00 01 11 10

00 1 1 1 1

01 0 1 1 1

11 1 1 1 1

D3D2

10 1 1 1 1

Table 5.23f Karnaugh map of output O5

D1D0
O5 00 01 11 10

00 1 1 1 1

01 1 0 1 1

11 1 1 1 1

D3D2

10 1 1 1 1

Table 5.23g Karnaugh map of output O6

D1D0
O6 00 01 11 10

00 1 1 1 1

01 1 1 1 0

11 1 1 1 1

D3D2

10 1 1 1 1

 CPLD Logic Circuit Design and Practice Combinational Logic

Table 5.23h Karnaugh map of output O7

D1D0
O7 00 01 11 10

00 1 1 1 1

01 1 1 0 1

11 1 1 1 1

D3D2

10 1 1 1 1

Table 5.23i Karnaugh map of output O8

D1D0
O8 00 01 11 10

00 1 1 1 1

01 1 1 1 1

11 1 1 1 1

D3D2

10 0 1 1 1

Table 5.23j Karnaugh map of output O9

D1D0
O9 00 01 11 10

00 1 1 1 1

01 1 1 1 1

11 1 1 1 1

D3D2

10 1 0 1 1

 CPLD Logic Circuit Design and Practice Combinational Logic

Table 5.23k Karnaugh map of output O10

D1D0
O10 00 01 11 10

00 1 1 1 1

01 1 1 1 1

11 1 1 1 1

D3D2

10 1 1 1 0

Table 5.23L Karnaugh map of output O11

D1D0
O11 00 01 11 10

00 1 1 1 1

01 1 1 1 1

11 1 1 1 1

D3D2

10 1 1 0 1

Table 5.23m Karnaugh map of output O12
D1D0

O12 00 01 11 10

00 1 1 1 1

01 1 1 1 1

11 0 1 1 1

D3D2

10 1 1 1 1

 CPLD Logic Circuit Design and Practice Combinational Logic

Table 5.23n Karnaugh map of output O13

O13 D1D0

 00 01 11 10

00 1 1 1 1

01 1 1 1 1

11 1 0 1 1

D3D2

10 1 1 1 1

Table 5.23o Karnaugh map of output O14

O14 D1D0

 00 01 11 10

00 1 1 1 1

01 1 1 1 1

11 1 1 1 0

D3D2

10 1 1 1 1

Table 5.23p Karnaugh map of output O15

D1D0
O15 00 01 11 10

00 1 1 1 1

01 1 1 1 1

11 1 1 0 1

D3D2

10 1 1 1 1

 CPLD Logic Circuit Design and Practice Combinational Logic

 O0 = D1 + D0 + D3 + D2 ... (5-43)

 O1 = D1 + D0’ + D3 + D2 ... (5-44)

 O2 = D1’ + D0 + D3 + D2 ... (5-45)

 O3 = D1’ + D0’ + D3 + D2 .. (5-46)

 O4 = D1 + D0 + D3 + D2’ ... (5-47)

 O5 = D1 + D0’ + D3 + D2’ .. (5-48)

 O6 = D1’ + D0 + D3 + D2’ .. (5-49)

 O7 = D1’ + D0’ + D3 + D2’ .. (5-50)

 O8 = D0 + D1 + D2+ D3’ .. (5-51)

 O9 = D0’ + D1+ D2 + D3’ .. (5-52)

 O10 = D0’ + D1’ + D2 + D3’ ... (5-53)

 O11 = D0’ + D1’ + D2+ D3’ .. (5-54)

 O12 = D0 + D1 + D2’+ D3’ ... (5-55)

 O13 = D0’ + D1+ D2’ + D3’ .. (5-56)

 O14 = D0’ + D1’ + D2’+ D3’ ... (5-57)

 O15 = D0’ + D1’ + D2’+ D3’ .. (5-58)

Step 3： Minimize Boolean expression possibly. Because expression (5-43) and

(5-58) had been minimized, they will not be minimized.

Step 4：According to Boolean expression, in MAX+PLUS II, uses appropriate

logic gate to complete circuit entries of Figure 5.27 by graphic editor.

 CPLD Logic Circuit Design and Practice Combinational Logic

Figure 5.27 Circuit of Decoder by using graphic entries in MAX+PLUS II

(document：dec4x16.gdf)

 CPLD Logic Circuit Design and Practice Combinational Logic

Step 5：Then simulation this circuit and check whether the functions meet the

specification. Figure 5.28 is simulation result of Decoder.

Figure 5.28 Simulation result of circuit dec4x16.gdf (document：dec4x16.scf)

Step 6：After floorplan, download this circuit into selected device and performance

the circuit test are needs. As circuit modified that showed in Figure 5.6 of

Section 5.2.1, please modify Decoder circuit of Figure 5.27. Please re-

compile it after modifying, and adapt the floorplan techniques in Section

4.6, select chip EPF10K10TC144-4 and use Table 5.24 pin assignment

reference. After assemble Lab platform LP-2900, download this 4 to 16

Decoder to chip EPF10K10TC144-4. Please try to push SW1 (D0), SW2

(D1), SW3 (D2) and SW4 (D3) on left-bottom of LP-2900, and please note

the change of L1 (O11)、L2 (O10)、L3 (O9)、…L16 (O0). For example,

you can input “0110” at D3〜D0 and see if O6 is bright.

 CPLD Logic Circuit Design and Practice Combinational Logic

Table5.24 Pin assignment of EPF10K10TC144-4

Name of Signal
Pin of

EPF10K10TC144-4
Name of Signal

Pin of

EPF10K10TC144-4

D0 Pin 47 O7 Pin 11

D1 Pin 48 O8 Pin 10

D2 Pin 49 O9 Pin 9

D3 Pin 51 O10 Pin 8

O0 Pin 20 O11 Pin 7

O1 Pin 19

O2 Pin 18 LED_COM Pin 141

O3 Pin 17

O4 Pin 14

O5 Pin 13

O6 Pin 12

Note: In O15〜O12 , there are no output pin assignment

5.6.2 The Design, Simulation and Test of BCD to 7
Segment Display

!"The Principle of 7-segment Display

7-segment display constitutes by seven rectangle LED as Figure 5.29(a), but some

right-bottom of 7-segment displays have one circle LED. In digital circuit, 7-

segment display is passive component and use frequently. 7-segment display can be

divided into common anode structure (Figure 5.29(b)) and common cathode

structure (Figure 5.29(c)). If we use common anode 7-segment display, we to

 CPLD Logic Circuit Design and Practice Combinational Logic

connect common anode to VCC and need input “0”, then corresponding rectangle

LED will on and bright. The bright electric current is supplied by Vcc. Contrary, If

we use common cathode 7-segment display, we need to connect common cathode to

ground and input “1”, then corresponding rectangle LED will be on and bright. The

bright electric current is supplied by input signal. Base on this bright principle, in

common anode 7-segment display, it will show “0” character if inputs

“11000000B”； it will show “1” character if inputs “11111001B”； it will show

“2” character if inputs “10100100B” … so on and so forth.

Figure 5.29 Exterior and category of 7-segment display

Similarly, in common cathode 7-segment display, it will show “0” character if

inputs “00111111B”； it will show “1” character if inputs “00000110B”； it will

show “2” character if inputs “01011011”… so on and so forth.

After understanding bright principle of 7-segment display, we want to design the

Decoder circuit of common anode 7-segment display with value 0 to 9.

Step 1: Establish Truth table of 7-segment display Decoder with value 0 to 9 as

Table 5.25

 CPLD Logic Circuit Design and Practice Combinational Logic

Figure 5.30 Decoder codes of “0~9” for 7-segment display

 CPLD Logic Circuit Design and Practice Combinational Logic

Table 5.25 Truth table of 7-segment display Decoder with value 0 to 9

Input Output

D3~D0 hgfedcba

0000 11000000

0001 11111001

0010 10100100

0011 10110000

0100 10011001

0101 10010010

0110 10000010

0111 11111000

1000 10000000

1001 10010000

Step 2：From Truth table of Table 5.25 drives Karnaugh map of Table5.26a〜

5.26h.

Table 5.26a Karnaugh map of output a

D1D0
a

00 01 11 10

00 0 1 0 0

01 1 0 0 0

11 0 0 0 0

D3D2

10 0 0 0 0

 CPLD Logic Circuit Design and Practice Combinational Logic

Table 5.26b Karnaugh map of output b

D1D0
b

00 01 11 10

 00 0 0 0 0

01 0 1 0 1
D3D2 11 0 0 0 0

 10 0 0 0 0

Table 5.26c Karnaugh map of output c

D1D0
c

00 01 11 10

 00 0 0 0 1

01 0 0 0 0
D3D2 11 0 0 0 0

 10 0 0 0 0

Table 5.26d Karnaugh map of output d

D1D0
d

00 01 11 10

 00 0 1 0 0

01 1 0 1 0
D3D2 11 0 0 0 0

 10 0 0 0 0

 CPLD Logic Circuit Design and Practice Combinational Logic

Table 5.26e Karnaugh map of output e

D1D0
e

00 01 11 10

 00 0 1 1 0

01 1 1 1 0
D3D2 11 0 0 0 0

 10 0 1 0 0

Table 5.26f Karanugh map of output f
D1D0

f
00 01 11 10

 00 0 1 1 1

01 0 0 1 0
D3D2 11 0 0 0 0

 10 0 0 0 0

Table 5.26g Karnaugh map of output g

D1D0
g

00 01 11 10

 00 1 0 0 0

01 0 0 0 0
D3D2 11 0 0 0 0

 10 0 0 0 0

 CPLD Logic Circuit Design and Practice Combinational Logic

Table 5.26h Karnaugh map of output h

D1D0
h

00 01 11 10

 00 1 1 1 1

01 1 1 1 1
D3D2 11 1 1 1 1

 10 1 1 1 1

 a = D3’D2D1’D0’ + D3’D2’D1’D0 --(5-59)

 b = D3’D2D1’D0 + D3’D2D1 D0’ -- (5-60)

 c = D3’D2’D1D0’ --(5-61)

 d = D3’D2’D1’D0 + D3’D2D1’D0’ + D3’D2D1D0 ----------------------(5-62)

 e = D3’D0 + D2’D1’D0 + D3’D2D1’ -------------------------------------(5-63)

 f = D3’D2’D0 + D3’D2’D1+ D3’D1D0 ------------------------------------(5-64)

 g = D3’D2’D1’ + D3’D2D1D0 --(5-65)

 h = Vcc --(5-66)

Step 3：Minimize Boolean expression possibly. Because the expression (5-59) and

(5-66) had been minimized, they will not be minimized.

Step 4：According to Boolean expression, in MAX+PLUS II, uses appropriate

logic gate to complete circuit entries of Figure 5.31 by graphic editor.

 CPLD Logic Circuit Design and Practice Combinational Logic

Step 5：Then simulation this circuit and check whether the functions meet the

specification. Figure 5.32 is simulation result of BCD to 7-segment display.

Figure 5.31 Circuit of Decoder by using graphic entries in MAX + PLUS II

(document：seg7dec.gdf)

Figure 5.32 Simulation result of circuit seg7dec.gdf (document：seg7dec.scf)

 CPLD Logic Circuit Design and Practice Combinational Logic

Step 6: After floorplan, download this circuit into selected device and performance

the circuit test are needs. Because 7-segment display on LP-2900 is

common cathode (but the decoder is designed for common anode 7-segment

display), we need to modify this circuit as Figure 5.33. Besides, in figure be

showed excess three output signal lines 74138_DE1, 74138_DE2 and

74138_DE3, they are signal of driving 74138(3 to 8 Decoder), and select

one Y of eight output “0”. Y0〜Y5 connect to common cathode of six 7-

segment display(C1〜C6). Therefore, if Y1 outputs “0” (74138_DE [1..3]

output is “001”), the data of a, b, c, …and dp will be lead to second 7-

segment display. If Y3 outputs “0” (74138_DE [1..3] output is “0011”), the

data of a, b, c, …and dp will be lead to fourth 7-segment display…so on

and so forth. Please re-compile it after modifying, and adapt the floorplan

techniques in Section 4.6, select chip EPF10K10TC144-4 and use Table

5.27 pin assignment reference. After assemble Lab platform LP-2900,

download 7-segment display decoder to chip EPF10K10TC144-4. Please try

to push SW1 (D0), SW2 (D1), SW3 (D2) and SW4 (D3) on left-bottom of

LP-2900, and please note the changes of 7-segment display and note its

showing location. Like, when D3〜D0 input is “0110” and if “6” is bright.

 CPLD Logic Circuit Design and Practice Combinational Logic

Table 5.27 Pin assignment of EPF10K10TC144-4

Name of Signal
Pin of

EPF10K10TC144-4
Name of Signal

Pin of

EPF10K10TC144-4

D0 Pin 47 A Pin 23

D1 Pin 48 B Pin 26

D2 Pin 49 C Pin 27

D3 Pin 51 D Pin 28

 E Pin 29

 F Pin 30

 G Pin 31

 H Pin 32

 74138_DE1 Pin 33

 74138_DE2 Pin 36

 74138_DE3 Pin 37

5.7 The Design, Simulation and Test of
MUX

The multiplexer is called data selector, following left of Figure 5.34. The figure

illustrated that select one of 2n lines to Y output by n lines. The data lines which not

be selected is not be output. Usually, MUX is defined by 2n to 1.

!"The design, simulation and test of 8 to 1 MUX

 In this section, we perform the design of 8 to 1 MUX. The selection line

includes three due to 8 equal to 23. The specification of 8 to 1 MUX is: “we choose

D0 output to Y when S2S1S0 = “000”；we choose D1 output to Y when S2S1S0 =

 CPLD Logic Circuit Design and Practice Combinational Logic

“001”；we choose D2 output to Y when S2S1S0 = “010”; we choose D3 output to Y

when S2S1S0 = “011” ; we choose D4 output to Y when S2S1S0 = “100”; we choose

D5 output to Y when S2S1S0 = “101”; we choose D6 output to Y when S2S1S0 =

“110”; we choose D7 output to Y when S2S1S0 = “111”.”

Figure 5.34 Functional diagrams of MUX and DMUX

Step 1: Establish Truth table of MUX as Table 5.28.

Step 2：From Truth table of Table 5.28 drives Boolean expression of Y.

Y = S2’S1’S0’ D0 + S2’S1’S0 D1 + S2’S1S0’ D2 + S2’S1S0 D3 + S2S1’S0’ D4 +

 S2S1’S0 D5 + S2S1S0’ D6 + S2S1S0 D7 .. (5-67)

Step 3：Minimize Boolean expression possibly. Because the expression (5-67) had

been minimized, they will not be minimized.

Step 4：According to Boolean expression, in MAX+PLUS II, uses appropriate

logic gate to complete circuit entries of Figure 5.35 by graphic editor.

 CPLD Logic Circuit Design and Practice Combinational Logic

Step 5：Then simulation this circuit and check whether the functions meet the

specification. Figure5.36 is simulation result of 8 to 1 MUX.

Table 5.28 Truth table of MUX

Input Output

S2S1S0 Y

000 D0

001 D1

010 D2

011 D3

100 D4

101 D5

110 D6

111 D7

Step 6：After floorplan, download this circuit into selected device and performance

the circuit test are needs. As circuit modified that showed in Figure 5.6 of

Section 5.2.1, please modify MUX circuit of Figure 5.35. Please re-compile

it after modifying, and adapt the floorplan techniques in Section 4.6, select

chip EPF10K10TC144-4 and use Table 5.29 pin assignment reference.

After assemble Lab platform LP-2900, download 8 to 1 MUX to chip

EPF10K10TC144-4. Please try to push SW1 (D0), SW2 (D1), SW3 (D2),…

and SW8 (D7) on left-bottom of LP-2900, and push switch SW9〜SW11

then observe how L1 (Y) react D0〜D7.

 CPLD Logic Circuit Design and Practice Combinational Logic

Figure 5.35 Circuit of MUX by using graphic entries in MAX+PLUS II

(document：mux81.gdf)

 CPLD Logic Circuit Design and Practice Combinational Logic

 Figure 5.36 Simulation result of circuit mux81.gdf (document：

mux81.scf)

 Table 5.29 Pin assignment of EPF10K10TC144-4

Name of Signal
Pin of

EPF10K10TC144-4 Name of Signal
Pin of

EPF10K10TC144-4

S0 Pin 67 D0 Pin 47

S1 Pin 65 D1 Pin 48

S2 Pin 64 D2 Pin 49

 D3 Pin 51

 D4 Pin 59

 D5 Pin 60

 D6 Pin 62

 D7 Pin 63

 Y Pin 7

 LED_COM Pin 141

 CPLD Logic Circuit Design and Practice Combinational Logic

5.8 The Design, Simulation and Test of
DMUX

The demultiplexer is called data distributor, right of Figure 5.34. The figure

illustrated that Y will be distributed to one of 2n line by n lines. The data lines

which not be selected is not be output. Usually, DMUX defined by 1 to 2n.

The design, simulation and test of 1 to 8 DMUX

In this section, we perform the design of 1 to 8 DMUX. The choice line includes

three due to 8 equals to 23. The specification of 1 to 8 DMUX is: “ D output to Y0

when S2S1S0 = “000”；we choose D output to Y1 when S2S1S0 = “001”；we choose

D output to Y2when S2S1S0 = “010”; we choose D output to Y3 when S2S1S0 = “011”;

we choose D output to Y4 when S2S1S0 = “100”; we choose D output to Y5 when

S2S1S0 = “101”; we choose D output to Y6 when S2S1S0 = “110”; we choose D

output to Y7 when S2S1S0 = ”111”.”

Step 1: Establish Truth table of DMUX as Table 5.30.

Step 2：From Truth table of Table 5.34 drives Boolean expression.

 Y0 = DS2’S1’S0’ .. (5-68)

 Y1 = DS2’S1’S0 ... (5-69)

 Y2 = DS2’S1S0’ ... (5-70)

 Y3 = DS2’S1S0 .. (5-71)

 Y4 = DS2S1’S0’ ... (5-72)

 Y6 = DS2S1’S0 .. (5-73)

 Y6 = DS2S1S0’ .. (5-74)

 Y7 = DS2S1S0 .. (5-75)

 CPLD Logic Circuit Design and Practice Combinational Logic

Table 5.30 Truth table of DMUX (D is data of input end)

Input Output
S2S1S0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

000 0000000D
001 000000D0
010 00000D00
011 0000D000
100 000D0000
101 00D00000
110 0D000000
111 D0000000

Step 3： Minimize Boolean expression possibly. Because the expression (5-68)

and (5-75) had been minimized, they will not be minimized.

Step 4：According to Boolean expression, in MAX+PLUS II, uses appropriate

logic gate to complete circuit entries of Figure 5.37 by graphic editor.

Step 5：Then simulation this circuit and check whether the functions meet the

specification. Figure5.38 is simulation result of DMUX (please note each

cycle)

Step 6：After floorplan, download this circuit into selected device and performance

the circuit test are needs. As circuit modified that showed in Figure 5.6 of

Section 5.2.1, please modify DMUX circuit of Figure 5.37. Please re-

compile it after modifying, and adapt the floorplan techniques in Section

4.6, select chip EPF10K10TC144-4 and use Table 5.31 pin assignment

reference. After assemble Lab platform LP-2900, download 1 to 8 DMUX

 CPLD Logic Circuit Design and Practice Combinational Logic

to chip EPF10K10TC144-4. Please try to push SW1 (D0) on left-bottom of

LP-2900, and push switch SW9〜SW11 then observe change of L1 (Y0),

L2 (Y1), L3 (Y2)…and L8 (Y7)

Figure 5.37 Circuit of DMUX by using graphic entries in MAX+PLUS II

(document：dmux18.gdf)

 CPLD Logic Circuit Design and Practice Combinational Logic

Figure 5.38 Simulation result of circuit dmux18.gdf (document：dmux18.scf)

Table 5.31 Pin assignment of EPF10K10TC144-4

Name of Signal
Pin of

EPF10K10TC144-4 Name of Signal
Pin of

EPF10K10TC144-4

S0 Pin 67 D Pin 47

S1 Pin 65 Y0 Pin 7

S2 Pin 64 Y1 Pin 8

 Y2 Pin 9

 Y3 Pin 10

 Y4 Pin 11

 Y5 Pin 12

 Y6 Pin 13

 Y7 Pin 14

 LED_COM Pin 141

5.9 The Question of Hazards
The logic signal elapses one circuit that depends on the propagation delay, and there

is high unascertained in propagation delay. The gate delay is different following

 CPLD Logic Circuit Design and Practice Combinational Logic

different logic system. Even there is different logic and different propagation delay

in same logic system. It is possible that gate delay along different propagation path

and there is different delay when signal changing. Because of different path delay

possible causes temporary（or quick）pulsation in logic circuit. This temporary

pulsation is called hazards, like in Figure 5.39(a). In Figure 5.39(a), for example,

one input signal of OR gate becomes low from high and the other one input signal

becomes high from low. Since the propagation delay is not equal, it will possible

hide Hazards occurrence（gray area）. In Figure 5.39(b), if above OR gate input

signal is early below input signal, the Hazards will not show under this situation.

On the other hand, in the Figure 5.39(c), if above OR gate input signal is late below

input signal, the Hazards will be showed under this situation. The output should

keep static 1, but shows fast low hazards which we call static 1-hazards. On the

other hand, for an AND gate, it possible will show static 0-hazards.

Figure 5.39 Static1-hazards

The hazards include static hazards and dynamic hazards. Figure 5.40 is illustrated

the means and form reason of dynamic. The X2(t) changes from high to low and

pass different path (causing different propagation delay), than the G5 output forms

static1-hazards. The G5 inputs which one pass two gates delay and another pass one

 CPLD Logic Circuit Design and Practice Combinational Logic

gate delay. Basically, the signal of two gates delay pass more belatedly than signal

of one gate delay. For G7 inputs which one pass three gates delay and another pass

two gates delay. It is obviously that the G7 below input signal is early than above

signal, than it will cause dynamic hazards showing on G7 output. Why it be called

dynamic hazards? That’s when G7 output is becoming low to high, happens the

hazards. Similarly, when it is becoming high to low, happens the hazards. It also is

called dynamic hazards.

Hazards, main form reason is by different signal propagation delay path, so there is

high unascertained. If the width of Hazards is smaller than inertial delay of logic

gate, it is not occurrence. But it is not good way to obstruct hazard by inertial delay.

Controlled and prevention of hazards is an important concern. We will not

introduce in this book, please reader consult reference.

Figure 5.40 Dynamic hazards

 CPLD Logic Circuit Design and Practice Combinational Logic

5.10 Evaluations
Please do the following evaluation according to the questions listed below

$" Do you know what does combinational logic circuit define?

$" Do you know step of design, simulation and test of general combination logic

circuit?

$" Do you know design principle of Look-ahead Carry Adder?

$" Do you know we can design addition and substractor together by using principle

of 2’complement?

$" Can you design, simulate and test a 3 to 8 Decoder?

$" Can you design, simulate and test 1 to 4 DMUX?

$" Can you explain meaning of Dynamic Hazard and form cause?

 CPLD Logic Circuit Design and Practice Combinational Logic

CHAPTER 6

Sequential
Logic Circuit

LEAP

In this chapter, we will introduce sequential logic circuit. Except basic

concept of sequential logic, we also introduce the design, simulation and

test of synchronous counter, synchronous shift-register, synchronous

shift count register, and asynchronous counter.

6.1 Basic Concept of Sequential Logic Circuit

In previous chapter, we already mentioned that combinational logic circuit output

only related to input signal. Once the input signal changes, the combinational logic

circuit output changes at once. It will react the output of previous item input, and

disappears at once. In other words, there is not memory ability of combinational

logic. Therefore, if circuit output not only relate with immediately input but also

previous output, which we call sequential logic circuit. The Figure 6.1 is the model

of general sequential logic circuit. Basically, the combinational logic circuit and

memory cell constructs the sequential logic circuit. The circuit combinational logic

receives two input signals, which come from input of periphery circuit and memory

cell. “The input from memory cell” recodes present state. The combinational logic

circuit includes two output signals, which outputs to periphery circuit and memory

cell. “Output to memory cell” is next state.

6.1.1 The Synchronous and Asynchronous Operation

The sequential logic can divide into category of synchronous sequential logic and

category of asynchronous sequential logic. In synchronous sequential logic, the

change of internal state is controlled by synchronous clock. This clock usual is

pulse (as Figure 6.2). The On-time stands for logic ”1”, and Off-time stands for

logic “0”. The On-time and Off-time are just clock period. The clock duty can be

defined as follows

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Duty cyclic= on time/clock period

In the clock, we call positive edge or rising edge when signal changes from ”0” to

“1”. Relatively, we call negative edge or falling edge when signal changes from “1”

to “0”.

Figure 6.1 Model of general sequential logic

In the synchronous model, the logic circuit must coordinate trigger of clock signal.

Only changes output state when clock trigger, then this state will keep until next

trigger coming. In the asynchronous model, logic circuit can change output signal

anytime. According to category of synchronous and category of asynchronous, we

can mention asynchronous sequential logic circuit model of Figure 6.3 and

synchronous sequential logic circuit model of Figure 6.4. In the Figure, thick lines

stand for most signal lines.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Figure 6.2 Terminologies of clock

Figure 6.3 Model of asynchronous sequential logic
Figure 6.4 Model of synchronous sequential logic

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Because asynchronous sequential circuit is not common synchronous timing signal,

it will happen some problems (like, racing and hazards) in design and dependence.

Those problems will lead to asynchronous sequential circuit limits in use of a few

special circuits (as counter). So sequential circuit almost are synchronous sequential

circuit. In this book, the introduced circuit in Section 6.2, 6.3 and 6.4 are

synchronous, but circuit in section 6.5 is asynchronous circuit.

6.1.2 The Latch and Flip-flops

The sequential circuit, usual takes Flip-flops as memory cell. SR Latch is basic of

other Flip-flops. Flip-flops can be divided into category of edge trigger Flip-flops

and category of gate controlled Flip-flops. Relative to edge trigger model, gate

controlled Flip-flops uses level trigger. The edge trigger Flip-flops includes D type

Flip-flops, JK Flip-flops and T type Flip-flops. The gate controlled Flip-flops

includes D type Flip-flops, SR Flip-flops, JK Flip-flops and T type Flip-flops. We

will introduce their functions following.

1. SR Latch

Generally, SR Latch can be made by two NOR gates or two NAND gates. In the

Figure 6.5, left is logic circuit of SR Latch making up by two NOR gates, the

middle is logic circuit of SR Latch making up by two NAND gates and right is the

circuit symbol. S is input end of setting signal, R is input end of resetting signal, Q

is output and Q’ is complement output of Q.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Figure 6.5 Logic circuit diagrams and circuit signal of SR Latch

! The operation principle of SR Latch

If time is t, Q=R=S=O, and S becomes 1 from 0

Q’ (t + tpd) = (S(t) + Q(t))’ = (1 + 0)’ = 0

 Q (t + 2tpd) = (R(t) + Q’(t + tpd))’ = (0 + 0)’ = 1

 Q’(t + 3 tpd) = (S(t) + Q(t + 2 tpd))’ = (1 + 1)’ = 0

 Q(t + 4tpd) = (R(t) + Q’(t + 3 tpd))’ = (0 + 0)’ = 1

…

So SR Latch changes state and new state firm to (S, R) = (1, 0). If S again becomes

0 from 1 at time ta, the outputs are as follows

 Q’(ta + tpd) = (S(ta) + Q(ta))’ = (0 + 1)’= 0

 Q(ta + 2 tpd) = (R(ta) + Q’(ta + tpd))’ = (0 + 0)’= 1

 Q’(ta + 3 tpd) = (S(ta) + Q(ta + 2 tpd))’ = (0 + 1)’= 0

 Q(ta + 4 tpd) = (R(ta) + Q’(ta + 3 tpd))’ = (0 + 0)’= 1

…

We can see SR Latch not changing state and old state still firm to (S, R) = (0, 0).

Similarly, if time is t, Q = R = S = 0 and R become 1 from 0.

 Q(t + tpd) = (R(t) + Q’(t))’ = (1 + 1)’ = 0

 Q’(t + 2 tpd) = (S(t) + Q(t + tpd))’ = (0 + 0)’ = 1

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

So SR Latch changes state and new state firm to (S, R) = (0, 1). If R again becomes

0 from 1 at time ta, the outputs are as follows:

 Q(ta + tpd) = (R(ta) + Q’(ta))’ = (0 + 1)’= 0

 Q’(ta + 2 tpd) = (S(ta) + Q(ta + tpd))’ = (0 + 0)’= 1

We can see SR Latch not changing state and old state still firm to (S, R) = (0, 0)

Similarly, if time is t, Q = R = S = 0 and R become 1 from 0.

 Q’(t + tpd) = (S (t) + Q (t))’ = (1 + 0)’ = 0

 Q(t + tpd) = (R(t) + Q’(t))’ = (1+1)’ = 0

 Q’(t + 2 tpd) = (S(t) + Q(t + tpd))’ = (1 + 0)’ = 0

 Q(t + 2 tpd)= (R(t) + Q’(t + tpd))’ = (1 + 0)’= 0

So SR Latch changes state and new state firm to (Q, Q’) = (0, 0). If S and R again

become 0 from 1 at time ta, the outputs are as follows

 Q’(ta + tpd) = (S(ta) + Q(ta))’ = (0 + 0)’ = 1

 Q(ta + tpd) = (R(ta) + Q’(ta))’ = (0 + 0)’ = 1

 Q’(ta + 2 tpd) = (S(ta) + Q(ta + tpd))’ = (0 + 1)’ = 0

 Q (ta + 2 tpd) = (R(ta) + Q’(ta + tpd))’ = (0 + 1)’ = 0

 Q’(ta + 3 tpd) = (S(ta) + Q(ta + 2 tpd))’ = (0 + 0)’ = 1

 Q(ta + 3 tpd) = (R(ta) + Q’(ta + 2 tpd))’ = (0 + 0)’ = 1

…

It is happed to uncertain situation of 1 and 0(if logic gate delay of Q and Q’ path

and line delay is same). In other words, the SR simultaneously rises to 1 and falls

down 0, it will lead to SR Latch showing uncertain situation. So this situation

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

should be forbidden. Actually, logic gate delay of Q and Q’ pad and line delay is

not same. So two paths decide next situation by racing, the result also is different.

! Truth table of SR Latch

Comprehensive above analysis, SR Latch be illustrated as Truth table of Table 6.1.

Among of Q+ stands for new Q value after new SR Latch input.

Table 6.1 Truth table of RS Latch

S R Q+

0 0 Q

1 0 1

0 1 0

1 1 Result of after race

2. Gate controlled Flip-flops

!!!! Gate controlled D type Flip-flops (D type Latch)

Figure 6.6(a) is logic circuit of trigger D type Flip-flops and Figure 6.6(b) is its’

circuit signal. D is input end of signal, ena is input end of enable signal (gate

controlled signal), Q is output and Q’ is complement output of Q. In Figure 6.6(b) is

another way to establish logic circuit of D Latch by using SR Latch (this is reason

why SR Latch is basic of Flip-flops)

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Figure 6.6 D type Latch

! The operation principle of D type Latch

(1) For logic circuit of Figure 6.6(a), because ena=1, D input reacts to Q output

(please see thick lines in Figure 6.7(a)). When ena=0, D signal of Q feed

back and let Q still keeping original D input (please see thick lines of Figure

6.7(b))

(2) For logic circuit of Figure 6.6(b), the (S*, R*) is equal input (0,0) if ena=0, it

will let Q and Q’ keeping original. The (S*, R*) is equal input (1,0) if

ena=1 and D=1, it will let Q=1 and Q’ =0 output, the (S*, R*) is (0,1) if

ena=1 and D=0, it will let Q=0 and Q’=1 output.

!!!! Truth table of D type Flip-flops

Comprehensive above analysis, D type Flip-flops be illustrated as Truth table

of Table 6.2.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Figure 6.7 Principle of D type Latch

Table 6.2 Truth table of D type Latch

D ena Q+

X 0 Q

1 1 1

0 1 0

! Gate controlled SR Flip-flops

In Figure 6.8, the left, establishes logic circuit of SR Flip-flops by using SR Latch,

the right is its’ circuit symbol, S and R are input end of signal, ena is input end of

enable signal (gate controlled signal), Q is output and Q’ is complement output of Q

Comprehensive above SR Latch analysis, gate controlled SR Flip-flops be

illustrated as Truth table of Table 6.3. Among of Q+ stands for new Q value after

new SR input. Because SR Latch exists useless input situation, this Flip-flop almost

is useless.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Figure 6.8 Gate controlled SR Flip-flop

Table 6.3 Truth table of gate controlled SR Flip-flops

S R ena Q+ Description

X X 0 Q Memory

0 0 1 Q Memory

0 1 1 0 Clear

1 0 1 1 Setting

1 1 1 X Vain

! Gate controlled JK Flip-flops

In Figure 6.9, the left, establish logic circuit of JK Flip-flops by using SR Latch, the

right is its’ circuit symbol, J and K are input end of signal, ena is input end of

enable signal (gate controlled signal), Q is output and Q’ is mutual output of Q.

For improving useless input of SR Flip-flops (S=1,R=1), the JK Flip-flops is

designed. In Figure 6.10a and 6.10b, we see (J=1,K=1) becoming switching

functions. JK Flip-flops be illustrated as Truth table of Table 6.4

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Figure 6.9 Gate controlled JK Flip-flops

Figure 6.10a Switch function of gate controlled JK Flip-flops when J = 1, K = 1
and Q = 1

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Figure 6.10a Switch function of gate controlled JK Flip-flops when J = 1, K = 1
and Q = 0

Table 6.4 Truth table of gate controlled JK Flip-flops

J K ENA Q+ Description

X X 0 Q Memory

0 0 1 Q Memory

0 1 1 0 Clean

1 0 1 1 Setting

1 1 1 Q’ Switched

! Gate controlled T type Flip-flops

In Figure 6.11, the left, establishes logic circuit of T type Flip-flops by using SR

Latch, the right is its’ circuit symbol, T is input end of signal, ena is input end of

enable signal (gate controlled signal), Q is output and Q’ is mutual output of Q. JK

Flip-flops be illustrated as Truth table of Table 6.5.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Figure 6.11 Gate controlled T type Flip-flop

Table 6.5 Truth table of gate controlled T type Flip-flop

T Ena Q+ Description

X 0 Q Memory

0 1 Q Memory

1 1 Q’ Switched

! Positive edge detector and negative edge detector

At present we had introduced gate controlled D type Flip-flops, gate controlled SR

type Flip-flops, gate controlled JK type Flip-flops and gate controlled T type Flip-

flops, which all be controlled by level trigger. Next we will introduce edge trigger

Flip-flops. Before gate controlled input signal of gate controlled Flip-flops plus

positive (or negative) edge detector, it will become edge trigger Flip-flops. This

positive (or negative) edge detector is a clock to pulse detector that detects clock

positive edge (or negative) and outputs a pulse. Figure 6.12(a) is block illustration

of positive edge detector circuit. After understanding edge detector circuit, we start

introducing edge trigger Flip-flops.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Figure 6.12(a) Positive edge detector circuit and illustration

Figure 6.12(b) Negative edge detector circuit and illustration

3. Edge trigger Flip-flops

!!!! Edge trigger D type Flip-flops

Figure 6.13 is a circuit diagram of D type Flip-flops with edge trigger and its circuit

symbol. If compare Figure 6.13 with Figure 6.6, we will know only more positive

edge (negative) detector. Compared with above circuit symbol of Figure 6.13,

negative edge trigger is more one little circle than positive. From the Truth table

(Table 6.6) of edge trigger D type Flip-flops, we can see change of output

happening after positive edge or negative edge happened.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.6 Truth table of edge trigger D type Flip-flop

D CLK Q Q+

X Not ↓ (↑) x Q

0 ↓ (↑) 0 0

0 ↓ (↑) 1 0

1 ↓ (↑) 0 1

1 ↓ (↑) 1 1

Figure 6.13 Circuit and symbol of edge trigger D Flip-flop

! Edge trigger JK Flip-flop

The Figure 6.14 is circuit and symbol of edge trigger JK Flip-flop. If compare

Figure 6.14 with Figure 6.9, we will know only more positive edge (negative)

detector. From the Truth table (Table 6.7) of edge trigger JK Flip-flops, we can see

change of output happening after positive edge or negative edge happened.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.7 Truth table of edge trigger JK Flip-flops

J K CLK Q+ Description

X X Not ↓ (↑) Q Memory

0 0 ↓ (↑) Q Memory

0 1 ↓ (↑) 0 Clean

1 0 ↓ (↑) 1 Setting

1 1 ↓(↑) Q’ Switched

Figure 6.14 Circuit and symbol of edge trigger JK

! Edge trigger T type Flip-flop

The Figure 6.15 is circuit and symbol of edge trigger T type Flip-flop. If compare

Figure 6.15 with Figure 6.11, we will know only more positive (negative) edge

detector. From the Truth table (Table 6.8) of edge trigger JK type Flip-flop, we can

see change of output happening after positive edge or negative edge happened.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.8 Truth table of edge trigger T type Flip-flops

T CLK Q+ Description

X Not ↓ (↑) Q Memory

0 ↓ (↑) Q Memory

1 ↓ (↑) Q’ Switched

Figure 6.15 Circuit and symbol of edge trigger T Flip-flop

!!!! The asynchronous preset and clear function of Flip-flops

Some Flip-flops includes two important inputs, which are asynchronous preset

function and asynchronous clear function. T type Flip-flops is possessed of preset

input and clear input as Figure 6.16. To clear T Flip-flops let Q outputting 0 (Q’

outputting 1) when CLRN’ = 0 and PRN’ = 0 (1) input. To preset T type Flip-

flops let Q outputting 1 (Q’ outputting 0) when CLRN’ = 1，and PRN’ = 0 input.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Truth table of gate controlled T type Flip-flop and edge trigger T type Flip-flops be

listed in Table 6.9(a) and Table 6.9(b).

Similarly, Jk Flip-flops is possessed of asynchronous clear and preset function, as

Figure 6.17, Truth table of JK Flip-flops and edge trigger JK Flip-flops be listed in

Table 6.10(a) and Table 6.10(b).

Figure 6.16 T type Flip-flops with asynchronous clear and preset function

Table 6.9a Truth table of gate controlled T type Flip-flops

CLRN’ PRN’ T ENA Q+ Description

0 0 X X 0 Clear

0 1 X X 0 Clear

1 0 X X 1 Preset

1 1 X 0 Q Memory

1 1 0 1 Q Memory

1 1 1 1 Q’ Switched

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.9b Truth table of edge trigger T type Flip-flops

CLRN’ PRN’ T CLK Q+ Description

0 0 X X 0 Clear

0 1 X X 0 Clear

1 0 X X 1 Preset

1 1 X Not ↓ (↑) Q Memory

1 1 0 ↓ (↑) Q Memory

1 1 1 ↓ (↑) Q’ Switched

Figure 6.17 JK Flip-flops is possessed of asynchronous clear and present

function

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.10a Truth table of gate controlled JK Flip-flops

CLRN’ PRN’ J K ENA Q+ Description

0 0 X X X 0 Clear

0 1 X X X 0 Clear

1 0 X X X 1 Setting

1 1 X X 0 Q Memory

1 1 0 0 1 Q Memory

1 1 0 1 1 0 Clear

1 1 1 0 1 1 Setting

1 1 1 1 1 Q’ Switched

Figure 6.10b Truth table of edge trigger JK Flip-flops

CLRN’ PRN’ J K CLK Q+ Description

0 0 X X X 0 Clear

0 1 X X X 0 Clear

1 0 X X X 1 Setting

1 1 X X Not ↓ (↑) Q Memory

1 1 0 0 ↓ (↑) Q Memory

1 1 0 1 ↓ (↑) 0 Clear

1 1 1 0 ↓ (↑) 1 Setting

1 1 1 1 ↓ (↑) Q’ Switched

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

6.1.3 The State Tables and State Diagrams

We already mentioned model of sequential logic circuit in Figure 6.1. The all

outputs result of previous input will be illustrated as state of circuit in this model.

So anytime circuit output relates to present state and input. Next state of circuit is

decided in same time. This relation of output, present state, next state and output,

which can be illustrated by state tables and state diagrams.

Figure 6.11a is the state of sequential circuit that illustrated by state table. It

includes three columns, first column stands for present state, second column stands

for input x = 0, last column stands for input x = 1. For sequential circuit, present

state includes four states, so be illustrated by two bits. This table illustrate that “if

input is x = 0, output is 11 and 0 (next state is 11, output is “0”), if input is x=1,

output is 01 and 0 (next state is 01, output is “0”) when present state is “00”; if

input is x=0, output is 11 and 0 (next state is 11, output is ”0”), if input is x=1,

output is 00 and 0 (next state is 00, output is “0”), when present state is “01”, the

other situation is so on and so forth. The state of sequential circuit been illustrated

by another state tables as Figure 6.11b.

Table 6.11a Sequential circuit state be illustrated by state tables

Present state Input
y1y2 x = 0 x = 1

00 11, 0 01, 0

01 11, 0 00, 0

11 10, 0 10, 1

10 10, 0 11, 1

Note：next state , output

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.11b Sequential circuit state be illustrated by another form

Present state Input
y1y2 x = 0 x = 1

A C, 0 B, 0

B C, 0 A, 0

C D, 0 D, 1

D D, 0 C, 1

The Karnaugh map of next state (Y1Y2) and output z separately can be established

by state tables and state diagrams, (like, Figure 6.12a, 6.12b and 6.12c), than getting

the functions is:

 z = xy1

 Y1 = x’ + y1

 Y2 = xy2’ + x’y1’

After getting z, Y1 and Y2 functions, we can easy draw this sequential logic circuit

by logic gate and Flip-flops as Figure 6.18.

Table 6.12a Karnaugh map of Y2 , Y2 = xy2’ + x’y1’

y1y2 Y2

00 01 11 10

0 1 1 0 0 X

1 1 0 0 1

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.12b Karnaugh map of Y1 , Y1 = x’ + y1

y1y2 Y1

00 01 11 10

0 1 1 1 1 X

1 0 0 1 1

Table 6.12c Karnaugh map of z , z = xy1

y1y2 Z

00 01 11 10

0 0 0 0 0 X

1 0 0 1 1

Figure 6.18 Sequential logic circuit of Table 6.11a

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Another way to illustrate sequential logic circuit is state diagrams. Figure 6.17 is

state diagrams of sequential logic circuit of Table 6.11b. The circles stand for state,

arrows stands for state changing direction. The numbers on arrows stand for input

condition of transformation and output of after transformation, like, 1/0 on A to B

line stands for that transforms state to B and output “0” when state A and “1” input.
Figure 6.19 State diagrams of Table 6.11b

6.1.4 Mealy State Machine and Moore State Machine

 In previous section, we had mentioned sequential circuit, which output and

next state relates with present state and input. This sequential circuit is called Mealy

state machine. Another model is Moore state machine, this model output only

relates to present state, and next state relates to present state and input. Figure 6.20

is model of Moore state machine, and state tables of Moore state machine be

illustrated as Table 6.13. Please reader compares it with Table 6.11b.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.13 Sepresentation of state tables of Moore state machine

Input Output Present state

X = 0 X = 1 Z

A B D 1

B C A 0

C C D 0

D B D 0

Figure 6.20 Model of Moore state machine

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Figure 6.21 is state diagrams of Moore state machine. From Figure 6.21, we can see

the different to Figure 6.19. In Figure 6.21, A/1 in circle stands for state A and

output is “1”, it also stands for output only relation with present state. The “0” on

A/1 to B/0 are line stands for that transform condition is “0”.

Figure 6.21 Representation of state diagrams of Moore state machine

6.1.5 The Design Progress of Synchronous Sequential
Logic

Generally, the design progress of synchronous sequential logic circuit is as follows,

1. Complete the state assignment of the circuit specification and illustrate by

state diagrams or state tables;

2. Find each Karnaugh map of Flip-flops inputs and output functions;

3. Find any minimum expression of input and output functions;

4. Complete above circuit entry by using graphic editor in MAX+PLUS II;

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

5. Complete the circuit functional simulation by using MAX+PLUS II and

check weather the functions meet the specification. Go on the next step if

meet the specification; otherwise go back to step 1 to check the cause of

error sequentially;

6. If the circuit allowed to test by downloading (programming), select

download (programming) chip and then floorplan;

7. Download (programming) the circuit to chip and test the circuit, if can’t

meet specification, go back to step 1 to check the cause of error sequentially.

Now, illustrate all procedures following example.

Example: Please design sequential circuit to fit with state tables of Table 6.14a by

using JK Flip-flops.

Table 6.14a State tables of one sequential circuit

Input x1x2 Present
State 00 01 11 10

A C, 0 D, 0 D, 0 A, 1

B C, 0 D, 0 D, 1 A, 1

D A, 0 B, 0 B, 1 A, 1

C A, 0 B, 0 B, 0 A, 1

We design as follows:

Step 1：Complete the state assignment of the circuit specification and illustrated by

state diagrams or state tables.

Due to only four states, it can cover those states only by two bits. The state

assignment is as follows:

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

A = 00, B = 01, C = 10, D = 11

The new state table is like Table 6.14b.

Table 6.14b New state tables

Input x1x2 Present
State 00 01 11 10

00 10, 0 11, 0 11, 0 00, 1

01 10, 0 11, 0 11, 1 00, 1

11 00, 0 01, 0 01, 1 00, 1

10 00, 0 01, 0 01, 0 00, 1

Step 2：To establish Karnaugh map of J1 (Table 6.14d), K1 (Table 6.14e), J2 (Table

6.14f), K2 (Table 6.14g) and Z (Table 6.14h) by using excitation table

(Table 6.14c).

Table 6.14c Excitation table of Flip-flops

Present Next State DFF JK FF TFF

Q Q+ D J K T

0 0 0 0 – 0

0 1 1 1 – 1

1 0 0 – 1 1

1 1 1 – 0 0

Note：“–” (don’t care), it can be set 0 or 1.

Analysis of Table 6.14c is as follows:

 1. For D type Flip-flop

(1) If present state Q is 0, and next state Q wants to be 0, D input must be 0.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

(2) If present state Q is 0, and next state Q wants to be 1, D input must be 1.

(3) If present state Q is 1and next state Q wants to be 0, D input must be 0.

(4) If present state Q is 1 and next state Q wants to be 1, D input must be 1.

 2. For JK Flip-flops

(1) If present state Q is 0, and next state Q wants to be 0, J input must be 0

and K input must be –.

(2) If present state Q is 0, and next state Q wants to be 1, J input must be 1

and K input must be –.

(3) If present state Q is 1, and next state Q wants to be 0, J input must be –

and K input must be 1.

(4) If present state Q is 1, and next state Q wants to be 1, J input must be –

and K input must be 0.

 3. For T type Flip-flops

(1) If present state Q is 0, and next state Q wants to be 0, T input must be 0.

(2) If present state Q is 0, and next state Q wants to be 1, T input must be 1.

(3) If present state Q is 1, and next state Q wants to be 0, T input must be 1.

(4) If present state Q is 1, and next state Q wants to be 1, T input must be 0.

 Table 6.14d Karnaugh map of J1, J1 = x1’+ x2

Input x1x2J1
00 01 11 10

00 1 1 1 0
01 1 1 1 0
11 – – – –

y1y2

Present State
Input

10 – – – –

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

The procedure of Table 6.14d is as follows:

 1. When Present State Input is y1y2 = 00 and input is x1x2 = 00, next state is

y1y2 = 10. The y1 becomes 1 from 0, so needs J1 = 1；

 2. When Present State Input is y1y2 = 00 and input is x1x2 = 01, next state is

y1y2 = 11. The y1 becomes 1 from 0, so needs J1 = 1；

 3. When Present State Input is y1y2 = 00 and input is x1x2 = 11, next state is

y1y2 = 11. The y1 becomes 1 from 0, so needs J1 = 1；

 4. When Present State Input is y1y2 = 00 and input is x1x2 = 10, next state is

y1y2 = 00. The y1 becomes 0 from 0, so needs J1 = 0；

 5. When Present State Input is y1y2 = 01 and input is x1x2 = 00, next state is

y1y2 = 10. The y1 becomes 1 from 0, so needs J1 = 1；

 6. When Present State Input is y1y2 = 01 and input is x1x2 = 01, next state is

y1y2 = 11. The y1 becomes 1 from 0, so needs J1 = 1；

 7. When Present State Input is y1y2 = 01 and input is x1x2 = 11, next state is

y1y2 = 11. The y1 becomes 1 from 0, so needs J1 = 1；

 8. When Present State Input is y1y2 = 01 and input is x1x2 = 10, next state is

y1y2 = 00. The y1 becomes 0 from 0, so needs J1 = 0；

 9. When Present State Input is y1y2 = 11 and input is x1x2 = 00, next state is

y1y2 = 00. The y1 becomes 0 from 1, so needs J1 =–；

 10. When Present State Input is y1y2 = 11 and input is x1x2 = 01, next state is

y1y2 = 01. The y1 becomes 0 from 1 , so needs J1 =–；

 11. When Present State Input is y1y2 = 11 and input is x1x2 = 11, next state is

y1y2 = 01. The y1 becomes 0 from 1 , so needs J1 =–；

 12. When Present State Input is y1y2 = 11 and input is x1x2 = 10, next state is

y1y2 = 00. The y1 becomes 0 from 1 , so needs J1 =–；

 13. When Present State Input is y1y2 = 10 and input is x1x2 = 00, next state is

y1y2 = 00. The y1 becomes 0 from 1 , so needs J1 =–；

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

 14. When Present State Input is y1y2 = 10 and input is x1x2 = 01, next state is

y1y2 = 01. The y1 becomes 0 from 1 , so needs J1 =–；

 15. When Present State Input is y1y2 = 10 and input is x1x2 = 11, next state is

y1y2 = 01. The y1 becomes 0 from 1 , so needs J1 =–；

 16. When Present State Input is y1y2 = 10 and input is x1x2 = 10, next state is

y1y2 = 00. The y1 becomes 0 from 1 , so needs J1 =–；

After Karnaugh map minimization, we get J1 = x1’ + x2。

Table 6.14e Karnaugh map of K1 , K1 = 1

Input x1x2 K1

00 01 11 10

00 – – – –

01 – – – –

11 1 1 1 1

y1y2

Present State
Input 10 1 1 1 1

The procedure of Table 6.14e is as follows:

 1. When Present State Input is y1y2 = 00 and input is x1x2 = 00, next state is

y1y2 = 10. The y1 becomes 1 from 0, so needs K1 = –；

 2. When Present State Input is y1y2 = 00 and input is x1x2 = 01, next state is

y1y2 = 10. The y1 becomes 1 from 0, so needs K1 = –；

 3. When Present State Input is y1y2 = 00 and input is x1x2 = 11, next state is

y1y2 = 11. The y1 becomes 1 from 0, so needs K1 = –；

 4. When Present State Input is y1y2 = 00 and input is x1x2 = 10, next state is

y1y2 = 00. The y1 becomes 0 from 0, so needs K1 = –；

 5. When Present State Input is y1y2 = 01 and input is x1x2 = 00, next state is

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

y1y2 = 10. The y1 becomes 1 from 0, so needs K1 = –；

 6. When Present State Input is y1y2 = 01 and input is x1x2 = 01, next state is

y1y2 = 11. The y1 becomes 1 from 0, so needs K1 = –；

 7. When Present State Input is y1y2 = 01 and input is x1x2 =11, next state is y1y2

= 11. The y1 becomes 1 from 0, so needs K1 = –；

 8. When Present State Input is y1y2 = 01 and input is x1x2 = 10, next state is

y1y2 = 00. The y1 becomes 0 from 0, so needs K1 = –；

 9. When Present State Input is y1y2 = 11 and input is x1x2 = 00, next state is

y1y2 = 00. The y1 becomes 0 from 1, so needs K1 = 1；

 10. When Present State Input is y1y2 = 11 and input is x1x2 = 01, next state is

y1y2 = 01. The y1 becomes 0 from 1, so needs K1 = 1；

 11. When Present State Input is y1y2 = 11 and input is x1x2 = 11, next state is

y1y2 = 01. The y1 becomes 0 from 1, so needs K1 = 1；

 12. When Present State Input is y1y2 = 11 and input is x1x2 = 10, next state is

y1y2 = 00. The y1 becomes 0 from 1, so needs K1 = 1；

 13. When Present State Input is y1y2 = 10 and input is x1x2 = 00, next state is

y1y2 = 00. The y1 becomes 0 from 1, so needs K1 = 1；

 14. When Present State Input is y1y2 = 10 and input is x1x2 = 01, next state is

y1y2 = 01. The y1 becomes 0 from 1, so needs K1 = 1；

 15. When Present State Input is y1y2 = 10 and input is x1x2 = 11, next state is

y1y2 = 01. The y1 becomes 0 from 1, so needs K1 = 1；

 16. When Present State Input is y1y2 = 10 and input is x1x2 = 10, next state is

y1y2 = 00. The y1 becomes 0 from 1, so needs K1 = 1；

After Karnaugh map minimization, we get K1 = 1。

According to established of above J1 and K1 Karnaugh map, we continue

establishing Karnaugh map J2 , K2 and Z as Table 6.14f〜Table 6.14h.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.14f Karnaugh map of J2 , J2 = x2

Input x1x2 J2

00 01 11 10

00 0 1 1 0

01 – – – –

11 – – – –

y1y2

Present State
Input 10 0 1 1 0

Table 6.14g Karnaugh map of K2 , K2 = x2’

Input x1x2 K2

00 01 11 10

00 – – – –

01 1 0 0 1

11 1 0 0 1

y1y2

Present State
Input 10 – – – –

Table 6.14h Karnaugh map of Z , Z = x1x2’ + y2x1

Input x1x2 Z

00 01 11 10

00 0 0 0 1

01 0 0 1 1

11 0 0 1 1

y1y2

Present State
Input 10 0 0 0 1

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Step 3：Find any minimum expression of input and output functions

 J1 = x1’ + x2

 K1 = 1

 J2 = x2

 K2 = x2’

 Z = x1x2’ + y2x1

Step 4： Complete circuit entry, Figure 6.22, by using graphic editor in

MAX+PLUS II

Figure 6.22 Complete the circuit entry of Table 6.14a by using MAX+PLUS II

(document：T614A.GDF)

Figure 6.23 The functional simulation result of Table6.14a by using

MAX+PLUS II simulator (document：T614A.SCF)

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Step 5: Complete the circuit functional simulation by using MAX+PLUS II, Figure

6.23 shown the simulation result, and check weather the functions meet the

specification. Go on the next step if meet the specification; otherwise go

back to step 1 to check the cause of error sequentially

Step 6：If the circuit allow to test by downloading (programming), select download

(programming) chip and then floorplan.

As circuit modified that showed in Figure 5.6 of Section 5.2.1, please modify Figure

6.22. Please re-compile it after modifying, and adapt the ploorplan techniques in

Section 4.6, select chip EPF10K10TC144-4 and use Table 6.15 pin assignment

reference.

Table 6.15 Pin assignment of EPF10K10TC144-4

Name of Signal Pin of
EPF10K10TC144-4

Name of Signal Pin of
EPF10K10TC144-4

CLKIN Pin 54 (PS1) Y1 Pin 8

X1 Pin 48 Y2 Pin 7

X2 Pin 47 LED_COM Pin 141

After assemble logic circuit design Lab platform LP-2900, download T614A to chip

EPF10K10TC144-4. Please regulate input X1 and X2, try to push PS1 on left-

bottom of LP-2900, and please note the changes of L1 (Y2) and L2 (Y1).

Exercise 1：Please design sequential circuit of state tables (Table 6.14a) by T type

Flip-flops.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Exercise 2：Please design sequential circuit of state tables (Table 6.14a) by D type

Flip-flops.

6.2 The Design, Simulation and Test of
Synchronous Counter

In this section, we will design four bits binary counter and BCD counter by using

JK Flip-flops.

6.2.1 Four-bit Binary Counter

There is a counter, which the initial value is 0000 (0), and arithmetic value of

counter becomes 0001 (1) when clock positive edge enters. If arithmetic clock

keeps flowing in , the counter will sequentially turn to 0010 (2) → 0011 (3) →

0100 (4) →0101 (5) →…1110 (14) → 1111 (15) → 0000 (0) →…and keeps

cycling like this.

From above circuit specification, we know it is a four-bit binary up counter. The

progress of the design is as follows:

Step 1：Complete the state assignment of the circuit specification and illustrated by

state diagrams or state tables. Circuit specification of four-bit binary

counter been illustrated as state tables of Table 6.16a.

Table 6.16a State tables of four-bit binary counter sequential circuit
Present State Next State Output

0000 0001 0000
0001 0010 0001
0010 0011 0010
0011 0100 0011

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

0100 0101 0100
0101 0110 0101
0110 0111 0110
0111 1000 0111
1000 1001 1000
1001 1010 1001
1010 1011 1010
1011 1100 1011
1100 1101 1100
1101 1110 1101
1110 1111 1110
1111 0000 1111

Step 2：Find each Karnaugh map of Flip-flops inputs and output function by using

excitation table. We have found find each Karnaugh map of Flip-flops

inputs and output function as Table 6.16b~Table 6.16i by using excitation

table of Table 6.14c.

Table 6.16b Karnaugh map of J0 , J0 = Vcc

Present State Input Y1Y0 J0

00 01 11 10

00 1 – – 1

01 1 – – 1

11 1 – – 1

Y3Y2

Present State
Input 10 1 – – 1

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.16c Karnaugh map of K0 , K0 = Vcc

Present State Input Y1Y0 K0

00 01 11 10

00 – 1 1 –

01 – 1 1 –

11 – 1 1 –

Y3Y2

Present State
Input 10 – 1 1 –

Table 6.16d Karnaugh map of J1 , J1 = Y0

Present State Input Y1Y0 J1

00 01 11 10

00 0 1 - -

01 0 1 - -

11 0 1 - -

Y3Y2

Present State
Input 10 0 1 - -

Table 6.16e Karnaugh map of K1 , K1 = Y0

Present State Input Y1Y0 K1

00 01 11 10

00 – – 1 0

01 – – 1 0

11 – – 1 0

Y3Y2

Present State
Input 10 – – 1 0

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.16f Karnaugh map of J2 , J2 = Y1Y0

Present State Input Y1Y0 J2

00 01 11 10

00 0 0 1 0

01 – – – –

11 – – – –

Y3Y2

Present State
Input 10 0 0 1 0

Table 6.16g Karnaugh map of K2 , K2 = Y1Y0

Present State Input Y1Y0 K0

00 01 11 10

00 – – – –

01 0 0 1 0

11 0 0 1 0

Y3Y2

Present State
Input 10 – – – –

Table 6.16h Karnaugh map of J3 , J3 = Y2Y1Y0

Present State Input Y1Y0 J3

00 01 11 10

00 0 0 0 0

01 0 0 1 0

11 – – – –

Y3Y2

Present State
Input 10 – – – –

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.16i Karnaugh map of K3 , K3 = Y2Y1Y0

Present State Input Y1Y0 K3

00 01 11 10

00 - - - -

01 - - - -

11 0 0 1 0

Y3Y2

Present State
Input 10 0 0 0 0

Step 3：Find any minimum expression of input and output functions

 J0 = Vcc K0 = Vcc

 J1 = Y0 K1 = Y0

 J2 = Y1Y0 K2 = Y1Y0

 J3 = Y2Y1Y0 K3 = Y2Y1Y0

 Q0 = Y0 Q1 = Y1

 Q2 = Y2 Q3 = Y3

Step 4： Complete circuit entry, Figure 6.24, by using graphic editor in

MAX+PLUS II

Figure 6.24 Complete the circuit entry of Table 6.16a by using MAX+PLUS II
(document：S4CNTR.GDF)

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Step 5: Complete the circuit functional simulation by using MAX+PLUS II, Figure

6.25 shows the result of functional simulation, and check weather the

functions meet the specification. Go on the next step if meet the

specification; otherwise go back to step 1 to check the cause of error

sequentially.

Step 6：If the circuit allow to test by downloading (programming), select download

(programming) chip and then floorplan.

As circuit modified that showed in Figure 5.3 of Section 5.1, please modify Figure

6.24. Please re-compile it after modifying, and adapt the ploorplan techniques in

Section 4.6, select chip EPF10K10-TC144-4 and use Table 6.17 pin assignment

reference. After assemble logic circuit design Lab platform LP-2900, download

four-bit binary up counter to chip EPF10K10TC144-4. Please try to push PS1 on

left-bottom of LP-2900, and please note the changes of L1 (Y3), L2 (Y2), L3 (Y1)

and L4, which if is sequence “ 0000”、“0001”、“0010”、… “1111”

Figure 6.25 Complete simulation of circuit Table 6.16a by using MAX+PLUS II
(document：S4CNTR.SCF)

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.17 Pin assignment of EPF10K10TC144-4

Name of Signal Pin of
EPF10K10TC144-4

Name of Signal Pin of
EPF10K10TC144-4

CLKIN Pin 54 (PS1) Y2 Pin 49

Y0 Pin 47 Y3 Pin 50

Y1 Pin 48 LED_COM Pin 141

Exercise 3：To design sequential circuit of four-bit binary down counter by JK

Flip-flops.

Exercise 4：To design sequential circuit of four-bit binary down counter by D type

Flip-flops.

6.2.2 BCD Counter
There is a counter, which the initial value is 0000(0), and arithmetic value of

counter becomes 0001 (1) when clock positive edge enters. If arithmetic clock

keeps flowing in , the counter will sequentially turn to 0010 (2) → 0011 (3) →

0100 (4) →0101 (5) →…1001 (9) → 0000 (0) →…and keeps cycling like this

From above circuit specification, we know it is a BCD up counter. The progress of

the design is as follows

Step 1：Complete the state assignment of the circuit specification and illustrate by

state diagrams or state tables. Circuit specification of BCD up counter

been illustrated as state tables of Table 6.18a.

Step 2：Find each Karnaugh map of Flip-flops inputs and output function by using

excitation table. We have found each Karnaugh map of Flip-flops inputs and

output function as Table 6.16b~Table 6.16i by using excitation table of

Table 6.14c.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.18a State tables of BCD up counter sequential circuit

Present State Next State Output

0000 0001 0000

0001 0010 0001

0010 0011 0010

0011 0100 0011

0100 0101 0100

0101 0110 0101

0110 0111 0110

0111 1000 0111

1000 1001 1000

1001 0000 1001

Table 6.18b Karnaugh map of J0 , J0 = Vcc

Present State Input Y1Y0 J0

00 01 11 10

00 1 – – 1

01 1 – – 1

11

Y3Y2

Present State
Input 10 1 –

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.18c Karnaugh map of K0 , K0 = Vcc

Present State Input Y1Y0 K0

00 01 11 10

00 – 1 1 –

01 – 1 1 –

11

Y3Y2

Present State
Input 10 – 1

Table 6.18d Karnaugh map of J1 , J1 = Y3’Y0

Present State Input Y1Y0 J1

00 01 11 10

00 0 1 - -

01 0 1 - -

11

Y3Y2

Present State
Input 10 0 0

Table 6.18e Karnaugh map of K1 , K1 = Y3’Y0

Present State InputY1Y0 K1

00 01 11 10

00 – – 1 0

01 – – 1 0

11

Y3Y2

Present State
Input 10 – –

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.18f Karnaugh map of J2 , J2 = Y1Y0

Present State InputY1Y0 J2

00 01 11 10

00 0 0 1 0

01 – – – –

11

Y3Y2

Present State
Input 10 0 0

Table 6.18g Karnaugh map of K2 , K2 = Y1Y0

Present State InputY1Y0 K2

00 01 11 10

00 – – – –

01 0 0 1 0

11

Y3Y2

Present State
Input 10 – –

Table 6.18h Karnaugh map of J3 , J3 = Y2Y1Y0 + Y3Y0

Present State InputY1Y0 J3

00 01 11 10

00 0 0 0 0

01 0 0 1 0

11

Y3Y2

Present State
Input 10 – –

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.18i Karnaugh map of K3 , K3 = Y2Y1Y0+Y3Y0

Present State InputY1Y0 K3

00 01 11 10

 00 – – – –

Y3Y2 01 – – – –

Present State 11

 10 0 1

Step 3：Find any minimum expression of input and output functions.

 J0 = Vcc ， K0 = Vcc

 J1 = Y3’Y0 ， K1 = Y3’Y0

 J2 = Y1Y0 ， K2 = Y1Y0

 J3 = Y2Y1Y0 + Y3Y0 ， K3 = Y2Y1Y0+Y3Y0

 Q0 = Y0 ， Q1 = Y1

 Q2 = Y2 ， Q3 = Y3

Step 4：Complete the circuit entry, Figure 6.26, by using graphic editor in

MAX+PLUS II.

Step 5: Complete the circuit functional simulation by using MAX+PLUS II, Figure

6.27 shows the result of functional simulation, and check weather the

functions meet the specification. Go on the next step if meet the

specification; otherwise go back to step 1 to check the cause of error

sequentially.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Figure 6.26 Complete the circuit entry of Table 6.18a by using MAX+PLUS
II(document：SBCDCNTR.GDF)

Figure 6.27 The functional simulation result of Table6.18a by using MAX+PLUS
II simulator (document: SBCDCNTR.SCF)

Step 6：If the circuit allow to test by downloading (programming), select download

(programming) chip and then floorplan.

As circuit modified that showed in Figure 5.3 of Section 5.1, please modify Figure

6.26. Please re-compile it after modifying, and adapt the ploorplan techniques in

Section 4.6, select chip EPF10K10TC144-4 and use Table 6.19 pin assignment

reference. After assemble logic circuit design Lab platform LP-2900, download

BCD up counter to chip EPF10K10TC144-4. Please try to push PS1 on left-bottom

of LP-2900, and please note the changes of L1 (Y3), L2 (Y2), L3 (Y1) and L4,

which if is sequence “ 0000”,“0001”,“0010”,… “1001”,“0000”.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.19 Pin assignment of EPF10K10TC144-4
Name of Signal Pin of

EPF10K10TC144-4
Name of Signal Pin of

EPF10K10TC144-4

CLKIN Pin 54 (PS1) Y2 Pin 49

Y0 Pin 47 Y3 Pin 50

Y1 Pin 48 LED_COM Pin 141

Exercise 5：Please design sequential circuit of BCD down counter by JK Flip-flops

Exercise 6：Please design sequential circuit of BCD down counter by D type Flip-

flops

6.3 The Design, Simulation and Test of
Synchronous Shift Register

In this section, we will use D type Flip-flops to design four shift registers: four-bit

serial input and serial output (SISO), four-bit serial input and parallel output (SIPO),

Four-bit parallel input and serial output (PISO), Four-bit parallel input and parallel

output (PIPO)

6.3.1 SISO Shift Register

There a circuit, which has four registers with input D3D2D1D0 and output Y3Y2Y1Y0,

has serial input Sin and serial output So. Original data Y1 showed in Y0, original

data Y2 showed in Y1, and original data Y3 showed in Y2 and original data Sin

showed in Y3 when clock positive edge enters. Besides, So data is Y0 data.

To achieve above circuit specification design, the design progress as follows

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Step 1：Complete the state assignment of the circuit specification and illustrate by

state diagrams or state tables. Circuit specification of four-bit SISO shift

register been illustrated as state tables of Table 6.20a.

Table 6.20a State tables of SISO shift register sequential circuit

Input X Output Present State
0 1 So

0000 0000 1000 0
0001 0000 1000 1
0010 0001 1001 0
0011 0001 1001 1
0100 0010 1010 0
0101 0010 1010 1
0110 0011 1011 0
0111 0011 1011 1
1000 0100 0100 0
1001 0100 1100 1
1010 0101 1101 0
1011 0101 1101 1
1100 0110 1110 0
1101 0110 1110 1
1110 0111 1111 0
1111 0111 1111 1

Note：Next state shows in double-line grid

Step 2：Find each Karnaugh map of Flip-flops inputs and output function by using

excitation table. We have found each Karnaugh map of D type Flip-flops

inputs and output function as Table 6.20b~Table 6.20f by using excitation

table of Table 6.14c. (This example uses Karnaugh map of 5 variables)

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.20b Karnaugh map of D0 , D0 = Y1

Input x = 0

Present State InputY1Y0 D0

00 01 11 10

00 0 0 1 1

01 0 0 1 1

11 0 0 1 1

Y3Y2

Present State
Input 10 0 0 1 1

Input x = 1

Present State InputY1Y0 D0

00 01 11 10

00 0 0 1 1

01 0 0 1 1

11 0 0 1 1

Y3Y2

Present State
Input 10 0 0 1 1

Table 6.20c Karnaugh map of D1 , D1 = Y2
Input x = 0

Present State InputY1Y0 D1

00 01 11 10

00 0 0 0 0

01 1 1 1 1

Y3Y2

Present State 11 1 1 1 1

 10 0 0 0 0

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Input X = 1

Present State InputY1Y0 D1

00 01 11 10

00 0 0 0 0

01 1 1 1 1

11 1 1 1 1

Y3Y2

Present State
Input 10 0 0 0 0

Table 6.20d Karnaugh map of D2 , D2 = Y3

Input x = 0

Present State InputY1Y0 D2

00 01 11 10

00 0 0 0 0

01 0 0 0 0

11 1 1 1 1

Y3Y2

Present State
Input 10 1 1 1 1

Input X = 1

Present State InputY1Y0 D2

00 01 11 10

00 0 0 0 0

01 0 0 0 0

11 1 1 1 1

Y3Y2

Present State
Input 10 1 1 1 1

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.20e Karnaugh map of D3 , D3 = x

Input x = 0

Present State Input Y1Y0 D3

00 01 11 10

00 0 0 0 0

01 0 0 0 0

11 0 0 0 0

Y3Y2

Present State
Input 10 0 0 0 0

Input X = 1

Present State Input Y1Y0 D3

00 01 11 10

00 1 1 1 1

01 1 1 1 1

11 1 1 1 1

Y3Y2

Present State
Input 10 1 1 1 1

Table 6.20f Karnaugh map of So , So = Y0

Input x = 0

Present State Input Y1Y0 So

00 01 11 10

00 0 1 1 0

01 0 1 1 0

11 0 1 1 0

Y3Y2

Present State
Input 10 0 1 1 0

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Input X = 1

Present State Input Y1Y0 So

00 01 11 10

00 0 1 1 0

01 0 1 1 0

11 0 1 1 0

Y3Y2

Present State
Input 10 0 1 1 0

Step 3：Find any minimum expression of input and output functions

 D0 = Y1 ； D1 = Y2

 D2 = Y3 ； D3 = X

 So = Y0。

Step 4：Complete the circuit entry, shown in Figure 6.28, by using graphic editor in

MAX+PLUS II.

Step 5: Complete the circuit functional simulation by using MAX+PLUS II, Figure

6.29 illustrates the result of functional simulation, and check weather the

functions meet the specification. Go on the next step if meet the

specification; otherwise go back to step 1 to check the cause of error

sequentially.

Figure 6.28 Complete the circuit entry Table 6.20e by using MAX+PLUS II
(document：S4SISO.GDF)

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Figure 6.29 The functional simulation result of Table 6.20e by using MAX+PLUS
II simulator (document：S4SISO.SCF)

Step 6：If the circuit allow to test by downloading(programming), select download

(programming) chip and then floorplan.

As circuit modified that showed in Figure 5.3 of Section 5.1, please modify Figure

6.28. Please re-compile it after modifying, and adapt the ploorplan techniques in

Section 4.6, select chip EPF10K10TC144-4 and use Table 6.21 pin assignment

reference. After assemble logic circuit design Lab platform LP-2900, download

SISO shift register to chip EPF-10K10TC144-4. Please regulate X input and try to

push PS1 on left-bottom of LP-2900. Please note the changes of L1 (So).

Table 6.21 Pin assignment of EPF10K10TC144-4

Name of Signal EPF10K10TC144-4

Chip pin

Name of Signal EPF10K10TC144-4

Chip pin
CLKIN Pin 54 (PS1) So Pin 7

X Pin 47 LED_COM Pin 141

Exercise 7：Please design sequential circuit of Four-bit binary SISO shift register

by JK Flip-flops.

Exercise 8：Please design sequential circuit of Four-bit binary SISO shift register

by T type Flip-flops.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

6.3.2 SIPO Shift Register

There a circuit, which has four registers with input D3D2D1D0 and output Y3Y2Y1Y0,

has a serial input Sin and parallel output P3P2P1P0. Original data Y1 showed in Y0,

original data Y2 showed in Y1, and original data Y3 showed in Y2 and original data

Sin showed in Y3 when clock positive edge enters. Besides, P3P2P1P0 also show

Y3Y2Y1Y0 data.

To approach above circuit specification design, the design progress as follows

Step 1：Complete the state assignment of the circuit specification and illustrated by

state diagrams or state tables. Circuit specification of Four-bit SIPO shift

register is illustrated as state tables of Table 6.22a.

 Table 6.22a State table of SIPO shift register sequential circuit

Input X Present

0 1

Output

P3P2P1P0

0000 0000 1000 0000

0001 0000 1000 0001

0010 0001 1001 0010

0011 0001 1001 0011

0100 0010 1010 0100

0101 0010 1010 0101

0110 0011 1011 0110

0111 0011 1011 0111

1000 0100 0100 1000

1001 0100 1100 1001

1010 0101 1101 1010

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

1011 0101 1101 1011

1100 0110 1110 1100

1101 0110 1110 1101

1110 0111 1111 1110

1111 0111 1111 1111

Step 2：Find each Karnaugh map of Flip-flops inputs and output function by using

excitation table. We have found each Karnaugh map of D type Flip-flops

inputs and output function as Table 6.22b~Table 6.22i by using excitation

table of Table 6.14c. (The example uses Karnaugh map of 5 variables)

Table 6.22b Karanugh map of D0 , D0 = Y1

Input x = 0
Present State Input Y1Y0 D0

00 01 11 10

00 0 0 1 1

01 0 0 1 1

11 0 0 1 1

Y3Y2

Present State
Input 10 0 0 1 1

Input X = 1

Present State Input Y1Y0 D0

00 01 11 10

00 0 0 1 1

01 0 0 1 1

11 0 0 1 1

Y3Y2

Present State
Input 10 0 0 1 1

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.22c Karnaugh map of D1 , D1 = Y2

Input x = 0
Present State Input Y1Y0 D1

00 01 11 10

00 0 0 0 0

01 1 1 1 1

11 1 1 1 1

Y3Y2

Present State
Input 10 0 0 0 0

Input X = 1

Present State Input Y1Y0 D1

00 01 11 10

00 0 0 0 0

01 1 1 1 1

11 1 1 1 1

Y3Y2

Present State
Input 10 0 0 0 0

Table 6.22d Karnaugh map of D2 , D2 = Y3

Input x = 0
Present State Input Y1Y0 D2

00 01 11 10

00 0 0 0 0

01 0 0 0 0

11 1 1 1 1

Y3Y2

Present State
Input 10 1 1 1 1

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Input X = 1
Present State InputY1Y0 D2

00 01 11 10

00 0 0 0 0

01 0 0 0 0

11 1 1 1 1

Y3Y2

Present State
Input 10 1 1 1 1

Table 6.22e Karanaugh map of D3 , D3 = x

Input x = 0

Present State Input Y1Y0 D3

00 01 11 10

00 0 0 0 0

01 0 0 0 0

11 0 0 0 0

Y3Y2

Present State
Input 10 0 0 0 0

Input X =1

Present State Input Y1Y0 D3

00 01 11 10

00 1 1 1 1

01 1 1 1 1

11 1 1 1 1

Y3Y2

Present State
Input 10 1 1 1 1

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.22f Karmaugh map of P0 , P0 = Y0

Present State Input Y1Y0 P0

00 01 11 10

00 0 1 1 0

01 0 1 1 0

11 0 1 1 0

Y3Y2

Present State
Input 10 0 1 1 0

Table 6.22g Karnaugh map of P1 , P1 = Y1

Present State Input Y1Y0 P0

00 01 11 10

00 0 0 1 1

01 0 0 1 1

11 0 0 1 1

Y3Y2

Present State
Input 10 0 0 1 1

Table 6.22h Karmaugh map of P2 , P2 = Y2

Present State Input Y1Y0 P2

00 01 11 10

00 0 0 0 0

01 1 1 1 1

11 1 1 1 1

Y3Y2

Present State
Input 10 0 0 0 0

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.22i Karnaugh map of P3 , P3 = Y3

Present State Input Y1Y0 P3

00 01 11 10

00 0 0 0 0

01 0 0 0 0

11 1 1 1 1

Y3Y2

Present State
Input 10 1 1 1 1

Step 3：Find any minimum expression of input and output functions

 D0 = Y1 ； D1 = Y2

 D2 = Y3 ； D3 = X

 P0 = Y0 ； P1 = Y1

 P2 = Y2 ； P3 = Y3

Step 4：Complete the circuit entry, Figure 6.30, by using graphic editor in

MAX+PLUS II

Step 5: Complete the circuit functional simulation by using MAX+PLUS II, Figure

6.3 illustrates the result of functional simulation, and check weather the

functions meet the specification. Go on the next step if meet the

specification; otherwise go back to step 1 to check the cause of error

sequentially.

Step 6：If the circuit allow to test by downloading (programming), select download

(programming) chip and then floorplan.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

As circuit modified that showed in Figure 5.3 of Section 5.1, please modify Figure

6.30. Please re-compile it after modifying, and adapt the ploorplan techniques in

Section 4.6, select chip EPF10K10-TC144-4 and use Table 6.23 pin assignment

reference. After assemble logic circuit design Lab platform LP-2900, download

SISO shift register to chip EPF10K10TC144-4. Please regulate X input and try to

push PS1 on left-bottom of LP-2900, and please note the changes of L1 (P3), L2

(P2), L3 (P1) and L4 (Po).

Figure 6.30 Complete the circuit entry of Table 6.22a by using MAX+PLUS II

(document：S4SIPO.GDF)

Figure 6.31 The functional simulation result of Table6.22a by using MAX +
PLUS II simulator (document：S4SIPO.SCF)

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.23 Pin assignment of EPF10K10TC144-4

Name of Signal Pin of
EPF10K10TC144-4

Name of Signal Pin of
EPF10K10TC144-4

CLKIN Pin 54 (PS1) P2 Pin 48

X Pin 47 P3 Pin 47

P0 Pin 50

P1 Pin 49 LED_COM Pin 141

Exercise 9：Please design sequential circuit of Four-bit binary SIPO shift register

by JK Flip-flops.

Exercise 10：Please design sequential circuit of Four-bit binary SIPO shift register

by T type Flip-flops.

6.3.3 PISO Shift Register

There a circuit, which has four registers with input D3D2D1D0 and output Y3Y2Y1Y0,

has parallel input dcba and serial output So and input L is load signal. Original data

Y1 showed in Y0, original data Y2 showed in Y1, original data Y3 showed in Y2 and

data “0” showed in Y3 when L=0 and clock positive edge enters. Besides, So also

shows Y0 data.

To achieve above circuit specification design, the design progress as follows

Step 1：Complete the state assignment of the circuit specification and illustrated by

state diagrams or state tables. Circuit specification of four-bit PISO shift

register be illustrated as state tables of Table 6.24a

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Step 2：Find each Karnaugh map of Flip-flops inputs and output function by using

excitation table. We have found Karnaugh map of D type Flip-flops inputs

and output function as Table 6.24b~Table 6.24f by using excitation table of

Table 6.14c. (The example uses Karnaugh map of 6 variables).

Table 6.24a State tables of PISO shift register sequential circuit

Input Present State

0 1

Output

So
0000 0000 dcba 0

0001 0000 dcba 1

0010 0001 dcba 0

0011 0001 dcba 1

0100 0010 dcba 0

0101 0010 dcba 1

0110 0011 dcba 0

0111 0011 dcba 1

1000 0100 dcba 0

1001 0100 dcba 1

1010 0101 dcba 0

1011 0101 dcba 1

1100 0110 dcba 0

1101 0110 dcba 1

1110 0111 dcba 0

1111 0111 dcba 1

Note ：dcba is parallel input data

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.24b Karnaugh map of D0 , D0 = La + L’Y1

Input L = 0, a

Present State Input Y1Y0 D0

00 01 11 10

00 0 0 1 1

01 0 0 1 1

11 0 0 1 1

Y3Y1

Present State
Input 10 0 0 1 1

Input L = 1, a

Present State Input Y1Y0 D0

00 01 11 10

00 A a a a

01 A a a a

11 A a a a

Y3Y2

Present State
Input 10 A a a a

Table 6.24c Karnaugh map of D1 , D1 = Lb + L’Y2

Input L = 0, b

Present State Input Y1Y0 D1

00 01 11 10

00 0 0 0 0

01 1 1 1 1

11 1 1 1 1

Y3Y2

Present State
Input 10 0 0 0 0

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Input L = 1, b

Present State Input Y1Y0 D1

00 01 11 10

00 B b b b

01 B b b b

11 B b b b

Y3Y2

Present State
Input 10 B b b b

Table 6.24d Karnaugh map of D2 , D2 = Lc + L’Y3

Input L = 0, c

Present State Input Y1Y0 D2

00 01 11 10

00 0 0 0 0

01 0 0 0 0

11 1 1 1 1

Y3Y2

Present State
Input 10 1 1 1 1

Input L = 1,0 c

Present State Input Y1Y0 D2

00 01 11 10

00 C c c c

01 C c c c

11 C c c c

Y3Y2

Present State
Input 10 C c c c

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Input L = 0, d

Present State Input Y1Y0 D3

00 01 11 10

00 0 0 0 0

01 0 0 0 0

11 0 0 0 0

Y3Y2

Present State
Input 10 0 0 0 0

Table 6.24e Karnaugh map of D3 , D3 = Ld

Input L = 1, d

Present State Input Y1Y0 D3

00 01 11 10

00 d d d d

01 d d d d

11 d d d d

Y3Y2

Present State
Input 10 d d d d

Table 6.24f Karnaugh map of So , So = Y0

Present State InputY1Y0 So

00 01 11 10

00 0 1 1 0

01 0 1 1 0

11 0 1 1 0

Y3Y2

Present State
Input 10 0 1 1 0

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Step 3：Find any minimum expression of input and output functions

 D0 = La + L’Y1 ； D1 = Lb + L’Y2

 D2 = Lc + L’Y3 ； D3 = Ld。

 So = Y0。

Step 4： Complete circuit entry, Figure 6.32, by using graphic editor in

MAX+PLUS II

Step 5: Complete the circuit functional simulation by using MAX+PLUS II, Figure

6.33 illustrates the result of functional simulation, and check weather the

functions meet the specification. Go on the next step if meet the

specification; otherwise go back to step 1 to check the cause of error

sequentially.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Figure 6.32 Complete the circuit entry of Table 6.24a by using MAX+PLUS II
(document：S4PISO.GDF)

Figure 6.33 The functional simulation results of Table 6.24a by using MAX +
PLUS II simulator(document：S4PISO.SCF)

Step 6：If the circuit allow to test by downloading (programming), select download

(programming) chip and then floorplan.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

As circuit modified that showed in Figure 5.3 of Section 5.1, please modify Figure

6.32. Please re-compile it after modifying, and adapt the ploorplan techniques in

Section 4.6, select chip EPF10K10TC144-4 and use Table 6.25 pin assignment

reference. After assemble logic circuit design Lab platform LP-2900, download

four-bit PISO shift register to chip EPF-10K10TC144-4. Please regulate input of a

(SW3), b (SW2), c (SW1) and d (SW0). Let Ld/sft (SW8) on “1” and try to push

PS1 on left-bottom of LP-2900, then let Ld/sft (SW8) off “0” and try to push PS1

on left-bottom of LP-2900. Please note the changes of L1 (So), which if shows

input of a (SW3), b (SW2), c (SW1) and d (SW0).

Table 6.25 Pin assignment of EPF10K10TC144-4

Name of Signal EPF10K10TC144-4
chip pin

Name of Signal EPF10K10TC144-4
chip pin

D Pin 47 CLKIN Pin 54 (PS1)

C Pin 48 Ld/sft Pin 63

B Pin 49 So Pin 7

A Pin 51 LED_COM Pin 141

Exercise 11：Please design sequential circuit of Four-bit binary PISO shift register

by JK Flip-flops.

Exercise 12：Please design sequential circuit of Four-bit binary PISO shift register

by T type Flip-flops.

6.3.4 PIPO Shift Register

There a circuit, which has four registers with input D3D2D1D0 and output Y3Y2Y1Y0,

has parallel input dcba and parallel output P3P2P1P0 and input L is load signal. The

input dcba show in Y3Y2Y1Y0 when L=1 and clock positive edge enters. Original

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

data Y1 showed in Y0, original data Y2 showed in Y1, original data Y3 showed in Y2

and data “0” showed in Y3 when L=0 and clock positive edge enters. Besides,

P3P2P1P0 also shows Y3Y2Y1Y0 data.

To approach above circuit specification design, the design progress as follows

Table 6.26a State tables of PIPO shift register sequential circuit

Input L Present State

0 1

Output

P3P2P1P0

0000 0000 dcba 0000

0001 0000 dcba 0001

0010 0001 dcba 0010

0011 0001 dcba 0011

0100 0010 dcba 0100

0101 0010 dcba 0101

0110 0011 dcba 0110

0111 0011 dcba 0111

1000 0100 dcba 1000

1001 0100 dcba 1001

1010 0101 dcba 1010
1011 0101 dcba 1011
1100 0110 dcba 1100
1101 0110 dcba 1101
1110 0111 dcba 1110
1111 0111 dcba 1111

Note ：dcba is parallel input data

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Step 1：Complete the state assignment of the circuit specification and illustrates by

state diagrams or state tables. Circuit specification of four-bit PIPO shift

register is illustrated as state tables of Table 6.26a.

Step 2：Find each Karnaugh map of Flip-flops inputs and output function by using

excitation table. We have found Karnaugh map of D type Flip-flops inputs

function as Table 6.27b~Table 6.27i by using excitation table of Table 6.14c.

Table 6.27b Karnaugh map of D0 , D0 = La + L’Y1

Input L = 0, a
Present State Input Y1Y0 D0

00 01 11 10

00 0 0 1 1

01 0 0 1 1

11 0 0 1 1

Y3Y2

Present State
Input 10 0 0 1 1

Input L = 1, a

Present State Input Y1Y0 D0
00 01 11 10

00 A a a a

01 A a a a

11 A a a a

Y3Y2

Present State
Input 10 A a a a

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.27c Karnaugh map of D1 , D1 = Lb + L’Y2

Input L = 0, b

Present State Input Y1Y0 D1

00 01 11 10

00 0 0 0 0

01 1 1 1 1

11 1 1 1 1

Y3Y2

Present State
Input 10 0 0 0 0

Input L = 1, b

Present State Input Y1Y0 D1

00 01 11 10

00 B b b b

01 B b b b

11 B b b b

Y3Y2

Present State
Input 10 B b b b

Table 6.27d Karnaugh map of D2 , D2 = Lc + L’Y3

Input L = 0, c
Present State Input Y1Y0 D2

00 01 11 10

00 0 0 0 0

01 0 0 0 0

11 1 1 1 1

Y3Y2

Present State
Input 10 1 1 1 1

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Input L = 1, c

Present State InputY1Y0 D2

00 01 11 10

00 C c c c

01 C c c c

11 C c c c

Y3Y2

Present State
Input 10 C c c c

Table 6.27e Karnaugh map of D3 , D3 = Ld

Input L = 0, d

Present State Input Y1Y0 D3

00 01 11 10

00 0 0 0 0

01 0 0 0 0

11 0 0 0 0

Y3Y2

Present State
Input 10 0 0 0 0

Input L = 1, d

Present State Input Y1Y0 D3

00 01 11 10

00 D d d d

01 D d d d

11 D d d d

Y3Y2

Present State
Input 10 D d d d

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.27f Karnaugh map of P0 , P0 = Y0

Present State Input Y1Y0 P0

00 01 11 10

00 0 1 1 0

01 0 1 1 0

11 0 1 1 0

Y3Y2

Present State
Input 10 0 1 1 0

Table 6.27g Karnaugh map of P1 , P1 = Y1

Present State InputY1Y0 P1

00 01 11 10

00 0 0 1 1

01 0 0 1 1

11 0 0 1 1

Y3Y2

Present State
Input 10 0 0 1 1

Table 6.27h Karnaugh map of P2 , P2 = Y2

Present State Input Y1Y0 P1

00 01 11 10

00 0 0 0 0

01 1 1 1 1

11 1 1 1 1

Y3Y2

Present State
Input 10 0 0 0 0

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.27i Karnaugh map of P3, P3 = Y3

Present State Input Y1Y0 P1

00 01 11 10

00 0 0 0 0

01 0 0 0 0

11 1 1 1 1

Y3Y2

Present State
Input 10 1 1 1 1

Step 3：Find any minimum expression of input and output functions

 D0 = La + L’Y1 ； D1 = Lb + L’Y2

 D2 = Lc + L’Y3 ； D3 = Ld

 P0 = Y0 ； P1 = Y1

 P2 = Y2 ； P3 = Y3

Step 4： Complete circuit entry, Figure 6.34, by using graphic editor in

MAX+PLUS II.

Step 5: Complete the circuit functional simulation by using MAX+PLUS II, Figure

6.35 illustrates the result of functional simulation, and check weather the

functions meet the specification. Go on the next step if meet the

specification; otherwise go back to step 1 to check the cause of error

sequentially.

Step 6：If the circuit allow to test by downloading (programming), select download

(programming) chip and then floorplan.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

As circuit modified that showed in Figure 5.3 of Section 5.1, please modify Figure

6.34. Please re-compile it after modifying, and adapt the ploorplan techniques in

section 4.6, select chip EPF10K10TC144-4 and use Table 6.28 pin assignment

reference. After assemble logic circuit design Lab platform LP-2900, download

four-bit PIPO shift register to chip EPF10K10TC144-4. Please regulate input of a

(SW3), b (SW2), c (SW1) and d (SW0). Let Ld/sft (sw8) on “1” and try to push PS1

on left-bottom of LP-2900. Please note the changes of L1 (P3), L2 (P2), L3 (P1)

and L4 (P0). And then let Ld/sft (sw8) off “1” and try to push PS1. Please note the

changes of L1, L2, L3 and L4.

Figure 6.34 Complete the circuit entry of Table 6.24a by using MAX + PLUS II
(document：S4PIPO.GDF)

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Figure 6.35 The functional simulation results of Table 6.27a by using MAX +
PLUS II simulator (document：S4PIPO.SCF)

Table 6.28 Pin assignment EPF10K10TC144-4

Name of Signal EPF10K10TC144-4
chip pin

Name of Signal EPF10K10TC144-4
chip pin

CLKIN Pin 54 PS1) P0 Pin 10

Ld/sft Pin 63 P1 Pin 9

D Pin 47 P2 Pin 8

C Pin 48 P3 Pin 7

B Pin 49

A Pin 51 LED_COM Pin 141

Exercise 13：Please design sequential circuit of Four-bit binary PIPO shift register

by JK Flip-flops.

Exercise 14：Please design sequential circuit of Four-bit binary PIPO shift register

by T type Flip-flops.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

6.4 The Design, Simulation and Test of
Synchronous Shift Count Register

In this section, we will use T type Flip-flops to design four-bit ring counter and

four-bit Johnson counter.

6.4.1 Ring Counter

There is a counter, which the state of after clear is 1000 (8); arithmetic value of

counter becomes 0100 (4) when clock positive edge enters. If arithmetic clock

keeps flowing in , the counter will sequentially turn to 0010 (2) → 0001 (1) →

1000 (8) →0100 (4) →0010 (2) →0001 (1) →1000 (8) →……and keeps cycling

like this.

From above circuit specification, we know it is a Four-bit Ring counter with

asychronous clear function, because its “1” bit cyclic progress likes as ripple, the

progress of the design is as follows

Step 1：Complete the state assignment of the circuit specification and illustrated by

state diagrams or state tables. Circuit specification of Four-bit ring counter

is illustrated as state tables of Table 6.29a.

Table 6.29a Sequential circuit of state tables of Ring counter

Input clrn Present State

0 1

Outpot

D3D2D1D0

1000 1000 0100 1000

0100 1000 0010 0100

0010 1000 0001 0010

0001 1000 1000 0001

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Step 2：Find each Karnaugh map of Flip-flops inputs and output function by using

excitation table. We have found each Karnaugh map of T type Flip-flops

inputs function as Table 6.29b~Table 6.29e by using excitation table of

Table 6.14c.

Table 6.29b Karnaugh map of T0 , T0 = Y3’Y2’Y1’Y0 + Y3’Y2’Y1Y0’clrn

Input clrn = 1

Present State Input Y1Y0 T0

00 01 11 10

00 1 1

01 0

11

Y3Y2

Present State
Input 10 0

Input clrn = 0

Present State Input Y1Y0 T0

00 01 11 10

00 1 0

01 0

11

Y3Y2

Present State
Input 10 0

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.29c Karnaugh map of T1 , T1 = Y3’Y2Y1’Y0’clrn + Y3’Y2’Y1Y0’

Input clrn = 1

Present State Input Y1Y0 T1

00 01 11 10

00 0 1

01 1

11

Y3Y2

Present State
Input 10 0

Input clrn = 0

Present State Input Y1Y0 T0

00 01 11 10

00 0 1

01 0

11

Y3Y2

Present State
Input 10 0

Table 6.29d Karnaugh map of T2 , T2 = Y3’Y2Y1’Y0’ + Y3Y2’Y1’Y0’ clrn

Input clrn = 1

Present State Input Y1Y0 T2

00 01 11 10

00 0 0

01 1

11

Y3Y2

Present State
Input 10 1

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Input clrn = 0

Present State Input Y1Y0 T0

00 01 11 10

00 0 0

01 1

11

Y3Y2

Present State
Input 10 0

Table 6.29e Karnaugh map of T3 , T3 = Y3’Y2’Y1’Y0 clrn + Y3Y2’Y1’Y0’ clrn

Input clrn = 1

Present State Input Y1Y0 T3

00 01 11 10

00 1 0

01 0

11

Y3Y2

Present State
Input 10 1

Input clrn = 0

Present State Input Y1Y0 T0

00 01 11 10

00 0 0

01 0

11

Y3Y2

Present State
Input 10 0

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Step 3：Find any minimum expression of input and output functions

 T0 = Y3’Y2’Y1’Y0 + Y3’Y2’Y1Y0’ clrn

 T1 = Y3’Y2Y1’Y0’ clrn + Y3’Y2’Y1Y0’

 T2 = Y3’Y2Y1’Y0’ + Y3Y2’Y1’Y0’ clrn

 T3 = Y3’Y2’Y1’Y0 clrn + Y3Y2’Y1’Y0’ clrn

 Q0 = Y0 ； Q1 = Y1

 Q2 = Y2 ； Q3 = Y3

Step 4：Complete the circuit entry, Figure 6.36, by using graphic editor in

MAX+PLUS II.

Figure 6.36 Complete the circuit entry of Table 6.29a by using MAX+PLUS II
(document：Ring4.GDF)

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Step 5: Complete the circuit functional simulation by using MAX+PLUS II, Figure

6.37 illustrates the result of functional simulation, and check weather the

functions meet the specification. Go on the next step if meet the

specification; otherwise go back to step 1 to check the cause of error

sequentially.

Figure 6.37 The functional simulation results of Table 6.29a by using MAX+PLUS
II simulator (document：Ring4.SCF)

Step 6：If the circuit allow to test by downloading (programming), select download

(programming) chip and then floorplan.

As circuit modified that showed in Figure 5.3 of Section 5.1, please modify Figure

6.36. Please re-compile it after modifying, and adapt the ploorplan techniques in

section 4.6, select chip EPF10K10TC144-4 and use Table 6.30 pin assignment

reference. After assemble logic circuit design Lab platform LP-2900, download

four-bit ring counter to chip EPF10K10TC144-4. Please try to push SW1 (CLRN)

then push PS1 on left-buttom of LP-2900. Please note the changes of L1 (Q3), L2

(Q2), L3 (Q1) and L4 (Q0), and see if cyclic like as 1000 (8) →0100 (4) → 0010

(2) → 0001 (1) →1000 (8) → 0100 (4) → 0010 (2) → 0001 (1) → 1000 (8)

→….

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.30 Pin assignment of EPF10K10TC144-4

Name of Signal Pin of
EPF10K10TC144-4

Name of Signal Pin of
EPF10K10TC144-4

CLKIN Pin 54(PS1) Q2 Pin 8

CLRN Pin 47 Q3 Pin 7

Q0 Pin 10

Q1 Pin 9 LED_COM Pin 141

Exercise 15：Please design sequential circuit of Four-bit bins by using JK Flip-

flops.

Exercise 16：Please design sequential circuit of Four-bit binary PIPO ring counter

by using D type Flip-flops.

6.4.2 Johnson Counter

There is a counter, which the state of after clear is 0000 (0), arithmetic value of

counter becomes 0000 (1) when clock positive edge enters. If arithmetic clock

keeps flowing in , the counter will sequentially turn to 0011 (3) → 0111 (7) →

1111 (F) → 1110 (E) → 1100 (C) → 1000 (8) → 0000 (0) → 0001 (1)

→……and keeps cycling like this

From above circuit specification, we know it is a four-bit johnson counter with

asychronous clear. The progress of the design is as follows

Step 1：Complete the state assignment of the circuit specification and illustrated by

state diagrams or state tables. Circuit specification of Four-bit Johnson

counter is illustrated as state tables of Table 6.31a.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.31a Sequential circuit of state tables of Johnson counter

Input clrn Present State

0 1

Output
D3D2D1D0

0000 0000 0001 0000

0001 0000 0011 0001

0011 0000 0111 0011

0111 0000 1111 0111

1111 0000 1110 1111

1110 0000 1100 1110

1100 0000 1000 1100

1000 0000 0000 1000

Step 2：Find each Karnaugh map of Flip-flops inputs and output function by using

excitation table. We have found each Karnaugh map of T type Flip-flops

inputs function as Table 6.31b~Table 6.31e by using excitation table of

Table 6.14c.

Table 6.31b Karnaugh map of T0 , T0 = Y3’Y2’Y1’Y0’ + Y3Y2Y1Y0

Input clrn = 1

Present State Input Y1Y0 T0

00 01 11 10

00 1 0 0

01 0

11 0 1 0

Y3Y2

Present State
Input 10 0

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table 6.31c Karnaugh map of T1 , T1 = Y3’Y2’Y1’Y0 + Y3Y2Y1Y0’

Input clrn = 1

Present State InputY1Y0 T1

00 01 11 10

00 0 1 0

01 0

11 0 0 1

Y3Y2

Present State
Input 10 0

Table 6.31d Karnaugh map of T2 , T2 = Y3’Y2’Y1Y0 + Y3Y2Y1’Y0’

Input clrn = 1

Present State InputY1Y0 T2

00 01 11 10

00 0 0 1

01 0

11 1 0 0

Y3Y2

Present State
Input 10 0

Table 6.31e Karnaugh map of T3 , T3 = Y3’Y2Y1Y0 + Y3Y2’Y1’Y0’

Input clrn = 1

Present State Input Y1Y0 T3

00 01 11 10

00 0 0 0

01 1

11 0 0 0

Y3Y2

Present State
Input 10 1

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Step 3：Find any minimum expression of input and output functions

 T0 = Y3’Y2’Y1’Y0’+ Y3Y2Y1Y0

 T1 = Y3’Y2’Y1’Y0+ Y3Y2Y1Y0’

 T2 = Y3’Y2’Y1Y0+ Y3Y2Y1’Y0’

 T3 = Y3’Y2Y1Y0+ Y3Y2’Y1’Y0’

 Q0 = Y0 ； Q1 = Y1

 Q2 = Y2 ； Q3 = Y3

Step 4：Complete the circuit entry, Figure 6.38, by using graphic editor in

MAX+PLUS II

Step 5: Complete the circuit functional simulation by using MAX+PLUS II, Figure

6.39 illustrates the result of functional simulation, and check weather the

functions meet the specification. Go on the next step if meet the

specification; otherwise go back to step 1 to check the cause of error

sequentially.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Figure 6.38 Complete the circuit entry of Table 6.31a by using MAX+PLUS II
(document：JSCNTR4.GDF)

Figure 6.39 The functional simulation results of Table 6.31a by using
MAX+PLUS II simulator (document: JSCNTR4.SCF)

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Step 6：If the circuit allow to test by downloading (programming), select download

(programming) chip and then floorplan.

As circuit modified that showed in Figure 5.3 of Section 5.1, please modify Figure

6.38. Please re-compile it after modifying, and adapt the ploorplan techniques in

Section 4.6, select chip EPF10K10TC144-4 and use Table 6.32 pin assignment

reference. After assemble logic circuit design Lab platform LP-2900, download

four-bit Johnson counter to chip EPF10K10TC144-4. Please try to push SW1

(CLRN) then push PS1 on left-bottom of LP-2900. Please note the changes of L1

(Q3), L2 (Q2), L3 (Q1) and L4 (Q0), and see if cyclic like as follows, 0000 (0) →

0001 (1) → 0011 (3) → 0111 (7) →1111 (F) → 1110 (E) → 1100 (C) →

1000 (8) → 0000 (0) → 0001 (1) "….

Table 6.32 Pin assignment of EPF10K10TC144-4
Name of Signal Pin of

EPF10K10TC144-4
Name of Signal Pin of

EPF10K10TC144-4

CLKIN Pin 54 (PS1) Q2 Pin 8

CLRN Pin 47 Q3 Pin 7

Q0 Pin 10

Q1 Pin 9 LED_COM Pin 141

Exercise 17 ：Please design sequential circuit of Four-bit Johnson counter by using

JK Flip-flops.

Exercise 18：Please design sequential circuit of Four-bit Johnson counter by using

D type Flip-flops.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

6.5 The Design, Simulation and Test of
Asynchronous Counter

The asynchronous sequential circuit, sequential circuit of clock of Flip-flops doesn’t

connect together. So Flip-flops doesn’t change state in same time. Frequently,

primary stage output (positive edge or negative edge) becomes next stage clock

input. Therefore, asynchronous sequential circuit doesn’t have systematic procedure

of design. It leads to asynchronous sequential circuit unusual applied, we will

introduce common asynchronous count circuit as follows

6.5.1 Asynchronous Four-bit Binary Counter

Apply JK Flip-flops changing state function, when J=K=1 clock enters, illustrated

in Table 6.14c. The proceed of asynchronous counter design is as follow

Step 1: design circuit and complete circuit entry by using graphic editor of

MAX+PLUS II. We can design Four-bit binary counter as Figure 6.40. The

first JK Flip-flops be clocked by clkin negative edge, the second JK Flip-

flops be clocked by QA, inverse of first JK Flip-flops output, the third JK

Flip-flops be clocked by QB, inverse of second JK Flip-flops output, the

fourth JK Flip-flops be clocked by QC, inverse of third JK Flip-flops output.

So, QA wants to complete a cyclic, it needs two CLKIN negative edges

(two CLKIN clocks), QB wants to complete a cyclic, it needs two QA

negative edges (two QA clocks), QC wants to complete a clock, it needs two

QB negative edges (two QB clocks), QD wants to complete a clock, it needs

two QC negative edges (two QC clocks), in other words, if QD wants to

complete a clock it needs 2 × 2 × 2 × 2 CLKIN negative edge (also 16

CLKIN clocks). It is four-bit binary up counter.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Figure 6.40 Four-bit binary up counter (documents：A4UCNTR.GDF)。

Step 2： Complete the Figure 6.39 circuit functional simulation by using

MAX+PLUS II and check weather the functions meet the specification. Go

on the next step if meet the specification; otherwise go back to step 1 to

check the cause of error sequentially. Figure 6.41 is simulation result of

four-bit binary up counter. Propagation delay of asynchronous clock is

illustrated as Figure 6.42. Figure 6.43 is four-bit binary down counter.

Figure 6.44 is simulation result of four-bit binary down counter. Please

compare Figure 6.40 with Figure, you can see that the inverse of JK Flip-

flops outputs be considered as down counter.

Figure 6.41 The simulation result of four-bit binary up counter

(document：A4UCNTR.SCF)

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Figure 6.42 The magnified diagrams of cyclic of Figure 6.41

 Figure 6.43 Four-bit binary down counter(document：A4DCNTR.GDF)

Figure 6.44 simulation result of four-bit binary down counter (document：
A4DCNTR.SCF)

Step 3：If the circuit allow to test by downloading (programming), select download

(programming) chip and then floorplan.

As circuit modified that showed in Figure 5.3 of Section 5.1, please modify Figure

6.40. Please re-compile it after modifying, and adapt the ploorplan techniques in

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Section 4.6, select chip EPF10K10TC144-4 and use Table 6.33 pin assignment

reference. After assemble logic circuit design Lab platform LP-2900, download

four-bit binary up (down) counter to chip EPF10K10TC144-4. Please try to push

SW1 (CLRN) then push PS1 on left-bottom of LP-2900. Please note the changes of

L1 (Q3), L2 (Q2), L3 (Q1) and L4 (Q0), and to see if 0000 (0) → 0001 (1) →

0010 (2) → 0011 (3) →0100 (4) → 0101 (5) →0110 (6) → 0111 (7) →1000

(8) →… keeps cycling by binary count.

Table6.33 Pin assignment of EPF10K10TC144-4

Name of
Signal

Pin of
EPF10K10TC144-4

Name of
Signal

Pin of
EPF10K10TC144-4

CLKIN Pin 54 (PS1) Q0 Pin 10

LED_COM Pin 141 Q1 Pin 9

 Q2 Pin 8

 Q3 Pin 7

6.5.2 Asynchronous BCD Counter

The design procedures of asynchronous BCD counter are as follows.

Step 1: design circuit and complete circuit entry by using graphic editor of

MAX+PLUS II. We can design BCD counter as Figure 6.45. The first JK

Flip-flops is clocked by clkin negative edge, the second JK Flip-flops be

clocked by QA, inverse of first JK Flip-flops, the third JK Flip-flops be

clocked by QB, inverse of second JK Flip-flops, the fourth JK Flip-flops be

clocked by QC, inverse of third JK Flip-flops. So, QA wants to complete a

clock, it needs two CLKIN negative edges (two CLKIN clocks), QB wants

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

to complete a clock, it needs two QA negative edges (two QA clocks), QC

wants to complete a clock, it needs two QB negative edges (two QB clocks),

QD wants to complete a clock, it needs two QC negative edges (two QC

clocks), in other words, if QD wants to complete a clock it needs 2 × 2 ×

2 × 2 CLKIN negative edge (also 16 CLKIN clocks). But, the count comes

to (QD, QC, QB, QA) = (1, 0, 1, 0), it will show one asynchronous clear and

all come back to “0000”. The “1010” only shows briefly. It is BCD counter.

Step 2：Complete the Figure 6.46 circuit entry and Figure 6.47 circuit functional

simulation by using MAX+PLUS II and check weather the functions meet

the specification. Go on the next step if meet the specification; otherwise go

back to step 1 to check the cause of error sequentially.

Figure 6.45 BCD counter(document：ABCDCNTR.GDF)

Figure 6.46 Simulation result of BCD counter(document：ABCDCNTR.SCF)

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Figure 6.47 The magnified diagrams of cyclic of Figure 6.46 (document：
ABCDCNTR.SCF) (“1010” shows briefly)

Step 3：If the circuit allow to test by downloading (programming), select download

(programming) chip and then floorplan.

As circuit modified that showed in Figure 5.3 of Section 5.1, please modify Figure

6.45. Please re-compile it after modifying, and adapt the ploorplan techniques in

Section 4.6, select chip EPF10K10TC144-4 and use Table 6.34 pin assignment

reference. After assemble logic circuit design Lab platform LP-2900, download

SCD counter to chip EPF10K10TC144-4. Please try to push SW1 (CLRN) then

push PS1 on left-bottom of LP-2900. Please note the changes of L1 (Q3), L2 (Q2),

L3 (Q1) and L4 (Q0), and see if 0000 (0) →0001 (1) → 0010 (2) → 0011 (3) →

0100 (4) → 0101 (5) → 0110 (6) → 0111 (7) → 1000 (8) → 1001 (9) →

0000 (0) →… keeps cycling by BCD counter.

Table6.34 Pin assignment of EPF10K10TC144-4

Name of Signal Pin of
EPF10K10TC144-4

Name of Signal Pin of
EPF10K10TC144-4

CLKIN Pin 54 (PS1) Q1 Pin 9

LED_COM Pin 141 Q2 Pin 8

Q0 Pin 10 Q3 Pin 7

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

6.5.3 Asynchronous Mod 14 Counter

The design procedures of asynchronous mod 14 counter are as follows

Step 1: design circuit and complete circuit entry by using graphic editor of

MAX+PLUS II. We can design asynchronous mod 14 counter as Figure

6.48. The first JK Flip-flops is clocked by clkin negative edge, the second

JK Flip-flops be clocked by QA, inverse of first JK Flip-flops, the third JK

Flip-flops be clocked by QB, inverse of second JK Flip-flops, the fourth JK

Flip-flops be clocked by QC, inverse of third JK Flip-flops. So, QA wants to

complete a cyclic, it needs two CLKIN negative edges (two CLKIN clocks),

QB wants to complete a clock, it needs two QA negative edges (two QA

clocks), QC wants to complete a clock, it needs two QB negative edges (two

QB clocks), QD wants to complete a clock, it needs two QC negative edges

(two QC clocks), in other words, if QD wants to complete a clock it needs 2

× 2 × 2 × 2 CLKIN negative edge (also 16 CLKIN clocks). But, the count

comes to (QD, QC, QB, QA) = (1, 1, 1, 0), it will show one asynchronous

clear and all come back to “0000”. The “1110” only shows briefly. It is

asynchronous mod 14 counter.

Step 2：Complete the Figure 6.46 design entry and Figure 6.49 circuit functional

simulation by using MAX+PLUS II and check weather the functions meet

the specification. Go on the next step if meet the specification; otherwise go

back to step 1 to check the cause of error sequentially.

Step 3：If the circuit allow to test by downloading (programming), select

download (programming) chip and then floorplan.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Figure 6.48 Asynchronous mod14 counter (document：Amod14.GDF)

Figure 6.49 Simulation result of asynchronous mod14 counter (document：
Amod14.SCF)

As circuit modified that showed in Figure 5.3 of Section 5.1, please modify Figure

6.48. Please re-compile it after modifying, and adapt the ploorplan techniques in

Section 4.6, select chip EPF10K10TC144-4 and use Table 6.35 pin assignment

reference. After assemble logic circuit design Lab platform LP-2900, download

asynchronous mod 14 counter to chip EPF10K10TC144-4. Please try to push SW1

(CLRN) then push PS1 on left-bottom of LP-2900. Please note the changes of L1

(Q3), L2 (Q2), L3 (Q1) and L4 (Q0), and see if 0000 (0) → 0001 (1) → 0010 (2)

→ 0011 (3) → 0100 (4) → 0101 (5) → 0110 (6) → 0111 (7) → 1000 (8)

→…→ 1011 (13) → 0000 (0) →→… keeps cycling by MOD/4 count.

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

Table6.35 Pin assignment of EPF10K10TC144-4

Name of Signal Pin of
EPF10K10TC144-4

Name of Signal Pin of
EPF10K10TC144-4

CLKIN Pin 54 (PS1) Q0 Pin 10

LED_COM Pin 141 Q1 Pin 9

 Q2 Pin 8

 Q3 Pin 7

6.6 Evaluation

 Please do the following evaluation according to the questions listed below,

#$Do you know what does sequential logic circuit define?

#$Do you know those are memory cell of sequential logic circuit?

#$Do you know process of design, simulation and test of sequential logic circuit?

#$Do you know what is Mealy state machine? What is Moore state machine?

#$The sequential logic circuit is almost synchronous. Why?

#$Can you design, simulate and test synchronous mod 13 counter?

#$Can you design, simulate and test five-bit Johnson counter?

 CPLD Logic Circuit Design and Practice Sequential Logic Circuit

CHAPTER 7

SIMPLE

DESIGN

EXAMPLES

LEAP

In this chapter, some frequent-applied design examples will be illustrated allowing

the readers to familiarize with MAX+PLUS II devices and tactfully apply the

designing theories stated in Chapter 5 and Chapter 6. The examples of circuit’s

layout drawn in this chapter include Frequency Generator, Simple Electronic Dice,

Counter, Simple Traffic Light Controller, Dot Matrix Display, Keyboard Scan and

Display, and LCD Interface.

7.1 Frequency Generator

Various clock frequencies, from Hz, KHz to MHz, are required in the field of digital

logic. The generation of diverse frequencies depends on the frequency divider of the

main frequency, such as the generation of quartz oscillator. The design of divider,

therefore, is quite important. In this section, the divider is designed individually as

the following basic divider formats: ÷2, ÷5, ÷10 and ÷50. The readers, referring to

this section, are invited to design other dividers by your own creation.

7.1.1 ÷÷÷÷2 Divider Design

Step 1：Form a Truth table (Table 7.1a)

Table 7.1a State table of ÷2 divider’s sequential circuit

Present State Next State Output

0 1 0

1 0 1

Step 2：From the above Truth table (Table 7.1a) leads to the following Karnaugh

Map and equation (Table 7.1b).

 CPLD Logic Design and Practices Simple Designing Examples

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.1b Karnaugh Map of T, T = Vcc

T

0 1 Present State Input

Y 1 1

Step 3：Figure out the minimized equation of each input and output function.

T = VCC

Step 4：Please use the Graphic editor of MAX+PLUS II to complete editing the

circuit entry of the above equation (Figure 7.1a).

Step 5：Complete functional simulation by using Simulator in MAX+PLUS II and

test weather the functions meet the circuit specifications (Table 7.1b). Go

on to the next step if the functions meet the specifications; otherwise go

back to step 1 to check the cause of error sequentially.

Step 6：Should circuits allow download testing, download (or programming) to test

the circuit after selecting the download (or programming) device and the

floorplan program;

〜Skip this download test〜

Stop 7: Please refer to File > Create Default Symbol to generate the internal

circuit symbol of ÷2 divider for the upper layer circuit.

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.1a ÷2 divider circuit entry by using graphic editor in MAX+PLUS II

(File：div2.gdf)

 Figure 7.1b Simulation result of div2.gdf (File：div2.scf)

Figure 7.1c The symbol of ÷2 divider circuit

7.1.2 ÷÷÷÷5 Divider Design

Step 1：Form a Truth table. There are five states, 0, 1, 2, 3 and 4, requiring 3-bit,

T2T1T0 to signify the state value (Table 7.2a).

Step 2: From the above Truth table (Table 7.2a) leads to the following Karnaugh

Map and equations (Table 7.2b〜7.2e).

Table 7.2a State table of ÷5 divider’s sequential circuit

Current State Next State Output

000 001 0

001 010 0

010 011 1

011 100 1

100 000 1

Table 7.2b Karnaugh Map of T0, T0 = Y2’ + Y1’Y0’

Present State Inputs Y1Y0 T0
00 01 11 10

0 1 1 1 1 Present State

Inputs Y2 1 1

Note： “／” represents the state would never occur, so as in the following talbes.

Table 7.2c Karnaugh Map of T1, T1 = Y2’Y0

Present State Inputs Y1Y0 T1
00 01 11 10

0 0 1 1 0 Present State

Inputs Y2 1 0

Table 7.2d Karnaugh Map of T2, T2 = Y2’Y1Y0 + Y2Y1’Y0’

Present State Inputs Y1Y0 T2
00 01 11 10

0 0 0 1 0 Present State

Inputs Y2 1 1

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.2e Karnaugh Map of Z, Z = Y2’Y1Y0’ + Y2Y1’Y0’

Present State Inputs Y1Y0 Z
00 01 11 10

0 0 0 0 1 Present State

Inputs Y2 1 1

Step 3: Figure out each minimized input and output functions.

 T0 = Y2’ + Y1’Y0’

 T1 = Y2’Y0

 T2 = Y2’Y1Y0 + Y2Y1’Y0’

 Z = Y2’Y1 Y0’ + Y2Y1’Y0’

Step 4: Please use the Graphic editor of MAX+PLUS II to complete the circuit entry

of the above equations (Figure 7.2a)。

Step 5: Complete functional simulations by using Simulator in MAX+PLUS II

and test weather the functions meet the circuit specifications (Table 7.2b).

Go on to the next step if the functions meet the specifications; otherwise,

go back to step 1 to check the cause of error sequentially.

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.2a Using MAX+PLUS II Graphic editor to create ÷5 divide circuit

 (File: div5.gdf)

Figure 7.2b div5.gdf simulation result (File: div5.scf)

Step 6: Should circuits allow download testing, download (or programming) to

test the circuit after selecting the download (or programming) device and

 CPLD Logic Design and Practices Simple Designing Examples

the floorplan program;

〜Skip this download test〜

Step 7: Please refer to File>Create Default Symbol to generate the internal circuit

symbol of ÷5 divider for the upper layer circuit.

Figure 7.2c The symbol of ÷5 divider

7.1.3 ÷÷÷÷10 Divider Design

Step 1: Form a Truth table. There are 10 states, 0, 1, 2, 3, 4,… and 9, requiring a

4-bit, T3T2T1T0 to signify the state value (Table 7.3a)。

Step 2: From the above Truth table (Table 7.3a) leads to the following Karnaugh

Map and equations. (Table 7.3b〜7.3f)。

Table 7.3a State table of ÷10 divide’s sequential circuit

Present State Next State Output

0000 0001 0

0001 0010 0

0010 0011 0

0011 0100 0

0100 0101 0

0101 0110 1

0110 0111 1

 CPLD Logic Design and Practices Simple Designing Examples

0111 1000 1

1000 1001 1

1001 0000 1

Table 7.3b Karnaugh Map of T0, T0 = Y3’ + Y2’Y1’

Present State Inputs Y1Y0 T0
00 01 11 10

00 1 1 1 1

01 1 1 1 1

11

Present State

Inputs Y3Y2

10 1 1

Table 7.3c Karnaugh Map of T1, T1 = Y3’Y0

Present State Inputs Y1Y0 T1
00 01 11 10

00 0 1 1 0

01 0 1 1 0

11

Present State

Inputs

Y3Y2

10 0 0

Table 7.3d Karnaugh Map of T2, T2 = Y3’Y1Y0

Present State Inputs Y1Y0 T2
00 01 11 10

00 0 0 1 0

01 0 0 1 0

11

Present State

Inputs Y3Y2

10 0 0

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.3e Karnaugh Map of T3, T3 = Y3’Y2Y1Y0 + Y3Y2’Y1’Y0

Present State Inputs Y1Y0 T3
00 01 11 10

00 0 0 0 0

01 0 0 1 0

11

Present State

Inputs Y3Y2

10 0 1

Table 7.3f Karnaugh Map of Z, Z = Y3’Y2Y1’Y0’ + Y3Y2’Y1’Y0

Present State Inputs Y1Y0 Z
00 01 11 10

00 0 0 0 0

01 1 0 0 0

11

Present State

Inputs Y3Y2

10 0 1

Step 3: Figure out each minimized input and output functions.

 T0 = Y3’ + Y2’Y1’

 T1 = Y3’Y0

 T2 = Y3’Y1Y0

 T3 = Y3’Y2Y1Y0 + Y3Y2’Y1’Y0

 Z = Y3’Y2Y1’Y0’ + Y3Y2’Y1’Y0

 CPLD Logic Design and Practices Simple Designing Examples

entry of the above equations (Figure 7.3a)。

 Figure 7.3a Using MAX+PLUS II Graphic editor to create ÷10 divide circuit

(File: div10.gdf)

Step 5: Complete functional simulation by using Simulator in MAX+PLUS II and

test weather the functions meet the circuit specifications (Table 7.3b). Go

on to the next step the functions meet the specifications; otherwise, go

back to step 1 to check the cause of error sequentially.

 CPLD Logic Design and Practices Simple Designing Examples

Step 4: Please use the Graphic editor of MAX+PLUS II to complete the circuit

Step 6: If the circuits allow download testing, download (or programming) to test

the circuit after selecting the download (or programming) device and

floorplan program.

〜Skip this download test〜

Step 7: Please refer to File > Create Default Symbol to generate the internal

circuit symbol of ÷10 circuit for the upper layer circuit. (Figure 7.3c)

Figure 7.3b Simulation Result of div10.gdf (File: div10.scf)

Figure 7.3c Internal Circuit symbol of ÷10 divide circuit

7.1.4 ÷÷÷÷50 Divider Design

Step 1: Form a Truth table. There are 50 states, 0, 1, 2, 3, 4, …and 49, requiring a

6-bit, T5T4T3T2T1T0 to signify the state value (Table 7.4a)。

Step 2: From the above Truth table (Table 7.4a) leads to the following Karnaugh

Map and equations. (Table 7.4b〜Table 7.4h)。

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.4a State table of ÷50 divider’s sequential circuit

Present State Next State Output

000000 000001 0

000001 000010 0

000010 000011 0

000011 000100 0

000100 000101 0

………… ………… …………

011000 011001 0

011001 011010 1

………… ………… …………

110001 000000 1

Table 7.4b Karnaugh Map of T0, T0 = Y5’ + Y5Y4’ + Y5Y3’Y2’Y1’

Y5 = 0

Present State Inputs Y1Y0 T0
00 01 11 10

Y4 = 0 1 1 1 1
00

Y4 = 1 1 1 1 1

Y4 = 0 1 1 1 1
01

Y4 = 1 1 1 1 1

Y4 = 0 1 1 1 1
11

Y4 = 1 1 1 1 1

Y4 = 0 1 1 1 1

Present State

Inputs Y3Y2

10

Y4 = 1 1 1 1 1

 CPLD Logic Design and Practices Simple Designing Examples

Y5 = 1

Present State Inputs Y1Y0 T0
00 01 11 10

Y4 = 0 1 1 1 1
00

Y4 = 1 1 1

Y4 = 0 1 1 1 1
01

Y4 = 1

Y4 = 0 1 1 1 1
11

Y4 = 1

Y4 = 0 1 1 1 1

Present State

Inputs Y3Y2

10
Y4 = 1

Table 7.4c Karnaugh Map of T1, T1 = Y5’Y0 + Y5Y4’Y0

Y5 = 0

Present State Inputs Y1Y0 T1
00 01 11 10

Y4=0 0 1 1 0
00

Y4=1 0 1 1 0

Y4=0 0 1 1 0
01

Y4=1 0 1 1 0

Y4=0 0 1 1 0
11

Y4=1 0 1 1 0

Y4=0 0 1 1 0

Present State

Inputs Y3Y2

10
Y4=1 0 1 1 0

 CPLD Logic Design and Practices Simple Designing Examples

Y5 = 1

Present State Inputs Y1Y0 T1
00 01 11 10

Y4 = 0 0 1 1 0
00

Y4 = 1 0 0

Y4 = 0 0 1 1 0
01

Y4 = 1

Y4 = 0 0 1 1 0
11

Y4 = 1

Y4 = 0 0 1 1 0

Present State

Inputs Y3Y2

10
Y4 = 1

Table 7.4d Karnaugh Map of T2, T2 = Y5’Y1Y0 + Y5Y4’Y1Y0

Y5 = 0

Present State Inputs Y1Y0 T2
00 01 11 10

00 Y4 = 0 0 0 1 0

 Y4 = 1 0 0 1 0

01 Y4 = 0 0 0 1 0

 Y4 = 1 0 0 1 0

11 Y4 = 0 0 0 1 0

 Y4 = 1 0 0 1 0

10 Y4 = 0 0 0 1 0

Present State

Inputs Y3Y2

 Y4 = 1 0 0 1 0

 CPLD Logic Design and Practices Simple Designing Examples

Y5 = 1

Present State Inputs Y1Y0 T2
00 01 11 10

Y4=0 0 0 1 0
00

Y4=1 0 0

Y4=0 0 0 1 0
01

Y4=1

Y4=0 0 0 1 0
11

Y4=1

Y4=0 0 0 1 0

Present State

Inputs Y3Y2

10
Y4=1

Table 7.4e Karnaugh Map of T3, T3 = Y5’Y2Y1Y0 + Y5Y4’Y2Y1Y0

Y5 = 0

Present State Inputs Y1Y0 T3
00 01 11 10

Y4=0 0 0 0 0
00

Y4=1 0 0 0 0

Y4=0 0 0 1 0
01

Y4=1 0 0 1 0

Y4=0 0 0 1 0
11

Y4=1 0 0 1 0

Y4=0 0 0 0 0

Present State

Inputs Y3Y2

10
Y4=1 0 0 0 0

 CPLD Logic Design and Practices Simple Designing Examples

Y5 = 1

Present State Inputs Y1Y0 T3
00 01 11 10

Y4 = 0 0 0 0 0
00

Y4 = 1 0 0

Y4 = 0 0 0 1
01

Y4 = 1

Y4 = 0 0 0 1 0
11

Y4 = 1

Y4 = 0 0 0 0 0

Present State

Inputs Y3Y2

10
Y4 = 1

Table 7.4f Karnaugh Map of T4 , T4 = Y5’Y3Y2Y1Y0 +

Y5Y4’Y3Y2Y1Y0+Y5Y4Y3’Y2’Y1’Y0

Y5 = 0

Present State Inputs Y1Y0 T4
00 01 11 10

Y4 = 0 0 0 0 0
00

Y4 = 1 0 0 0 0

Y4 = 0 0 0 0 0
01

Y4 = 1 0 0 0 0

Y4 = 0 0 0 1 0
11

Y4 = 1 0 0 1 0

Present State

Inputs Y3Y2

Y4 = 0 0 0 0 0

10

Y4 = 1 0 0 0 0

 CPLD Logic Design and Practices Simple Designing Examples

Y5 = 1

Present State Inputs Y1Y0 T4
00 01 11 10

Y4 = 0 0 0 0 0
00

Y4 = 1 0 1

Y4 = 0 0 0 0 0
01

Y4 = 1

Y4 = 0 0 0 1 0
11

Y4 = 1

Y4 = 0 0 0 0 0

Present State

Inputs Y3Y2

10
Y4 = 1

Table 7.4g Karnaugh Map of T5, T5 = Y5’Y4Y3Y2Y1Y0 + Y5Y4Y3’Y2’Y1’Y0

Y5 = 0

Present State Inputs Y1Y0 T5
00 01 11 10

Y4 = 0 0 0 0 0
00

Y4 = 1 0 0 0 0

Y4 = 0 0 0 0 0
01

Y4 = 1 0 0 0 0

Y4 = 0 0 0 0 0
11

Y4 = 1 0 0 1 0

Y4 = 0 0 0 0 0

Present State

Inputs Y3Y2

10
Y4 = 1 0 0 0 0

 CPLD Logic Design and Practices Simple Designing Examples

Y5 = 1

Present State Inputs Y1Y0 T5
00 01 11 10

Y4 = 0 0 0 0 0
00

Y4 = 1 0 1

Y4 = 0 0 0 0 0
01

Y4 = 1

Y4 = 0 0 0 0 0
11

Y4 = 1

Y4 = 0 0 0 0 0

Present State

Inputs Y3Y2

10
Y4 = 1

Table 7.4h Karnaugh Map of Z , Z = Y5’Y4Y3Y2’Y1’Y0’ + Y5Y4Y3’Y2’Y1’Y0

Y5 = 0

Present State Inputs Y1Y0 Z
00 01 11 10

Y4 = 0 0 0 0 0
00

Y4 = 1 0 0 0 0

Y4 = 0 0 0 0 0
01

Y4 = 1 0 0 0 0

Y4 = 0 0 0 0 0
11

Y4 = 1 0 0 0 0

Y4 = 0 0 0 0 0

Present State

Inputs Y3Y2

10
Y4 = 1 1 0 0 0

 CPLD Logic Design and Practices Simple Designing Examples

Y5 = 1

Present State Inputs Y1Y0 Z
00 01 11 10

 Y4 = 0 0 0 0 0
00

Y4 = 1 0 1

Y4 = 0 0 0 0 0
01

Y4 = 1

Y4 = 0 0 0 0 0
11

Y4 = 1

Y4 = 0 0 0 0 0

Present State

Inputs Y1Y2

10
Y4 = 1

Step 3: Figure out each minimized input and output functions.

 T0 = Y5’ + Y5Y4’ + Y5Y3’Y2’Y1’

 T1 = Y5’Y0 + Y5Y4’Y0

 T2 = Y5’Y1Y0 + Y5Y4’Y1Y0

 T3 = Y5’Y2Y1Y0 + Y5Y4’Y2Y1Y0

 T4 = Y5’Y3Y2Y1Y0 + Y5Y4’Y3Y2Y1Y0 +Y5Y4Y3’Y2’Y1’Y0

 T5 = Y5’Y4Y3Y2Y1Y0 + Y5Y4Y3’Y2’Y1’Y0

 Z = Y5’Y4Y3Y2’Y1’Y0’ + Y5Y4Y3’Y2’Y1’Y0

Step 4: Please use the Graphic editor of MAX+PLUS II to complete the circuit

entry of the above equations (Figure 7.4a)。

Step 5: Complete functional simulation by using Simulator in MAX+PLUS II and

 CPLD Logic Design and Practices Simple Designing Examples

test weather the functions meet the circuit specifications (Figure 7.4b and

Figure 7.4c). Go on to the next step if the functions meet the

specifications; otherwise go back to step 1 to check the cause of error

sequentially.

Figure 7.4a Using MAX+PLUS II Graphic editor to create ÷50 divider

 (File: div50.gdf)

Figure 7.4b Simulation result of div50.gdf (File: div50.scf)

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.4c Simulation result of div50.gdf (File: div50.scf)

Step 6: If the circuits allow download testing, download (or programming) to test

the circuit after selecting the download (or programming) device and

floorplan program.

〜Skip this download test〜

Step 7: Please refer to File > Create Default Symbol to create the internal circuit

symbol of ÷50 circuit for the upper layer circuit (Figure 7.4d).

Figure 7.4d Internal circuit symbol of ÷50 divide circuit

7.1.5 Frequency Generator

 In this section, we will use the circuits designed in the previous sections, to

divide the frequency of 10 MHz to 1 MHz, 100 KHz, 10 KHz, 1 KHz, 100 Hz, 10

Hz and 1 Hz, as illustrated in Figure 7.5a. Figure 7.5b〜7.5d are the simulation

Results.

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.5a Using MAX+PLUS II Graphic editor to create frequency generator

circuit (File: clkgen.gdf)

Figure 7.5b Frequency generator circuit simulation result of 1 MHz and 100 KHz

(File: clkgen.scf)

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.5c Frequency generator circuit simulation result of 10 KHz

(File: clkgen.scf)

Figure 7.5d Frequency generator circuit simulation result of 1 KHz

 (File: clkgen.scf)

7.2 Simple Electronic Dice

 To design the circuits of a simple dice game, we need 3 types of sub-circuits

(terms of hierarchical design, which means integrate the tiny circuits to compose a

large circuit) dice decoder circuit, MOD6 counter and frequency generator. The

frequency generator would divide the high frequency into two diverse frequencies,

and differentiate to the MOD6 counter. The MOD6 counter would output to the dice

decoder to show the points.

 CPLD Logic Design and Practices Simple Designing Examples

7.2.1 Dice Decoder Circuit

 The Dice Decoder introduced here is a 6 to 7 decoder. The Dice Decoder

Circuits have to apply the functions shown in Figure 7.6. Please complete the design,

simulation, and verification of this decoder.

Figure 7.6 Functional code of dice decoder

Step 1: Form a Truth table (Table 7.5a).

Table 7.5a Truth table of dice decoder

Inputs Outputs

D2D1D0 O6~O0

000 0001000

001 0100010

010 1001001

011 1010101

100 1011101

101 1110111

 CPLD Logic Design and Practices Simple Designing Examples

Step 2: The above Truth table leads to the following Karnaugh Matrix and

equations. (Table 7.5b〜Table 7.5h).

Table 7.5b Karnaugh Map of output O0

D1D0 O0
00 01 11 10

0 0 0 1 1
D2

1 1 1 0 0

Table 7.5c Karnaugh Map of output O1

D1D0 O1
00 01 11 10

0 0 1 0 0
D2

1 0 1 0 0

Table 7.5d Karnaugh Map of output O2

D1D0 O2
00 01 11 10

0 0 0 1 0
D2

1 1 1 0 0

Table 7.5e Karnaugh Map of output O3

D1D0 O3
00 01 11 10

0 1 0 0 1
D2

1 1 0 0 0

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.5f Karnaugh Map of output O4

D1D0 O4
00 01 11 10

0 0 0 1 0
D2

1 1 1 0 0

Table 7.5g Karnaugh Map of output O5

D1D0 O6
00 01 11 10

0 0 1 0 0
D2

1 0 1 0 0

Table 7.5h Karnaugh Map of output O6

D1D0 O6
00 01 11 10

0 0 0 1 1
D2

1 1 1 0 0

Step 3: Figure out each minimized input and output functions.

 O0 = D2D1’ + D2’D1 ； O1 = D1’D0

 O2 = D2D1’ + D2’D1D0 ； O3 = D2’D0’ + D1’D0’

 O4 = O2 ； O5 = O1

 O6 = O0

Step 4: According to the above Boolean Equations, please use the proper logic

gate by Graphic editor of MAX+PLUS II to create the circuit. (Figure

7.7a)。

 CPLD Logic Design and Practices Simple Designing Examples

Step 5: Complete the functional simulation and check weather the functions meet

the specification. If the functions meet the specification, please create the

internal circuit symbol for the upper circuit. Figure 7.7b is the simulation

result of the dice decoder, and it meets the functional specifications.

Figure 7.7a Using MAX+PLUS II Graphic editor to create decide decoder circuits

(File: dice_dec.gdf)

Figure 7.7b Simulation result of dice decoder (File: dice_dec.scf)

 CPLD Logic Design and Practices Simple Designing Examples

Step 6: After floorplan programming, please download the circuits and perform

the testing of the circuit. Please modify Figure 7.7a, dice decoder circuit,

as shown in Figure 5.3, to Figure 7.7c. Dice_COM is ready for connecting

the VCC output to the dice anode. Please re-compile it after modifying and

adapt the floorplan programming techniques in Section 4.6. Please select

EPF10K10TC144-4 chip and use the pin assignment reference shown in

Table 7.6.

Figure 7.7c Using MAX+PLUS II Graphic editor to create dice decoder circuits

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.6 Pin assignment of EPF10K10TC144-4 chip

Signal
EPF10K10TC144-4

chip pin
Signal

EPF10K10TC144-4

chip pin

D0 Pin 47 O3 Pin 10

D1 Pin 48 O4 Pin 11

D2 Pin 49 O5 Pin 12

O0 Pin 7 O6 Pin 13

O1 Pin 8

O2 Pin 9 Dice_COM Pin 142

After setting up LP-2900 Lab Platform, go on to download the dice decoder to

EPF10K10TC144-4 chip. Try to push down SW1 (D0), SW2 (D1), and SW3

(D2), on the left-bottom of LP-2900. Please note the changes of L13 (O0), L14

(O10), L15 (O9) … and L19 (O0) .

Step 7: Please refer to File > Create Default Symbol to generate the internal

circuit symbol of “Dice Decoder” for the upper layer circuit (Figure 7.7d).

Figure 7.7d The internal circuit symbol of “Dice Decoder”

7.2.2 MOD6 Counter

There a counter, which the initial value is 0000 (0), has the value turns to 0001 (1)

when the positive edge of the clock enters. If the clock keeps flowing in, the

counter will sequentially turns to 0010 (2) → 0011 (3) → 0100 (4) → 0101 (5)

→ 0000 (0) →…and keeps cycling like this.

 CPLD Logic Design and Practices Simple Designing Examples

From the above circuit specifications, we know it is a MOD6 Counter. The design is

as follows:

Step 1: Complete the state setup of the circuit specification and illustrate by a

State table. The circuit specification of MOD6 counter can be illustrated as

the State table 7.7a.

Table 7.7a MOD 6 Counter sequential circuits

Present State Next State Outputs

000 001 000

001 010 001

010 011 010

011 100 011

100 101 100

101 000 101

Step 2: Figure out the input and output functions of Karnaugh Matrix or other

minimized functions of each Flip-Flop by adapting an Excitation table.

From the Flip-Flop Excitation table, Table 6.14c, we can figure out the

Karnaugh Matrix of Flip-Flop input function, as shown from Table 7.7b to

Table 7.7g.

Table 7.7b Karnaugh Map of J0 , J0 = Y2’Y0’ + Y1’Y0’

Present State Input Y1Y0 J0
00 01 11 10

0 1 – – 1 Present State

Input Y2 1 1 –

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.7c Karnaugh Map of K0, K0 = Y1’Y0 + Y2’Y0

Present State Input Y1Y0 K0
00 01 11 10

0 – 1 1 – Present State

Input Y2 1 – 1

Table 7.7d Karnaugh Map of J1, J1 = Y2’Y0

Present State Input Y1Y0 J1
00 01 11 10

0 0 1 – – Present State

Input Y2 1 0 0

Table 7.7e Karnaugh Map of K1 , K1 = Y2’Y0

Present State InputY1Y0 K1
00 01 11 10

0 – – 1 0 Present State

Input Y2 1 – –

Table 7.7f Karnaugh Map of J2, J2 = Y2’Y1Y0

Present State Input Y1Y0 J2
00 01 11 10

0 0 0 1 0 Present State

Input Y2 1 – –

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.7g Karnaugh Map of K2, K2 = Y1’Y0

Present State Input Y1Y0 K2
00 01 11 10

0 – – – – Present State

Input Y2 1 0 1

Step 3: Figure out each minimized input and output functions.

 J0 = Y2’Y0’ + Y1’Y0’ ； K0 = Y1’Y0 + Y2’Y0

 J1 = Y2’Y0 ； K1 = Y2’Y0

 J2 = Y2’Y1Y0 ； K2 = Y1’Y0

 Q0 = Y0 ； Q1 = Y1

 Q2 = Y2

Step 4: Using the Graphic editor of MAX+PLUS II to create a circuit entry

illustrated in Figure 7.8.

Step 5: Complete functional simulation by using MAX+PLUS II (Figure 7.9) and

test weather the functions meet the circuit specifications. Go on to the next

step if the functions meet the specifications; otherwise, reinitialize step 1 to

check the cause of error sequentially.

Step 6: If the circuits allow test by downloading, download (or programming) to

test the circuit after selecting the download (or programming) device and

floorplan program. Please modify Figure 7.8, MOD6 counter circuit, as the

verification of the circuit shown in Figure 5.3. Re-compile it when

complete the verification. Then, adapting the floorplan programming

techniques instructed in Section 4.6, to select an EPF10K10TC144-4 chip

 CPLD Logic Design and Practices Simple Designing Examples

and use the pin assignment shown in Table 7.8. After assemble LP-2900

Lab Platform, download MOD6 counter to EPF10K10TC144-4 chip. Try

to push PS1 down on the left-bottom of LP-2900. Please note the

changes of L1 (O2), L2 (O1), and L3 (O0).

Step 7: Please refer to File > Create Default Symbol to generate the internal

circuit symbol of MOD 6 (Figure 7.10) for the good of the upper layer

circuit.

Figure 7.8 Using MAX+PLUS II Graphic editor to create MOD 6 counter circuit

(File：mod6.gdf)

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.9 Simulation result of Mod 6 counter circuit (File：mod6.scf)

Table 7.8 Pin assignment of EPF10K10TC144-4 chip

Signal
EPF10K10TC144-4

chip pin
Signal

EPF10K10TC144-4

chip pin

CLKIN Pin 54

Q0 Pin 9 LED_COM Pin 141

Q1 Pin 8

Q2 Pin 7

Figure 7.10 Internal circuit symbol of MOD 6

7.2.3 Dice Game Circuit

In this section, we will use “dice decoder circuit”, “MOD6 counter” and the

frequency circuit listed in Section 7.1 to compose a simple dice game circuit.

Step 1: Using MAX+PLUS II Graphic editor to create a circuit entry illustrated in

Figure 7.11a and modify circuit, Figure 7.11b, for simulation purpose.

Step 2: Complete functional simulation (Figure 7.12) by using MAX+PLUS II, and

test weather the functions meet the circuit specifications. For the

convenience of the mimic of the circuit shown in Figure 7.11a, we slightly

modify the circuit as shown in Figure 7.11b. Go on to the next step if the

 CPLD Logic Design and Practices Simple Designing Examples

functions meet the specifications; otherwise, reinitialize step 1 to check the

cause of error sequentially.

Step 3: If the circuit allows download testing, download (or programming) to test

the circuit after selecting the download (or programming) device and

floorplan.

Figure 7.11a Use MAX+PLUS II Graphic editor to create dice game circuit

(File: dice_game.gdf)

Figure 7.11b Dice game circuit modified for simulation purpose

(File: dice_gamb.gdf)

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.12 Simulation result of “Dice Game Circuit” (File: dice_gamb.scf)

Please restore Figure 7.11a, modify this Dice Game Circuit according to Figure 5.4a

shown in Section 5.2.1. Please re-compile it when complete the modification.

Then, adapting the floorplan programming techniques instructed in Section 4.6 to

choose EPF10K10TC144-4 chip, and use pin assignment in Table 7.9.

After setting up LP-2900 Lab Platform, download Dice Game Circuit to

EPF10K10TC144-4 chip. Try to push PS3 (Pin 124) and PS4 (Pin 126) on the left

bottom of LP-2900. Please note the changes of the “Dice”.

Table 7.9 Pin assignment of EPF10K10TC144-4 chip

Signal
EPF10K10TC144-4

pin setup
Signal

EPF10K10TC144-4

pin setup

DiceA0 Pin7 DiceB0 Pin14

DiceA1 Pin8 DiceB1 Pin17

DiceA2 Pin9 DiceB2 Pin18

DiceA3 Pin10 DiceB3 Pin19

DiceA4 Pin11 DiceB4 Pin20

DiceA5 Pin12 DiceB5 Pin21

DiceA6 Pin13 DiceB6 Pin22

PlayerA Pin 124 PlayerB Pin 126

CLKIN Pin 55 DICE_COM Pin 142

 CPLD Logic Design and Practices Simple Designing Examples

7.3 Timer

In this section, we will design a timer that has a start/stop button to control the start

and stop of the timer, and a clrn button to clear the figure. The timer is set as

follows:

 X. XX. XX. X.

 Hour Minute Second 10 Hertz

To implement the timer circuit, the circuit of 10 Hz pause generator, decimal

counter, and 60-carry counter, 12-carry counter and a scan display are required.

Since the circuit of 10Hz pause generator circuit has shown in Section 7.1.5, we will

not mention it again in this section. The following sections are the descriptions of

each sub-circuit that will be integrated into a timer circuit.

7.3.1 Decimal Counter

Step 1: Form a Truth table (Table 7.10a)。

Table 7.10a State table of decimal counter sequential circuit

Present State Next State
Outputs

Clko

Outputs

x[3..0]

0000 0001 0 0000

0001 0010 0 0001

0010 0011 0 0010

0011 0100 0 0011

0100 0101 0 0100

0101 0110 1 0101

0110 0111 1 0110

 CPLD Logic Design and Practices Simple Designing Examples

0111 1000 1 0111

1000 1001 1 1000

1001 0000 1 1001

Note: Decimal counter is similar with 10-divider

Step 2: From the above Truth table (Table 7.10a) leads to the following Karnaugh

Map and equations. (Table 7.10b to Table 7.10j)

Table 7.10b Karnaugh Map of T0 , T0 = Y3’ + Y2’Y1’

Present State Input Y1Y0 T0
00 01 11 10

00 1 1 1 1

01 1 1 1 1

11

Present State

Input Y3Y2

10 1 1

Table 7.10c Karnaugh Map of T1, T1 = Y3’Y0

Present State Input Y1Y0 T1
00 01 11 10

00 0 1 1 0

01 0 1 1 0

11

Present State

Input Y3Y2

10 0 0

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.10d Karnaugh Map of T2, T2 = Y3’Y1Y0

Present State Input Y1Y0 T2
00 01 11 10

00 0 0 1 0

01 0 0 1 0

11

Present State

Input Y3Y2

10 0 0

Table 7.10e Karnaugh Map of T3 , T3 = Y3’Y2Y1Y0 + Y3Y2’Y1’Y0

Present State Input Y1Y0 T3
00 01 11 10

00 0 0 0 0

01 0 0 1 0

11

Present State

Input Y3Y2

10 0 1

Table 7.10f Karnaugh Map of clko, clko = Y3’Y2Y1’Y0’ + Y3Y2’Y1’Y0

Present State Input Y1Y0 clko
00 01 11 10

00 0 0 0 0

01 1 0 0 0

11

Present State

Input Y3Y2

10 0 1

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.10g Karnaugh Map of X0, X0 = Y0

Present State Input Y1Y0 X0
00 01 11 10

00 0 1 1 0

01 0 1 1 0

11

Present State

Input Y3Y2

10 0 1

Table 7.10h Karnaugh Map of X1, X1 = Y1

Present State Input Y1Y0 X1
00 01 11 10

00 0 0 1 1

01 0 0 1 1

11

Present State

Input Y3Y2

10 0 0

Table 7.10i Karnaugh Map of X2, X2 = Y2

Present State Input Y1Y0 X2
00 01 11 10

00 0 0 0 0

01 1 1 1 1

11

Present State

Input Y3Y2

10 0 0

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.10j Karnaugh Map of X3, X3 = Y3

Present State InputY1Y0 X3
00 01 11 10

00 0 0 0 0

01 0 0 0 0

11

Present State

Input Y3Y2

10 1 1

Step 3: Figure out each minimized functions of each Inputs and Outputs.

 T0 = Y3’ + Y2’Y1’ ； T1 = Y3’Y0

 T2 = Y3’Y1Y0 ； T3 = Y3’Y2Y1Y0 + Y3Y2’Y1’Y0

 X0 = Y0 ； X1 = Y1

 X2 = Y2 ； X3 = Y3

 clko = Y3’Y2Y1’Y0’ + Y3Y2’Y1’Y0

Step 4: Please use the Graphic editor of MAX+PLUS II to complete editing the

circuit entry of the above equations (Figure 7.13a)。

Step 5: Complete functional simulation by using MAX+PLUS II (Figure 7.13b)

and test weather the functions meet the circuit specifications. Go on to the

next step if the functions meet the specifications; otherwise go back to step

1 to check the cause of error sequentially.

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.13a Use Graphic editor of MAX+PLUS II to create decimal counter

(File: bcd10.gdf)

Step 6: If the circuits allow download testing, download (or programming) to test

the circuit after selecting the download (or programming) device and

floorplan program.

〜Skip the download testing〜

Step 7: Please use File > Create Default Symbol to generate a decimal counter

circuit symbol (Figure 7.13c) for the use of upper layer circuits.

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.13b Simulation result of decimal counter circuit

 (File: bcd10.scf)

Figure 7.13c Internal circuit symbol of decimal counter

7.3.2 60-carry Counter Circuit

Two elements 6-carry counter and decimal counter compose a 60-carry counter. The

design of decimal counter is illustrated in 7.3.1. 6-carry counter, adapting the clock

output of decimal counter, is designed as follows:

Step 1: Form a 6-carry counter Truth table (Table 7.11a).

Table 7.11a State table of a 6-carry counter’s sequential circuit

Present State Next State Outputs

clko

Outputs

x[2..0]

000 001 0 000

001 010 0 001

010 011 0 010

011 100 1 011

100 101 1 100

101 000 1 101

 CPLD Logic Design and Practices Simple Designing Examples

Step 2: From the above Truth table (Table 7.11a) leads to the following

Karnaugh Map and equations (Table 7.11b〜Table 7.11e).

Table 7.11b Karnaugh Map of T0, T0 = Vcc

Present State Input x1x0 T0
00 01 11 10

0 1 1 1 1 Present State

Input x2 1 1 1

Table 7.11c Karnaugh Map of T1, T1 = x2’x0

Present State Input x1x0 T1
00 01 11 10

0 0 1 1 0 Present State

Input x2 1 0 0

Table 7.11d Karnaugh Map of T2, T2 = x2’x1x0 + x2x1’x0

Present State Input x1x0 T2
00 01 11 10

0 0 0 1 0 Present State

Input x2 1 0 1

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.11e Karnaugh Map of Clko, clko = x2’x1’x0 + x2x1’x0

Present State Input x1x0 clko
00 01 11 10

0 0 0 0 1 Present State

Input x2 1 0 1

Step 3: Figure out the minimized equations of each input and output function.

Decimal parts are shown in 7.3.1. The following is are parts of 6-carry

counter:

 T0 = Vcc ； T1 = x2’x0

 T2 = x2’x1x0 + x2x1’x0 ； clko = x2’x1’x0 + x2x1’x0

Step 4: Please use the Graphic editor of MAX+PLUS II to complete editing the

circuit entry of the above equations (Figure 7.14a)。

Step 5: Complete functional simulation by using MAX+PLUS II (Figure 7.14b

and Figure 7.14c) and test weather the functions meet the circuit

specifications. Go on to the next step if the functions meet the

specifications; otherwise go back to step 1 to check the cause of error

sequentially

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.14a Use AX+PLUS II Graphic editor to create a 60-carry counter circuit

(File: bcd60.gdf)

Figure 7.14b Simulation results of a 60-carry counter circuit (File: bcd60.scf)

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.14c Simulation result of a 60-carry counter circuit (File: bcd60.scf)

Step 6: If the circuits allow download testing, download (or programming) to test

the circuit after selecting the download (or programming) device and

floorplan program.

〜Skip this download testing〜

Step 7: Please use File > Create Default Symbol to generate an internal circuit

symbol of 60-carry counter Circuit (Figure 7.14d) for the upper layer

circuit.

Figure 7.14d The internal circuit symbol of 60-carry counter

7.3.3 12-carry Counter Circuit

 Like 60-carry counter, 12-carry counter is designed as the followings:

Step 1: Form a Truth table (Table 7.12a)。

Step 2: From the above Truth table (Table 7.12a) leads to the following Karnaugh

Map and equations (Table 7.12b to Table 7.12g)。

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.12a State table of 12-carry counter’s sequential circuit

Present State

X0Y3Y2Y1Y0

Next State

x0Y3Y2Y1Y0

Output

clko

Output

x0Y3Y2Y1Y0

00000 00001 0 00000

00001 00010 0 00001

00010 00011 0 00010

00011 00100 0 00011

00100 00101 0 00100

00101 00110 0 00101

00110 00111 1 00110

00111 01000 1 00111

01000 01001 1 01000

01001 10000 1 01001

10001 10010 1 10001

10010 00000 1 10010

Note: x0 is decimal

Table 7.12b Karnaugh Map of T0, T0 = x0’Y3’ + Y3’Y2’Y1’ + x0’Y3Y2’Y1’

Present State Input Y1Y0 T0
00 01 11 10

X0 = 0 1 1 1 1
00

X0 = 1 1 1 0

X0 = 0 1 1 1 1
01

X0 = 1

X0 = 0
11

X0 = 1

X0 = 0 1 1

Present State

Input Y3Y2

10
X0 = 1

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.12c Karnaugh Map of T1, T1 = Y3’Y0 + x0Y3’Y2’Y1

Present State Input Y1Y0 T1
00 01 11 10

X0 = 0 0 1 1 0
00

X0 = 1 0 1 1

X0 = 0 0 1 1 0
01

X0 = 1

X0 = 0
11

X0 = 1

X0 = 0 0 1

Present State

Input Y3Y2

10
X0 = 1

Table 7.12d Karnaugh Map of T2, T2 = Y1Y0

Present State Input Y1Y0 T2
00 01 11 10

X0 = 0 0 0 1 0
00

X0 = 1 0 0 0

X0 = 0 0 0 1 0
01

X0 = 1

X0 = 0
11

X0 = 1

X0 = 0 0 0

Present State

Input Y3Y2

10
X0 = 1

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.12e Karnaugh Map of T3 , T3 = x0’Y3’Y2Y1Y0 + x0’Y3Y2’Y1’Y0

Present State Input Y1Y0 T3
00 01 11 10

X0 = 0 0 0 0 0
00

X0 = 1 0 0 0

X0 = 0 0 0 1 0
01

X0 = 1

X0 = 0
11

X0 = 1

X0 = 0 0 1

Present State

Input Y3Y2

10
X0 = 1

Table 7.12f Karnaugh Map of T4, T4 = x0’Y3Y2’Y1’Y0 + x0Y3’Y2’Y1Y0’

Present State Input Y1Y0 T4
00 01 11 10

X0 = 0 0 0 0 0
00

X0 = 1 0 0 1

X0 = 0 0 0 0 0
01

X0 = 1

X0 = 0
11

X0 = 1

X0 = 0 0 1

Present State

Input Y3Y2

10
X0 = 1

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.12g Karnaugh Map of clko, clko = x0’Y3’Y2Y1Y0’ + x0Y3’Y2’Y1Y0’

Present State Input Y1Y0 T5
00 01 11 10

X0 = 0 0 0 0 0
00

X0 = 1 0 0 1

X0 = 0 0 0 0 1
01

X0 = 1

X0 = 0
11

X0 = 1

X0 = 0 0 1

Present State

Input Y3Y2

10
X0 = 1

Step 3: Figure out the minimized equations of each input and output functions.

 T0 = x0’Y3’ + Y3’Y2’Y1’ + x0’Y3Y2’Y1’

 T1 = Y3’Y0 + x0Y3’Y2’Y1

 T2 = Y1Y0

 T3 = x0’Y3’Y2Y1Y0 + x0’ Y3Y2’Y1’Y0

 T4 = x0’Y3Y2’Y1’Y0 + x0Y3’Y2’Y1Y0’

 Clko = x0’Y3’Y2Y1Y0’ + x0Y3’Y2’Y1Y0’

Step 4: Please use the Graphic editor of MAX+PLUS II to complete editing the

circuit entry of the above equations (Figure 7.15a)。

Step 5: Complete functional simulation by using MAX+PLUS II (Figure 7.15b)

and test weather the functions meet the circuit specifications. Go on to the

next step if meets the specifications; otherwise go back to step 1 to check

the cause of error sequentially.

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.15a Use Graphic editor of MAX+PLUS II to create 12-carry counter

circuit (File: bcd12.gdf)

Figure 7.15b Simulation result of 12-carry counter (File: bcd12.scf)

Step 6: If the circuits allow download testing, download (or programming) to test

the circuit after selecting the download (or programming) device and

floorplan program.

〜Skip this download testing〜

 CPLD Logic Design and Practices Simple Designing Examples

symbol of 12-carry Counter (Figure 7.15c) for the upper layer circuit.

Figure 7.15c The internal circuit symbol of 12-carry counter

7.3.4 Scan Display Circuit

 The Scan Display Circuit is in charge of selecting data, and through 7-segment

display decoding, the figures will be displayed on the proper 7-segment display.

Take Figure 7.16a as an example, in segment T0 (c0 = “0”, others = “1”) D0 is

selected to Y. After decoding, the result will be transferred from Z to (a, b, c, d, e,

f, g, h). In segment T1 (c1 = “0”, others = “1”) D1 is selected to Y. After

decoding, the result will be transferred from Z to (a, b, c, d, e, f, g, h). In segment

T2 (c2 = “0”, others = “1”) D2 is selected to Y. After decoding, the result will be

transferred from Z to (a, b, c, d, e, f, g, h). In segment T3 (c3 = “0”, others =

“1”) D3 is selected to Y. After decoding, the result will be transferred from Z to

(a, b, c, d, e, f, g, h). In segment T4 (c4 = “0”, others = “1”) D4 is selected to Y.

After decoding, the result will be transferred from Z to (a, b, c, d, e, f, g, h). In

segment T5 (c5 = “0”, others = “1”) D5 is selected to Y. After decoding, the

result will be transferred from Z to (a, b, c, d, e, f, g, h). In segment T6（c0 =

“0”, others = “1”）again, D0 is selected to Y. After decoding, the result will be

transferred from Z to (a, b, c, d, e, f, g, h). The transmission will keep on cycling

like this. If the speed of scanning is faster than that of visual pause, we can see

the steady, non-flashing display of the digits.

Theoretically, we need three types of circuits, scan signal generator, data selecting,

 CPLD Logic Design and Practices Simple Designing Examples

Step 7: Please use File > Create Default Symbol to generate an internal circuit

and 7-segment display decoding circuit. There are only 144 pins on EPF10K-

10TC144-4 chip on LP-2900 Logic Circuit Design Lab Platform; therefore, except

for EPF10K10TC144-4 chip, a 74138 LSI chip, see Figure 7.16b, which provides

the scan signal of c1 to c6 (code number on LP-2900) is required to save pins.

However, EPF10K10TC144-4 chip has provided a, b, and c signals for activating

74138 to generate scan signals of c1 to c6. So, what kind functions of 74138 are?

We can distinguish its functions from the following Truth table (Table 7.13).

Under the condition of G1 = “1” and G2A = G2B = “0”, make ABC sequentially

turns “000” to “111” and the scan signals would be consequentially generated.

Therefore, we modify the scan display circuit of Figure 7.16a into a circuit like

Figure 7.16c. In other words, scan display circuit turns into a composition circuits

(in the frame of dotted lines) from MOD 8 circuit (to generate ABC signals for

74138), data selecting circuit, and 7-segment display decoding circuit.

Figure 7.16a Scan display

 CPLD Logic Design and Practices Simple Designing Examples

F
ig

ur
e

7.
16

b
S

ca
n

D
is

pl
ay

 in
 L

P
-2

90
0

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.16c Modified Scan Display

Table 7.13 Truth table of 74138

Inputs Outputs

G1 G2A G2B CBA Y7Y6Y5Y4Y3Y2Y1Y0

0 – – – 11111111

– 1 1 – 11111111

1 0 0 000 11111110

1 0 0 001 11111101

1 0 0 010 11111011

1 0 0 011 11110111

1 0 0 100 11101111

1 0 0 101 11011111

1 0 0 110 10111111

1 0 0 111 01111111

 CPLD Logic Design and Practices Simple Designing Examples

Step 1: The 7-segment display decoding circuit has been introduced in Section

5.6.2 which we will adopt the circuit directly in this section. For the circuit

design of MOD 8 counter, please refer to Figure 7.17a in Section 7.2.2.

Figure 7.17b illustrates the simulation result of Figure 7.17a, whereas the

Figure 7.17c shows the internal circuit symbol.

Figure 7.17a MOD 8 Counter

Figure 7.17b Simulation result of MOD 8 Counter

Figure 7.17c The internal circuit symbol of MOD 8 Counter

Step 2: Similarly, please refer to the design, simulation, and verification of 8 to 1

multiplexer illustrated in Section 5.7.1 to design the circuit of data

selecting. Figure 7.18c shows the simulation result whereas Figure 7.18b

illustrates the internal circuit symbol.

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.18a Simulation result of data selecting circuit

Figure 7.18b The internal circuit symbol of data selecting circuit

Step 3: The scan display circuit, Figure 7.19a, can be composed as the completion

of mod8 counter, data selecting circuit, and 7-segment display decoding

circuit. Figure 7.19b is the simulation result of Figure 7.19a whereas

Figure 7.19c is the internal circuit symbol.

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.18c Data selecting circuit

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.19a Scan display circuit

Figure 7.19b Simulation result of scan display circuit

Figure 7.19c The internal circuit symbol of scan display circuit

 CPLD Logic Design and Practices Simple Designing Examples

7.3.5 Timer Circuit

Step 1: Please use the Graphic editor of MAX+PLUS II to create the circuit entry

of the following figure (Figure 7.20).

Figure 7.20 Use Graphic editor of MAX+PLUS II to create the Timer Circuit

(File: timer.gdf)

Step 2: Complete functional simulation by using MAX+PLUS II and test weather

the functions meet the circuit specification.

〜Skip this functional simulation〜

Step 3: If the circuits allow download testing, download (or programming) to test

the circuit after selecting the download (or programming) device and

floorplan program. Please adapt the floorplan programming techniques

instructed in Section 4.6. Choose an EPF10K10TC144-4 chip and use the

pin assignment shown in Table 7.14. After setting up LP-2900 Lab

Platform, download the timer circuit to EPF10K10TC144-4 chip. Please

try to push PS1 (START/STOP) on the bottom of LP-2900 and SW4 (clrn)

on the left-bottom of LP-2900. At the mean time, please note the changes

of 7-segment displayer and the position of displaying.

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.14 Pin assignment of EPF10K10TC144-4 chip

Signal
EPF10K10TC144-4

chip pin
Signal

EPF10K10TC144-4

chip pin

Clrn Pin 51 A Pin 23

10 MHz Pin 55 B Pin 26

Start/stop Pin 54 C Pin 27

 D Pin 28

138 sel0 Pin 33 E Pin 29

138 sel1 Pin 36 F Pin 30

138 sel2 Pin 37 G Pin 31

 H Pin 32

 CPLD Logic Design and Practices Simple Designing Examples

7.4 Simple Traffic Light Controller

The following is the status changes of the traffic light that we are familiar with:

 HG → HY → VG → VY

 |Horizontal Green| |Horizontal Yellow| |Vertical Green| |Vertical Yellow|

 VR → HR

 |Vertical Red| |Horizontal Red|

From the above circuit specifications, the circuits of the state machine, and

lightening timer are required for the traffic light controller. The state machine will

keep cycling with the states of HG → HY → VG → VY → … where as the

lightening timer is for controlling the flashing time of the light.

7.4.1 State Machine

Step 1: Please complete the state assignment of the circuit specifications and

illustrate with a state diagram or a State table; the specifications of the

traffic light state machine is shown as the State table of Table 7.15a.

Step 2: Use the Excitation table to figure out each input and output functions’

Karnaugh Map or other minimized functions. Please use Table 6.14c, Flip-

Flop Excitation table, to figure out the Karnaugh Map of D Type Flip-

Flop’s Input Functions, as Table 7.15b〜Table 7.15g.

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.15a State table of traffic light state machine

Inputs x1x2 Present State
00 01 10 11

Outputs

Abcd

00 00 01 00 00 1000

01 01 01 10 01 0100

10 10 11 10 10 0010

11 11 11 00 11 0001

Note: The double-lined frame shows the next state

Table 7.15b Karnaugh Map of D0, D0 = x1’x0 + Y0x1’ + Y0x0

Present State Input x1x0 D0
00 01 11 10

00 0 1 0 0

01 1 1 1 0

11 1 1 1 0

Y1Y0

Present State

Input 10 0 1 0 0

Table 7.15c Karnaugh Map of D1, D1 = Y1x1’ + Y1x0 + Y1’Y0x1 x0’

Present State Input x1x0 D1
00 01 11 10

00 0 0 0 0

01 0 0 0 1

11 1 1 1 0

Y1Y0

Present State

Input 10 1 1 1 0

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.15d Karnaugh Map of a, a = Y1’Y0’

Present State Input x1x0 a
00 01 11 10

00 1 1 1 1

01 0 0 0 0

11 0 0 0 0

Y1Y0

Present State

Input 10 0 0 0 0

Table 7.15e Karnaugh Map of b, b = Y1’Y0

Present State Input x1x0 b
00 01 11 10

00 1 1 1 1

01 0 0 0 0

11 0 0 0 0

Y1Y0

Present State

Input 10 0 0 0 0

Table 7.15f Karnaugh Map of c, c = Y1Y0’

Present State Input x1x0 c
00 01 11 10

00 1 1 1 1

01 0 0 0 0

11 0 0 0 0

Y1Y0

Present State

Input 10 0 0 0 0

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.15g Karnaugh Map of d, d = Y1Y0

Present State Input x1x0 d
00 01 11 10

00 1 1 1 1

01 0 0 0 0

11 0 0 0 0

Y1Y0

Present State

Input 10 0 0 0 0

Step 3: Figure out the minimized functions of each Input and output.

 D0 = x1’x0 + Y0x1’ + Y0x0

 D1 = Y1x1’ + Y1x0 + Y1’Y0x1 x0’

 a = Y1’Y0’

 b = Y1’Y0

 c = Y1Y0’

 d＝Y1Y0

Step 4: Please use the Graphic editor of MAX+PLUS II to complete editing the

circuit entry of the above equations (Figure 7.21a)。

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.21a Use Graphic editor of MAX+PLUS II to create traffic light state

machine circuit (File: traf_stm.gdf)

Step 5: Complete functional simulation by using MAX+PLUS II (Figure 7.21b)

and test weather the functions meet the circuit specifications. Go on to the

next step if the functions meet the specifications; otherwise go back to step

1 to check the cause of error sequentially.

 CPLD Logic Design and Practices Simple Designing Examples

Step 6: If the circuits allow testing by download, download (or programming) to

test the circuit after selecting the download (or programming) device and

floorplan program.

〜Skip this download testing〜

Step 7: Please use File > Create Default Symbol to generate the internal circuit

symbol (Figure 7.21c) for the upper layer circuit.

Figure 7.21b Simulation result of traffic light state machine

 (File: traf_stm.scf)

Figure 7.21c The internal circuit symbol of traffic light state machine

 CPLD Logic Design and Practices Simple Designing Examples

7.4.2 Lightening Timer

Refer to Section 6.4.1 of ring counter, each pulse input will make a position

movement. In other words, for a 4-step ring counter, a cycle costs four pulses. If

each pulse spends one second, then a cycle would spend 4 seconds. This is the

reason why we take a ring counter as the timer. Please refer to Section 6.4.1 for

detail information of a ring counter.。

7.4.3 Simple Traffic Light Controller

Step 1: Please use MAX+PLUS II Graphic editor to complete the circuit entry of

Figure 7.22a.

Step 2: Complete functional simulation by using MAX+PLUS II (Figure 7.22b)

and test weather the functions meet the circuit specifications.

Step 3: If the circuits allow download testing, download (or programming) to test

the circuit after selecting the download (or programming) device and

floorplan program.

Please adapt the techniques of floorplan programming instructed in Section 4.6 to

chose an EPF 10K10TC144-4 chip and use the pin set up of Table 7.16.

After setting up LP-2900 Lab Platform, download the traffic light circuit to

the EPF 10K 10TC144-4 chip and try to push SW1 (clrn) on the left bottom

of LP-2900. At the mean time, please note the changes of L1〜L6 LED

and the position of lighting.

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.22a Use Graphic editor of MAX+PLUS II to create Traffic Light

Controller (File: traf_light.gdf)

Figure 7.22b Use Graphic editor of MAX+PLUS II to create Traffic Controller

Circuit (File: traf_light.scf)

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.16 Pin assignment of EPF10K10TC144-4 chip

Signal
EPF10K10TC144-4

chip pin
Signal

EPF10K10TC144-4

chip pin

CLKIN Pin 55 (OSC) HG Pin 12 (L6)

CLRN Pin 47 (SW1) HY Pin 11 (L5)

HG Pin 9 (L3) HR Pin 710 (L4)

HY Pin 8 (L2)

HR Pin 7 (L1) LED_COM Pin 141

7.5 Dot Matrix Displayer Test Circuit

Dot Matrix LED is a common display device in digital circuit. The appearance,

which may have two types, is shown as Figure 7.23a. One is uni-color dot matrix

LED and the other is bi-color dot matrix LED. For a bi-color one, the structure is

illustrated as Figure 7.23b. In each circle, there exits two LEDs, which one is red,

and the other is green. Therefore, the combination shows 4 conditions: unlighted,

red light, green light and yellow light. From the construction layout, signal Row has

to be sent to “1” together with sending Col to “0”, the relative LED would

consequently flash.

In this section, a simple test circuit of a bi-color dot matrix LED is drawn here as an

illustration. The progress of design is as follows:

Step 1: Use the Graphic editor of MAX+PLUS II to complete the circuit entry as

illustrated in Figure 7.24.

Step 2: Complete functional simulation by using MAX+PLUS II and test weather

the functions meet the circuit specifications.

 CPLD Logic Design and Practices Simple Designing Examples

〜Skip the functional simulation〜

Step 3: If the circuits allow download testing, download (or programming) to test

the circuit after selecting the download (or programming) device and

floorplan program. Please adapt the techniques of floorplan programming

instructed in Section 4.6 to choose an EPF10K10TC144-4 chip, and use the

pin assignment listed in Table 7.17. After setting up LP-2900 Lab Platform,

please download the test circuit of simple bi-color dot matrix LED to

EPF10K10TC144-4 chip. Please notice the changes of bi-color dot matrix

LED.

Figure 7.23a The appearance of dot matrix LED

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.23b The structure of a bi-color dot matrix LED

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.24 Use the Graphic editor of MAX+PLUS II to create a test circuit board

of simple bi-color dot matrix LED (File: dot_mtrx.gdf)

Table 7.17 Pin assignment of EPF10K10TC144-4 chip

Signal
EPF10K10TC144-4

chip pin
Signal

EPF10K10TC144-4

chip pin

10 Mhz Pin 55

Cr1 Pin 98 Cg1 Pin 112

Cr2 Pin 99 Cg2 Pin 113

Cr3 Pin 100 Cg3 Pin 114

Cr4 Pin 101 Cg4 Pin 116

Cr5 Pin 102 Cg5 Pin 117

 CPLD Logic Design and Practices Simple Designing Examples

Cr6 Pin 109 Cg6 Pin 118

Cr7 Pin 110 Cg7 Pin 119

Cr8 Pin 111 Cg8 Pin 120

Row 1 Pin 88 Row 5 Pin 92

Row 2 Pin 89 Row 6 Pin 95

Row 3 Pin 90 Row 7 Pin 96

Row 4 Pin 91 Row 8 Pin 97

7.6 Keyboard Scan and Display Scan
Circuit

Keyboard and 7-segment displayer are the common input and output devices in the

digital system. The input of keyboard scan and the display circuit of 7-segment

displayer are, therefore, become the required circuits. The scan display circuit of 7-

segment displayer has instructed in Section 7.3.4. Hereafter is the design

descriptions of the integrated keyboard scan.

♣ Principles of keyboard scan:

 The left diagram of Figure 7.25a shows an illustration of a 4 × 3 keyboard.

The black dot depicts the connections when pushing the button, whereas the white

dot depicts the non-connection of non-pushed buttons. In the left diagram of Figure

7.25a, scan signals generator circuit creates signals c3〜c0, which are sent to

keyboard and keyboard decoder circuit separately. The changing sequences of c3〜

c0 are : “1110” → “1101” → “1011” → “0111” → “1110” → …, and cycling.

Hypothesis that now c3〜c0 are “1101”. r[2..0] = “111” because the button is not

 CPLD Logic Design and Practices Simple Designing Examples

push down. After decoding through keyboard decoder circuit, the result is that d3〜

d0 are “1111” and shift latch clock, the control signals for shift and latch data, is “0”.

As in the right diagram of Figure 7.25a, hypothesis that c3〜c0 are “1101”.

Because the button of 6 is push down, r[2..0] = “110”. After decoding through

keyboard decoder circuit, the result is that d3〜d0 are “0110”, while the shift latch

clock turns to “1”.

Figure 7.25a Block diagram of keyboard scanner and decoder

In the left diagram of Figure 7.25b, c3〜c0 are“1101” and because the button of 4

is push down, r[2..0] = “011”. Through keyboard decoder circuit, d3〜d0 turn to

“0100” and the shift latch clock is “1”. In the right diagram of Figure 7.25b, c3〜

c0 are “1101” and because the button of 5 is push down, r[2..0] = “101”. From this

pattern, we know that when c1 = “0”, go on to check weather the button of 4, 5 and

6 is push down individually, then we will get the value of r[2..0] which would be

sent with c3〜c0 to the keyboard decode circuit for decoding. Accordingly, when c0

= “0”, check weather the button of 1, 2 and 3 is bush down individually; when c2 =

“0”, check weather the button of 7, 8, and 9 is push down; when c3 = “0”, check

 CPLD Logic Design and Practices Simple Designing Examples

weather “*”, “0”, and “#” is push down.

Keyboard decode circuit implements decoding by means of the input of c3〜c0 and

r[2..0].

Figure 7.25b Block Diagram of keyboard scanner and decoder (Continue)

To form a keyboard scan and display scan circuit, three types of sub-circuits are

required: (1) Scan signal generate circuit, disbounce and (single-key detector

circuit); (2) Keyboard decoder circuit; (3) Data buffer circuit, display scan circuit of

7-segment display, as illustrated in Figure 7.26. Scan signal generator circuit creates

the signals of scan keyboard, usually scans 7-segment displayer as well. Disbounce

and single-key detector eliminate the bounce when pushing the key and prevent

multiple keys input. Keyboard decoder can decode the input keys. Data buffer

circuit keeps the latest six input keys. The displays scan circuits of the 7-segment

displayer in charge of displaying the data in buffer to the six 7-segment displayers.

However, in LP-2900, the c3〜c0 scan wires on the keyboard are same as the wires

C3〜C0 7-segment displayer. In other words, scan signals is the scan wires of 7-

segment displayer. Please refer to Section 7.3.4 for the scan and display circuits of

 CPLD Logic Design and Practices Simple Designing Examples

the 7-segment displayer. The data buffer is composed by 6 sets of 4-bit parallel shift

registers for storing the code sent by keyboard decoder. Directions of shift are: new

push code→Set 1→Set 2→Set 3→Set 4→Set 5→Set 6→….

Figure 7.26 Functional Diagram of keyboard scan and display scan circuit

7.6.1 Disbounce and Single-key detector

Step 1: Please use the Graphic editor of MAX+PLUS II to edit a circuit entry as

shown in Figure 7.27a. Usually, the buttons would bump and lead to a

misunderstanding of multiple inputs. Therefore, it is necessary to create a

disbounce mechanism. Please refer to Chapter 4 for designing and

functional simulation of the disbounce circuit. In this section, we will adapt

it as the blueprint for designing a proper disbounce cell of 4 × 3 keyboard

 CPLD Logic Design and Practices Simple Designing Examples

as Figure 7.27a. Figure 7.27b is the internal circuit symbol. We can

compose a 4 x 3 disbounce circuit array after creating a disbounce cell or

according to the disbounce cell to design a horizontal single-key detector

and vertical single-key detector circuits, as Figure 7.27d and Figure 7.27e.

Figure 7.27a Disbounce circuit

Figure 7.27b Circuit symbol of disbounce

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.27c 4 × 3 disbounce circuits array (File: key_debun.gdf)

Figure 7.27d 4 × 3 keyout Circuits (File: key_debun.gdf)

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.27e 4 × 3 keyout disbounce cricuits (Continue) (File: key_debun.gdf)

Step 2: Complete functional simulation by using MAX+PLUS II (Figure 7.27f)

and test weather the functions meet the circuit specifications. Please notice

the relations of the circles on the Figure below.

Step 3: If the circuits allow downloading to test, download (or programming) to

test the circuit after selecting the download (or programming) device and

floorplan program. For download testing, please create the internal circuit

symbol, Figure 7.27, of key_debun and modify the circuits as illustrated in

Figure 7.27g. Further, please adapt the techniques of floorplan

programming instructed in Section 4.6, and select EPF10K10TC144-4 chip

 CPLD Logic Design and Practices Simple Designing Examples

as well as the pin assignment listed in Table 7.18.

Figure 7.27f Functional simulation results of kbd_debun.gdf circuit

 (File: key_debun.scf)

Figure 7.27g debun_test.gdf

Figure 7.27h The internal circuit symbol of key_debun

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.18 Pin assignment of EPF10K10TC144-4 chip

Signal
EPF10K10TC144-4

chip pin
Signal

EPF10K10TC144-4

chip pin

10Mhz Pin 55

Ko0 Pin 7 S0 Pin 47

Ko1 Pin 8 S1 Pin 48

Ko2 Pin 9

Kpress Pin 10 K0 Pin 49

Row 0 Pin 11 K1 Pin 51

Row 1 Pin 12 K2 Pin 59

After setting up LP-2900 Lab Platform, please push down the keys of SW3, SW4,

and SW5 which means the inputs of K0, K1, and K2 are “1”. Then, please

download the file, debun_test.sof, to EPF-10K10TC144-4 chip. Pull up SW3, or

SW4, or SW5 to check weather the changes of L1 to L6 meet the requirements.

Please note weather there is outputs when pulling up two or three keys

simultaneously. Pushing down the keys of SW3, SW4, and SW5 at the same time

and adjust SW1 (S0) and SW2 (S1) to another combination and repeat the actions to

check.

7.6.2 Keyboard Decoder

Step 1: Form a Truth table (Table 7.19a).

Step 2: From the above Truth table (Table 7.19a) leads to the following Karnaugh

Map and equations. (Table 7.19b to Table 7.19e)

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.19a The State table of keyboard decoder

Inputs

(From Scan

Circuit) s1s0

Inputs

(From keyboard)

k2k1k0

Outputs

d3d2d1d0

Descriptions

00 111 1111 No action

00 011 0001 Push Key “1”

00 101 0010 Push Key “2”

00 110 0011 Push Key “3”

01 111 1111 No action

01 011 0100 Push Key “4”

01 101 0101 Push Key “5”

01 110 0110 Push Key “6”

10 111 1111 No action

10 011 0111 Push Key “7”

10 101 1000 Push Key “8”

10 110 1001 Push Key “9”

11 111 1111 Nil

11 011 1010 Push Key “*”

11 101 0000 Push Key “0”

11 110 1011 Push Key “#”

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.19b Karnaugh Map of D0,

D0 = k2k1k0 + s1k2k1 + s0’k1k0 + s1’s0k2k0 + s0’k2k1

Present State Input s1s0 D0
00 01 11 10

K0 = 0 0 0 0 0
00

K0 = 1 0 0 0 0

K0 = 0 0 0 0 0
01

K0 = 1 1 0 0 1

K0 = 0 1 0 1 1
11

K0 = 1 1 1 1 1

K0 = 0 0 0 0 0

Present State

Input

k2k1

10
K0 = 1 0 1 0 0

Table 7.19c Karnaugh Map of D1, D1 = k2k1k0 + s1’k2k1 + s0k2k1 + s1k1k0 +

s1’s0’k2k0

Present State Input s1s0 D1
00 01 11 10

K0 = 0 0 0 0 0
00

K0 = 1 0 0 0 0

K0 = 0 0 0 0 0
01

K0 = 1 0 0 1 1

K0 = 0 1 1 1
11

K0 = 1 1 1 1 1

K0 = 0 0 0 0 0

Present State

Input k2k1

10
K0 = 1 1 0 0 0

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.19d Karnaugh Map of D2, D2 = k2k1k0 + s1’s0k2k0 + s1’s0k2k1 + s1’s0k1k0 +

s1s0’k1k0

Present State Input s1s0 D2
00 01 11 10

K0 = 0 0 0 0 0
00

K0 = 1 0 0 0 0

K0 = 0 0 0 0 0
01

K0 = 1 0 1 0 1

K0 = 0 0 1 0 0
11

K0 = 1 1 1 1 1

K0 = 0 0 0 0 0

Present State

Input

k2k1

10
K0 = 1 0 1 0 0

Table 7.19e Karnaugh Map of D3, D3 = k2k1k0 + s1k2k1 + s1s0’k2k0 + s1s0k1k0

Present State Input s1s0 D3
00 01 11 10

K0=0 0 0 0 0
00

K0=1 0 0 0 0

K0=0 0 0 0 0
01

K0=1 0 0 1 0

K0=0 0 0 1 1
11

K0=1 1 1 1 1

K0=0 0 0 0 0

Present State

Input k2k1

10
K0=1 0 0 0 1

 CPLD Logic Design and Practices Simple Designing Examples

Step 3: Figure out the minimized equations of each Input and output functions

 D0 = k2k1k0 + s1k2k1 + s0’k1k0 + s1’s0k2k0 + s0’k2k1

 D1 = k2k1k0 + s1’k2k1 + s0k2k1 + s1k1k0 + s1’s0’k2k0

 D2 = k2k1k0 +s1’s0k2k0 + s1’s0k2k1 + s1’s0k1k0 + s1s0’k1k0

 D3 = k2k1k0 + s1k2k1 + s1s0’k2k0 + s1s0k1k0

Step 4: Please use the Graphic editor of MAX+PLUS II to complete editing the

circuit entry of the above equations (Figure 7.28a)

Step 5: Complete functional simulation by using MAX+PLUS II (Figure 7.28b)

and test weather the functions meet the circuit specifications. Go on to

the next step if the functions meet the specifications; otherwise go back to

step 1 to check the cause of error sequentially.

Step 6: Please download the circuits after floorplan programming and test the

circuits. Modify Figure 7.28a as Figure 5.3 in Section 5.1 and re-compile.

Further, please adapt the techniques of floorplan programming instructed in

Section 4.6, and select EPF10K10TC144-4 chip as well as the pin setup

listed in Table 7.20.

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.28a Keyboard decoder created by the Graphic editor of MAX+PLUS II

(File: kbd_dec.gdf)

Figure 7.28b Simulation result of Keyboard decoder (Figure 7.28a)

(File: kbd_dec.scf)

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.20 Pin assignment of EPF10K10TC144-4 chip

Signal
EPF10K10TC144-4

chip pin
Signal

EPF10K10TC144-4

chip pin

D0 Pin 10 K0 Pin 47

D1 Pin 9 K1 Pin 48

D2 Pin 8 K2 Pin 49

D3 Pin 7 S0 Pin 51

 S1 Pin 59

LED_COM Pin 141

After setting up LP-2900 Lab Platform, please download the keyboard decode

circuit to EPF10K10TC144-4 chip. Try to push down SW1 (k0), or SW2 (k1) or

SW3 (K2) on the left bottom of LP-2900 and note the changes of L1 (D3), L2 (D2),

L3 (D1), and L4 (D0). Adjust the inputs of S0 and S1 and, again, push down SW1

(k0) or SW2 (k1) or SW3 (K2), and note the changes of L1 (D3), L2 (D2), L3 (D1),

and L4 (D0).

Step 7: Creating the internal circuit symbol (Figure 7.28) by means of File >

Create Default Symbol for the upper circuits.

Figure 7.28c The internal circuit symbol of keyboard decoder

 (Figure 7.28a)

 CPLD Logic Design and Practices Simple Designing Examples

7.6.3 Data Buffer

Data Buffer (Figure 7.29b) is composed by 6 sets of 4-bit parallel shift register, for

storing the key code sent by keyboard decode circuit. The directions of the shift

are: new key code→Set 1→Set 2→Set 3→Set 4→Set 5→Set 6→…. As a matter

of fact, this is the bit-expandation of one bit SIPO in Section 6.3.2.

Figure 7.29a Simulation result of data buffer circuit (File: data_buf.scf)

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.29b Use Graphic editor of MAX+PLUS II to create data buffer circuit

 CPLD Logic Design and Practices Simple Designing Examples

(File: data_buf.gdf)

Figure 7.29c The internal circuit symbol of data buffer

7.6.4 Complete Keyboard Scan and Display Scan
Circuit

Step 1: Use Graphic editor MAX+PLUS II to create a circuit entry as illustrated in

Figure 7.30.

Figure 7.30 Keyboard scan and display scan by using graphic editor of

MAX+PLUS II (File: kbd_7seg.gdf)

Step 2: Complete functional simulation by using MAX+PLUS II and test weather

the functions meet the circuit specifications.

〜Skip the functional simulation〜

 CPLD Logic Design and Practices Simple Designing Examples

Step 3: If the circuits allow downloading to test, download (or programming) to

test the circuit after selecting the download (or programming) device and

floorplan program.

After setting up LP-2900 Lab Platform, please select EPF10K10TC144-4 chip and

the pin setup listed in Table 7.21. Try to push down SW4 (clrn) on the middle

bottom of LP-2900 and note the changes of 7-segment displayer and the changes of

L1 (CLK_IND), L2 (KP), L4 (DE0), L5 (DE1), L6 (DE2), L7 (DE3), L10 (KO2),

L11 (KO1) and L12 (KO2).

Table 7.21 Pin assignment of EPF10K10TC144-4 chip

Signal
EPF10K10TC144-4

chip pin
Signal

EPF10K10TC144-4

chip pin

LED_COM Pin 141 A Pin 23

10 Mhz Pin 55 B Pin 26

CLK_IND Pin 7 C Pin 27

KP Pin 8 D Pin 28

DE0 Pin 10 E Pin 29

DE1 Pin 11 F Pin 30

DE2 Pin 12 G Pin 31

DE3 Pin 13 H Pin 32

K2 Pin 18

K1 Pin 19 138sel0 Pin 33

K0 Pin 20 138sel1 Pin 36

KEY2 Pin 42 138sel2 Pin 37

KEY1 Pin 43

KEY0 Pin 44

 CPLD Logic Design and Practices Simple Designing Examples

7.7 LCD Interface Circuit

Nowadays, LCD displayer plays an important role in our daily life. From variety

domestic electrics such as alarm clock and microwave, to office suppliers such as

fax machine, printer, copy machine, calculator and notebook. Therefore, it applies

to many mechanics and is very popular. In this section, we will introduce the

applications and interface circuit of a design textual LCD module.

7.7.1 Descriptions of LCD Module

Currently, there are two types of mini LCD module, one is textual LCD module, and

the other is Figure LCD module. First, let’s get acquainting with textual LCD

module, which applies to most of the office machine. Figure 7.31 illustrates the

internal structure of textual LCD, which is composed by LCD board, LCD driving

chip, and HD44780 control chip. The features are as follows:

1. Compatible with 4-bit or 8-bit CPU;

2. Data Display Ram(DD RAM) has 80 bytes，and can display 80 words;

3. Installed Character Generator ROM (CG RAM), and installed 160 5 ×7

dot matrix characters;

4. Installed Character Generator RAM (CG RAM), and allows to build eight 5

×7 dot matrix characters;

5. CPU can read both the data of DD RAM and CG RAM;

6. HD44780 provides many functions of display control orders, such as clear

displayer, cursor reset, on/off display, on/off cursor, flash display, etc.

Note: Please refer to other references for further information about display control

instructions.

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.31 The functions blocks of Textual LCD

From Figure 7.31, we know that the connection of LCD interface circuit and textual

LCD module is through control wires and data wires, 4 or 8 lines. The control lines

are ENA, RS, and R/W that the descriptions are listed in Table 7.22.

Table 7.22 The combination of ENA, RS, and R/W

ENA RS R/W Descriptions

1 0 0 Writing orders to IR Register of HD44780

1 0 1 Reading Busy Flag (DB7) and Dress Counter (DB6〜DB0)

1 1 0 Writing data to DR Register (CG RAM or DD RAM)

1 1 1 Reading data from DR Register (CG RAM or DD RAM)

Each time, after sending power, LCD module has to accomplish the initial phase of

sending instructions to IR (Instruction Register), which the address is 00H. The

processes of the initial phase are described as follows.

1.Setting Functions

 Instructions Format:

 CPLD Logic Design and Practices Simple Designing Examples

ENA RS R/W D7 D6 D5 D4 D3 D2 D1 D0

1 0 0 0 0 1 DL N F * *

 DL: setting data width, DL = 0 is 4-bit, DL = 1 is 8-bit.

 N: display rows are one or two.

 F: setting character types.

N F rows Character types

0 0 1 5 ×7 dot

0 1 1 5 ×10 dot

1 * 2 5 ×7 dot

 Therefore, “38H” means 8-bit, double line display, and 5 × 7 dot character.

2.Open displayer

Instructions Format:

ENA RS R/W D7 D6 D5 D4 D3 D2 D1 D0

1 0 0 0 0 0 0 1 D C B

 D: D = 0, data not display

 D = 1, data display

 C: C = 0, cursor not display

 C = 1, cursor display

 B: B = 0, not flush

 B = 1, flush

 Therefore, “0EH” means the displayer is open and the cursor display.

 CPLD Logic Design and Practices Simple Designing Examples

3.Enter to Mode setup

 Instructions Format

ENA RS R/W D7 D6 D5 D4 D3 D2 D1 D0

1 0 0 0 0 0 0 0 1 I/D S

I/D: I/D = 0, when reading/writing data to DD RAM, address counter should minus

one unit.

 I/D = 1, when reading/ writing data to DD RAM, address counter should plus

one unit.

S: S = 1, when writing data to DD RAM, displayed data move left for a column.

 S = 0, when writing data to DD RAM, the displayed data should not move left

for a column.

Therefore, when “06H” means reading/writing data to DD RAM, the address

counter would add one unit; and when writing data to DD RAM, the displayed data

would not move left for a column.

4. Clear Displayer

Instruction Format:

ENA RS R/W D7 D6 D5 D4 D3 D2 D1 D0

1 0 0 0 0 0 0 0 0 0 1

Complete LCD Interface Circuit by “Data Path Circuit” and “Control Circuit.”

The control circuit is in charge of generating necessary signals of ENA, RS, and

R/W and creating states which start from “000” (the state of sending instruction

38H), and “001” (the state of sending instruction 0EH), then “010” (the state of

 CPLD Logic Design and Practices Simple Designing Examples

sending instruction 06H), and “011” (the state of sending instruction 01H), and the

following is “100” which sends out the digits. Except for the clock input, the

“Control Circuit” has “START” signals for activating clear and sends out data.

According to the states sent by the “Control Circuit,” the “Data Path Circuit” sends

out the relative data, including displayed digits and instructions, to LCD module.

7.7.2 Data Path Circuit of LCD Interface

“Data Path Circuit” is in charge of supplying the data for LCD modules, which

include the orders of the initial phase, such as 38H, 0EH, 06H and 01H, and the

input of the displayed data.

Step 1: Use the Graphic editor of MAX+PLUS II to create the following circuit

entry, from Figure 7.23a to Figure 7.32h, and create the internal circuit

symbol.

Figure 7.32a Data Circuit Module “38H” (File: 38H.gdf)

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.32b The internal circuit symbol of data circuit module “38H”

Figure 7.32c Data circuit module “0EH” (File: 0EH.gdf)

Figure 7.32d The internal circuit symbol of data circuit module “0EH”

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.32e Data circuit module “06H” (File: 06H.gdf)

Figure 7.32f the internal circuit symbol of data circuit module “06H”

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.32g Data Circuit Module “01H” (File: 01H.gdf)

Figure 7.32h The internal circuit symbol of data circuit module “01H”

Step 2: Please use the Graphic editor of MAX+PLUS II to create the following

circuit entry of “8-bit 5 × 1 data muliplexer”, Figure 7.33a, and the

internal circuit symbol.

Step 3: Complete functional simulation of “8-bit 5 x 1 data multiplexing circuit” by

using MAX+PLUS II (Figure 7.33b) and test weather the functions meet

the circuit specification. Go on to generate the internal circuit symbol,

Figure 7.33c.

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.33a 8-bit 5 × 1 data mulplexer circuit (File: LCD_MUX.gdf)

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.33b Simulation result of 8-bit 5 × 1 data multiplexer circuits

(File: LCD_MUX.scf)

Figure 7.33c Internal circuit symbol of 8-bit 5 × 1 data muliplexer circuit

Step 4： Use the Graphic editor of MAX+PLUS II to complete the circuit entry of

data path circuit (Figure 7.34a).

Figure 7.34a Data path circuit (File: DATAPATH.gdf)

 CPLD Logic Design and Practices Simple Designing Examples

Step 5: Complete functional simulation of “Data Path” by using MAX+PLUS II

and test weather the functions meet the circuit specification. Figure 7.34b

shows the simulation results of data path circuit. Then, go on to generate

the internal circuit symbol, Figure 7.34c.

Figure 7.34b Simulation result of data path circuit (File: DATAPATH.scf)

Figure 7.34c Internal circuit symbol of data path circuit

7.7.3 Control Circuit of LCD Interface Circuit

“Control Circuit” in charge of generating necessary signals of EN, RS, and R/W.

Step 1: Use the Graphic editor of MAX+PLUS II to complete the following circuit,

Figure 7.35a and Figure 7.33b, and generate the internal circuit symbols.

Step 2: Complete functional simulation by using MAX+PLUS II and test weather

the functions meet the circuit specifications. Figure 7.35b shows the

 CPLD Logic Design and Practices Simple Designing Examples

simulation result of CTRL.gdf circuit. Go on to generate the internal circuit

symbol if meets the specifications.

Figure 7.35a Control circuit module (File: CTRL.gdf)

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.35a Control circuit module (continue)

Figure 7.35b Simulation result of control circuit (File: CTRL.scf)

 CPLD Logic Design and Practices Simple Designing Examples

Figure 7.35c The internal circuit symbol of control circuit module

7.7.4 Complete LCD Interface Circuit

Step 1: Please use the Graphic editor of MAX+PLUS II to create the following

circuit, Figure 7.36a. Please use the devices of DIV10.GDF, CTRL.GDF,

CTRL.GDF, DATAPATH, DISBOUNCE listed in this chapter and

DIV1000 listed in Chapter 4 to complete the LCD interface.

Figure 7.36a Complete LCD interface circuit (File: LCD_INTF.gdf)

Step 2: Complete functional simulation by using MAX+PLUS II and test weather

the functions meet the circuit specifications.

〜Skip this functional simulation〜

 CPLD Logic Design and Practices Simple Designing Examples

Table 7.23 Pin setup of EPF10K10TC144-4 chip

Signal
EPF10K10TC144-4

chip pin
Signal

EPF10K10TC144-4

chip pin

10 MHz Pin 55 LCD_EN Pin 130

START Pin 124 LCD_RS Pin 122

CLRN Pin 126 LCD_RW Pin 128

DIN0 Pin 63 DOUT Pin 131

DIN1 Pin 62 DOUT Pin132

DIN2 Pin 60 DOUT Pin133

DIN3 Pin 59 DOUT Pin135

DIN4 Pin 51 DOUT Pin136

DIN5 Pin 49 DOUT Pin137

DIN6 Pin 48 DOUT Pin138

DIN7 Pin 47 DOUT Pin140

Step 3: If the circuits allow download testing, download (or programming) to test

the circuit after selecting the download (or programming) device and

floorplan program. Please adapt the techniques of floorplan programming

instructed in Section 4.6 to choose an EPF10K10TC144-4 chip and use the

pin assignment listed in Table 7.23. After setting up LP-2900 Lab Platform,

download the keyboard scan and display circuit to EPF10K10TC144-4

chip, and try to:

1. After pressing PS4 (CLRN) at the middle bottom of LP-2900, try to

press PS3 (START). The LCD should be cleared.

2. Please press PS3 after inserting the digits of ASCII code, such as 32H

 CPLD Logic Design and Practices Simple Designing Examples

of “2”, from SW1 (DIN7)〜SW8 (DIN0). The digit “2” will display in

front of the cursor on the LCD. Please try to insert other digits.

This example is for your own reference on designing LCD Module Interface Circuit.

Please modify the circuit to satisfy your need.

 CPLD Logic Design and Practices Simple Designing Examples

7.8 Evaluations

Please do the following evaluations according to the questions listed below:

!" Do you know the principles of each frequency generation?

!" Do you know the display scan principles of a 7-segment displayer?

!" Do you know how to detect the keys of a 4 ×3 keyboard?

!" Do you know how to test a 8 ×8 bi-color dot matrix LED?

!" Can you sense whether the key bumps? If yes, how to eliminate it?

!" Can you design, simulate, and verify the display scan interface circuit of a 7-

segment displayer?

!" Can you design, simulate, and verify the clock interface?

 CPLD Logic Design and Practices Simple Designing Examples

CHAPTER 8

Connecting with

Analog Circuit

LEAP

In Chapter one, it notes that all the physical measuring is analog signal. However,

the digital signal processor is more concise, faster, programmable, adjustable and

less effective by device features than analog signal. Therefore, A/D converter and

D/A converter are acquired in order to converse analog signal into digital signal and,

conversely, digital signal to analog signal. There are many kinds of A/D converter

and D/A converter in the market. In this chapter, the most frequently used one is

introduced.

8.1 A/D Converter—ADC0804

Produced by Harris Semi-conductor Co., ADC0804 is an A/D converter. The

function of A/D converter is to quantify the analog signal to digital signal after

sampling. ADC0804 is a CMOS successive approximation style A/D converter,

which has modified potentiometric ladder and three status outputs and is compatible

with the control bus of 8080A. Without any interface circuit, ADC0804 converter

can directly connect with microprocessor.

The input of analog differential voltage has a great common-mode-rejection and

allows analog zero-voltage offsetting. The input adjustment of referential voltage

allows any little voltage span to be coded in a complete 8-bit figure.

Main Features of ADC0804：

 1. Compatible with the bus of microprocessor, 80c48 and 80c80/85, and can be

directly connected without any interface circuit.

 2. Time cost for transmission is less than 100us.

 3. Ease interface with most of microprocessors.

 4. Can be operated “individually”

 Connecting with Analog Circuit CPLD Logic Circuit Design and Practice

 5. Differential analog voltage input.

 6. Work under bandgap referential voltage.

 7. Provide TTL compatible input/output signal.

 8. The chip contains clock generator circuit.

 9. 0V to 5V analog input voltage (requiring only a single +5V for operation).

 10. No zero-adjustment required.

Figure 8.1 is the pin layout of a 20-pin ADC0804. Once the input of /WR generates

varies from high to low, SAR register in ADC0804 will be latched, reset shift

register, and /INTR will output high voltage. As long as /CS and /WR input stay in

low voltage, ADC0804 will keep in the reset status. If one of these two input signals

changes from low to high as the transmission beginning, /INTR will output

low-level voltage which is for notifying microprocessor that the transmission has

completed. Low-level input voltage of /CS and /RD can reset the output signal of

/INTR.

Figure 8.1 Pin configuration of a 20-pin ADC0804

 Connecting with Analog Circuit CPLD Logic Circuit Design and Practice

8.2 D/A Converter————AD7528

AD7528 is a CMOS double 8-bit buffer multiply digital/analog converter produced

by Analog Devices Co. Figure 8.2 is the Block Diagram of AD7528 which has two

sets of separated latch providing a perfect interface of microprocessor. Through the

shared 8-bit TTL/COMS compatible input port, data can be sent to one of the latch.

/DAC A/DAC B is the control line for controlling the latch that the data sent to and

transform the data. Writing data to AD7528 is as simple as that to RAM. Further,

AD7528 is compatible with microprocessors—6800, 8080, 8085, and Z80.

Figure 8.3 is the pin configurations of a 20-pin AD7528 which has 2 kinds of

package, DIP and SOIC. /CS is the control line of chip selection; /CS = “0” reflects

AD7528 is being selected. Table 8.1 is a signal combination functional description

of the signal lines- /CS, /WR, and /DAC A/DAC B.

Figure 8.2 Block diagram of AD7528

 Connecting with Analog Circuit CPLD Logic Circuit Design and Practice

Figure 8.3 Pin configuration of AD7528

Table 8.1 Functional descriptions of /CS, /WR and /DAC A/DAC B signal

combination

/CS /WR DAC A/DAC B Description

1 X X Output the original transmission value

X 1 X Output the original transmission value

0 0 0 Operate transmission of D/A in set A

0 0 1 Operate transmission of D/A in set B

8.3 Single Chip -- 8051

MCS-51 is the code of a single chip family. Table 8.2 is the list of MCS-51 family

and the main components. Program memory capacity means the program memory

of a single chip whereas data memory capacity means the data memory of a single

chip.

 Connecting with Analog Circuit CPLD Logic Circuit Design and Practice

Table 8.2 MCS-51 family and the main components

Name
Program
Memory
Capacity

Date Memory

Capacity

16-bit

Timer

Serial I/O

Port

Serial I/O

Port
Circuit Type

8051 4K (ROM) 128 bytes 2 4 1

8751 4K (EPROM) 128 bytes 2 4 1 HMOS

8031 unavailable 128 bytes 2 4 1 HMOS

8052 8K (ROM) 256 bytes 3 4 1 HMOS

8752 8K (EPROM) 256 bytes 3 4 1 HMOS

8032 unavailable 256 bytes 3 4 1 HMOS

80c51 4K (ROM) 128 bytes 2 4 1 CHMOS

87c51 4K (EPROM) 128 bytes 2 4 1 CHMOS

80c31 Unavailable 128 bytes 2 4 1 CHMOS

The following is the general descriptions of 8x51:

 1. An 8-bit single chip for controlling

 2. Strengthen logic operation instruction of one bit

 3. The chip has a 128-bit RAM,

 4. The chip contains 2 Timer/Counter,

 5. The chip contains 1 Full-duplex UART (Universal Asynchronous Receiver),

 6. The ship contains 5 interrupt resources with 2 level priority architecture,

 7. The chip has a clock oscillator circuit,

 8. The chip can expand externally to 64K program memory,

9. The chip can expand externally to 64K data memory.

 Connecting with Analog Circuit CPLD Logic Circuit Design and Practice

!"Pin configuration of 8051

The pin configuration of 8051 is displayed as Figure 8.4. The descriptions of each

connection are listed in Table 8.3.

Figure 8.4 Pin Configuration of 8051

Table 8.3 Pin descriptions of 8051

Pin Name Pin Descriptions

Vcc 40 Positive terminal of power. Voltage: 5V ±10%。

Vss 20 Negative terminal of power.

RST

9

Reset signal input of CPU. Staying in low voltage normally but raise to high

voltage as resetting and will keep at least 2 machine cycles while the single chip will

progress the diverse jobs of resetting the system. Afterward, the address starts

from 0000h when operating.

 Connecting with Analog Circuit CPLD Logic Circuit Design and Practice

ALE/PROG

30

This pin has two functions: (1) ALE is the initial of address latch enable. When 51

is reading the external program or when the data sends out the addressing signals,

the signals would be companied sending out for the external circuit to latch the

low-bit signals of the addressing line; (2) PROG is the special functional input pin

when 8751 is programming.

/PSEN 29
/PSEN is the initial of program strobe enable. When 8051 is reading the external

program memory, it will at the same time, sending out the signal for reading the

program code.

/EA/VPP

31

The pin has double functions: (1) /EA is the initial of external access. Activate with

voltage low. Implementing reading the external programs as /EA = “0” while

reading the internal programs as /EA = “1”; (2) Vpp is the programming voltage

input pin when 8751 is programming.

XTAL1 19 Input terminal of systematic oscillator crystal.

XTAL2 20 Output terminal of systematic oscillator crystal.

PORT0

39~32

Port0 is part of the open drain construction; therefore, it requires an external

connection to pull-up resistor. There are three functions of this set: (1)

bit-addressable bi-directional port, (2) low byte of output address, (3) bi-direction

port.

PORT1 1~8 Port1 is a bit-addressable bi-direction port with internal pull-up resistor.

PORT2 21~28
There are two functions of this set (1) bit-addressable bi-direction port with internal

pull-up resistor, (2) high byte of output address.

PORT3

10~17

This set has 2 functions: (1) bit-addressable bi-direction port with internal pull-up

resistor; (2) The functions of each pin are as follows: RXD (10): input port of serial

communication; TXD (11): output port of serial communication; INT0 (12): input of

external interrupt 0, INT1 (13): input of external interrupt1; T0 (14): input of

external Timer0; T1 (15): input of external Timer1; /WR (16): writing signal; /RD

(17): reading signal.

Figure 8.5 illustrates the extend circuits of 8051 single chip is not complicated.

Usually, it only requires reset circuits, oscillator and some I/O devices.

 Connecting with Analog Circuit CPLD Logic Circuit Design and Practice

Figure 8.5 8x51 microprocessor and its reset circuit and oscillator circuit

!"8051 addressing modes

Please note that there are five addressing modes of 8051:

 1. Direct addressing,

 2. Indirect addressing,

 3. Register addressing,

 4. Immediate addressing,

5. Indexed addressing.

 Connecting with Analog Circuit CPLD Logic Circuit Design and Practice

!"8051 Program Development Flow

Generally, the flow of 8051 program development is illustrated as 8.6:

Figure 8.6 program development flow of a 8x51 processor

The flow starts with problem definition and explanation, then to draw and develop a

flow chart. According to the flow chart, the next step is to editing, encoding, linking,

programming and testing the programs of the sub-program. If problem occurs, then

modify the sub-program and re-encoding, linking, programming, and testing until

the problem are eliminated. After the sub-program or go back to edit the

main-program to modify the main program, and re-encoding, linking, programming

and testing until the problems are eliminated. After the sub-program has been

developed, please edit, encode, link, program and test the main program. Again, if

problem occurs, go back to edit the sub-program to modify the sub-program or go

 Connecting with Analog Circuit CPLD Logic Circuit Design and Practice

back to edit the main-program to modify the main program, and re-encoding,

linking, programming and testing until the problems are eliminated.

8.4 Design Example————Connecting with
ADC0804, AD7528, and 8951

We know that all the natural physical power is analog power from the instruction of

Chapter 1, and the power is measurable, detectable, and controllable. To implement

the advantages of digital system, we have to transform the analog signal into digital

signal and process with digital signal. The procedures of transformation are as

follows:

 analog signal analog signal digital signal

Physical Power――→Sensor――→A/D converter――→digital processor system

The sensor can transform the natural physical power into the signals of

electric—voltage signal or electric current signal—that the signal stays in analog

signal. The voltage signal becomes digital signal through A/D converter under some

circumstances. The digital signal, after processed, can turn to analog signal to

control some mechanisms, such as current control valve, cooling fan, heater). The

conversion is as follows

 digital signal analog signal

digital processor system——→D/A converter——→Controlled unit

For interpreting the role of ADC0804, AD7528 and 8951, Figure 8.7 illustrates the

implication of ADC0804, AD7528, and 8951. The 8-bit counter is for replacing the

 Connecting with Analog Circuit CPLD Logic Circuit Design and Practice

physical power and sensor while 8951 is the digital processor system which take the

responsibilities of controlling D/A converter, accepting A/D notification to restore

the transferred data, digits transforms, scanning the 7-segment displayer and

sending out the displayed digits to the 7-segment displayer. We will implement the

circuits in the dotted frame of Figure 8.7 to CPLD chip.

In LP-2900 Logic Circuit Design Lab Platform, the connecting of 8951, ADC0804

and AD7528 is shown as Figure 8.8. The circuit layout of Figure 8.9 is the

7-segment displayer of LP-2900 Logic Circuit Design Lab Platform. The

connection and signal definitions of 8951 and EPF10K10TC144-4 is shown as

Table 8.4 and Table 8.5 shows that of ADC0804 and EPF10K10TC144-4 and Table

8.6 listed that of AD7528 and EPF10K10TC144-4.

Figure 8.7 Connecting application of ADC0804, AD7528, and 8951

 Connecting with Analog Circuit CPLD Logic Circuit Design and Practice

Figure 8.8 Connecting application of 8951 and ACD0804, AD7528 on LP-2900

Lab Platform

 Connecting with Analog Circuit CPLD Logic Circuit Design and Practice

Figure 8.9 Circuit Diagram of a 7-segment displayer on LP-2900 Lab Platform

Table 8.4 Connections of 8951 and EPF10K10TC144-4 chips and signal definition

Code P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7

Signal AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7

Pin Pin 131 Pin 132 Pin 133 Pin 135 Pin 136 Pin 137 Pin 138 Pin 140

P0.0〜P0.7 also connect D0〜D7 of LCD

Code P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7

Signal DE1 DE2 DE3 Not used in the current example

Pin Pin 17 Pin 18 Pin 19 Pin 20 Pin 21 Pin 22 Pin 141 Pin 142

P1.0〜P1.7 also connect L21〜L26 and RG_EN and BAR_EN

 Connecting with Analog Circuit CPLD Logic Circuit Design and Practice

Code P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7

Signal D0 D1 D2 D3 Dp ENA

Pin Pin 7 Pin 8 Pin 9 Pin 10 Pin 11 Pin 12 Pin 13 Pin 14

P2.0〜P2.7 also connect L1〜L8

Code P3.0 P3.1 P3.2 P3.3 P3.4 P3.5 P3.6 P3.7

Signal AD_CS DA_CS INT0 /WR /RD

Pin Pin 41 Pin 144 Pin 98 Pin 99 Pin 100 Pin 101 Pin 122 Pin 128

P3.2〜P3.5 also connect CR1〜CR4 of 8 × 8 dot matrix

P3.6〜P3.7 also RS and RW of LCD

Table 8.5 Connections and signal definitions of ADC0804 and

EPF10K10TC144-4

A/D→→→→ADC0804

Code DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7

Signal AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7

Pin Pin 131 Pin 132 Pin 133 Pin 135 Pin 136 Pin 137 Pin 138 Pin 140

DB0〜DB7 also connect D0〜D7 of LCD

Code /CS /RD AD_INTR

Signal AD_CS /RD AD_INTR

Pin Pin 38 Pin 128 Pin 143

AD_WR is Y6 of 3 to 8 decoder output; /RD also connects RW of LCD.

 Connecting with Analog Circuit CPLD Logic Circuit Design and Practice

Table 8.6 Connections and signal definition of AD7528 and EPF10K10TC144-4

D/A→→→→AD7528

Code DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7

Signal DD0 DD1 DD2 DD3 DD4 DD5 DD6 DD7

Pin Pin 131 Pin 132 Pin 133 Pin 135 Pin 136 Pin 137 Pin 138 Pin 140

DB0〜DB7 also connect D0〜D7of LCD

Code /CS /WR /DACA

Signal DA_CS /WR /DACA

Pin Pin 39 Pin 128 Pin 122

/WR also connect RW of LCD；/DACA also connect RS of LCD

In order to implement the connection applications of Figure 8.7 and ADC0804,

AD7528 as well as 8951 on LP-2900 Logic Circuit Design Lab Platform, we have

to

 1. Complete 8951 programs writing and programming,

 2. Complete the parts of dotted line of Figure 8.7 in CPLD chip.

Step 1: Please complete the following 8951 program assembling and programming.

 We know the functions of 8951 are:

 Connecting with Analog Circuit CPLD Logic Circuit Design and Practice

According to the procedure displayed above, we can, therefore, write AD2

program of 8951 in Figure 8.10. When assembled the file, AD2.HEX, of

Figure 8.11 is acquired. Please program this file onto 8951.

.symbols

.linklist

.debug asm

DisplayBuffer equ 30h ;4 bytes

ScanCounter equ 34h

VoltLow equ 35h
VoltHigh equ 36h
;--
 org 0h
 jmp Reset
Reset:
 mov sp,#70h ;Setup stack pointer
 mov ScanCounter,#0
 mov p1,#06h ;Initial scan value

 Connecting with Analog Circuit CPLD Logic Circuit Design and Practice

 mov p2,#20h ;Setup blank value
 mov p3,#ffh ;AD_CS-->'H'，DA_CS-->'H'

 ;/RD-->'H', /WR-->

;--

ADLoop:
 Push p1
 push p2
 anl p3,#fdh ;DA_CS-->'L'
 anl p3,#3fh ;DA_WR-->'L',DACA-->'L'
 orl p3,#c0h ;DA_WR-->'H',DACA-->'H'
 orl p3,#02h ;DA_CS-->'H'
; Above four instructions activate set A of D/A Converter
 anl p3,#feh ;AD_CS-->'L'
 mov p2,#20H ;Setup Blank value
 mov p1,#07h ;AD /WR-->'L'
 mov p1,#06h ;AD /WR-->'H'
; Above four instructions activate A/D Converter

 jb p3.2,$; Wait for A/D conversion complete
 anl p3,#7fh ;/RD-->'L'
 mov a,p0 ;Read A/D result
 orl p3,#80h ;/RD-->'H'
; Above three instructions read data from A/D conversion
 orl p3,#01h ;AD_CS-->'H'

; Above nine instructions activate A/D conversion and wait for reading its data

 pop

 pop

 call Transfer ; For value translation

 call DisplayVoltIntoDisplayBuffer
 ；Call subprogram of output voltage value
 push
 push psw
 setb rs0 ;select RB1

clr rs1
 call ScanDisplay ;Call Subroutine of scan display

 Connecting with Analog Circuit CPLD Logic Circuit Design and Practice

 pop psw
 pop a
 jmp ADLoop
;--
; Subroutine of Scan Display
;--
ScanDisplay:
 mov r0,#ScanCounter
 inc @r0
 cjne @r0,#4,NotOver
 mov @r0,#0
NotOver:
 cjne @r0,#0,ScanDisplay2
 mov p2,30h ;Output contain of 30h to p2
 mov p1,#05h ;(DE1,DE2,DE3)―＞ “101”
 ret
ScanDisplay2:
 cjne @r0,#1,ScanDisplay3
 mov p2,31h
 mov p1,#04h ;(DE1,DE2,DE3)―＞ “011”
 ret
ScanDisplay3:
 cjne @r0,#2,ScanDisplay4
 mov p2,32h
 orl p2,#10h
 mov p1,#03h ;(DE1,DE2,DE3)―＞ “010”
 ret
ScanDisplay4:
 mov p2,33h
 mov p1,#02h ;(DE1,DE2,DE3)―＞ “001”
 ret
;
;---
; Move voltage value, which in VoltHigh and VoltLow, to DisplayBuffer for display

DisplayVoltIntoDisplayBuffer:
 mov r1,#DisplayBuffer

 Connecting with Analog Circuit CPLD Logic Circuit Design and Practice

Loop: mov a,VoltLow
 mov b,#10h
 div ab
 mov @r1,b
 inc r1
 mov @r1,a
 inc r1
 mov a,VoltHigh
 mov b,#10h
 div ab
 mov @r1,b
 inc r1
 mov @r1,a
 ret
;
;--
; Subprogram of value translation
; Input: a registr
; Output: VoltHigh and VoltLow
; Note：The read in value times 0.02 is voltage value
;---
Transfer:
 mov b,#2
 mul ab
 mov VoltHigh,b
 mov VoltLow,a
 call Bin2Bcd ; Call subprogram of binary to BCD
 mov VoltHigh,r4
 mov VoltLow,r3
 ret
;
;--
; Subprogram of binary to BCD
; Input: VoltHigh and VoltLow

; Output : r3 and r4 registers
;--

 Connecting with Analog Circuit CPLD Logic Circuit Design and Practice

Bin2Bcd:

 mov r5,#16 ;16 bits

 clr a

 mov r3,a

 mov r4,a

TLoop:
 mov a,VoltLow
 rlc a
 mov VoltLow,a
 mov a,VoltHigh
 rlc a
 mov VoltHigh,a
 mov a,r3
 addc a,r3
 da a
 mov r3,a
 mov a,r4
 addc a,r4
 da a
 mov r4,a
 djnz r5,Tloop
 ret
 end

Figure 8.10 AD2 program of 8951

Step 2: Insert the programmed 8951 onto the 8951 socket on LP-2900.

Step 3: Complete the circuit entry, Figure 8.12, by using proper logic gate in the

Graphic Editor of MAX+plus II.

 Connecting with Analog Circuit CPLD Logic Circuit Design and Practice

Step 4: Simulating the circuit, and test weather the functions meet the circuit

specifications. Please proceed the functional simulation after modifying

Figure 8.12 to Figure 8.13. Figure8.14 is the simulation result of counter

and display interface and it meet the specifications.

:1000000002000375817075340075900675A0207527

:10001000B0FFC090C0A053B0FD53B03F43B0C04349

:10002000B00253B0FE75A02075900775900620B2FF

:10003000FD53B07FE58043B08043B001D0A0D090A5

:1000400012009F120087C0E0C0D0D2D3C2D41200E9

:1000500057D0D0D0E00112783406B604027600B64C

:1000600000078530A075900522B601078531A0757F

:10007000900422B6020A8532A043A0107590032294

:100080008533A0759002227930E53575F01084A78C

:10009000F009F709E53675F01084A7F009F7227525

:1000A000F002A485F036F5351200B08C368B35227F

:1000B0007D10E4FBFCE53533F535E53633F536EBFD

:1000C0003BD4FBEC3CD4FCDDEC2249

:00000001FF

Figure 8.11 AD2 hexadecimal file

 Connecting with Analog Circuit CPLD Logic Circuit Design and Practice

Figure 8.12 Counter and Display interface

 Connecting with Analog Circuit CPLD Logic Circuit Design and Practice

Figure 8.13 Modified counter and display interface for simulation and verification

purpose

 Connecting with Analog Circuit CPLD Logic Circuit Design and Practice

圖8.14 Simulation result of Figure 8.13 circuit.

Step 5: Please download the circuit, Figure 8.13, after floorplan programming for

testing circuit. You may use the floorplan techniques illustrated in Section

4.6 and select an EPF10K10TC144-4 chip while referencing the pin

assignment listed in Table 8.7. After assemble up LP-2900 Lab platform,

please download the designed circuit to the EPF10K10TC144-4 chip and

connect ADIN of CON7 with DAOUT1 by wire. Therefore, the signals

transmitted by D/A converter can send to A/D converter for conversing.

Try to push the button of UP (PS4) on the left middle of LP-2900 and note

 Connecting with Analog Circuit CPLD Logic Circuit Design and Practice

weather the digits of 7-segment displayer raised (2.48v is the highest).

Then, try to push the button of DOWN (PS2) on the left middle of LP-2900

and note weather the digits of 7-segment displayer decreased.

 Table 8.7 Pin assignment EPF10K10TC144-4 chip

Name of Signal
EPF10K10TC144-4

chip pin
Name of Signal

EPF10K10TC144-4

chip pin

DA0 Pin 131 SEG7_A Pin 23

DA1 Pin 132 SEG7_B Pin 26

DA2 Pin 133 SEG7_C Pin 27

DA3 Pin 135 SEG7_D Pin 28

DA4 Pin 136 SEG7_E Pin 29

DA5 Pin 137 SEG7_F Pin 30

DA6 Pin 138 SEG7_G Pin 31

DA7 Pin 140 SEG7_DP Pin 32

P2.0 Pin 7 P3.0 Pin 41

P2.1 Pin 8 P3.1 Pin 144

P2.2 Pin 9

P2.3 Pin 10 AD_CS Pin 38

P2.4 Pin 11 DA_CS Pin 39

P2.5 Pin 12 OSC Pin 55

P1.0 Pin 17 51_INT0 Pin 98

P1.1 Pin 18 AD_INTR Pin 143

P1.2 Pin 19 DOWN Pin 56

DE1 Pin 33 UP Pin 126

DE2 Pin 36 AD_RD Pin 128

DE3 Pin 37 /WR Pin 122

 Connecting with Analog Circuit CPLD Logic Circuit Design and Practice

8.5 Evaluation

 Please evaluate the accomplishment according to the following questions:

#" Do you know which A/D converter is adapted in this chapter?

#" Do you know which D/A converter is adapted in this chapter?

#" Can you describe the steps to activate A/D converter?

#" Can you describe the steps to activate D/A converter?

 Connecting with Analog Circuit CPLD Logic Circuit Design and Practice

CHAPTER 9

 CPLD LOGIC
DESIGN LAB

PLATFORM LP-2900

LEAP

9.1 Function Description to LP-2900

Due to the rapid improvement in electronic technology in these years, our life is

becoming more and more convenient and comfortable. The domestic electrics,

mobile phones and computer side products all of these indicate the electric products

are getting smaller, light-weighted, and powerful. Digital circuits are gradually

replacing the analog circuits. At the mean time, with the improvement of production

in digital circuits, the standard IC, such as TTL/COMS is being replaced by

CPLD/FPGA. With the population of CPLD chip, it is about time to reverse the

teaching methodologies in Logic Design. LP-2900 CPLD Logic Design Lab

Platform (Figure 9.1) is a product produced by Leap Electronic Co. in 1999. Under

the devoted research and development, Leap Electronic Co. integrates the major

functions--design, simulation, and verification--to provide a comprehend logic

design teaching environment, in which the features are easy to set up and operate,

instant response, and the course arrangement set from generous to sophisticated.

Figure 9.1 LP-2900 Logic Design Lab Platform

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

 Taking ALTERA EPF10K10TC144-4 CPLD chip as the core, LP-2900 is designed

as a multi-functional logic design lab platform, which is divided into four

sections, CPLD chipboard, I/O device lab board, PC printer download interface,

and power.

!"CPLD chip board

The four parts (Figure 9.2) set on the CPLD chip board include one ALTERA 10K

series chip, one EPROM chip socket, one reset bottom, and one pin status display

LED (Surface Mounted Device, SMD). ALTERA EPF10K10TC144-4 CPLD chip

provides a diversity and convenient rout of constant re-loading to program new

circuits. To provide an alternative method to program, users can insert EPROM chip

with programmed “configuration data” to EPROM chip socket. The reset bottom is

set to allow 10K chip to exit the user mode and enter into the command mode.

After configuring the circuits and resetting, it will progress to re-activate the user

mode. The programming methods introduced in this book allow 10K chip

automatically exit user mode, enter into the command mode to configure and reset

and then re-activate the user mode. Thus, it is not necessary to push the reset

bottom before downloading. The pin status display LED is a SMD, showing the

status of each pin after the power turns on, for detecting the situation of the

circuits.

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

Figure 9.2 CPLD chip-board

!"I/O device lab board

The big board under the CPLD chipboard is the I/O device lab board. There are 12

I/O devices on the board, which are (1) 4 sets of Red-Yellow-Green LED; (2) 6

common cathode 7 segment display; (3) one buzzer; (4) 2 electronic dices; (5) one

clock circuit; (6) 3 sets of 8-bit data switch; (7) 4 pulse bottom; (8) one frequently-

used 4 × 3 keyboard; (9) one 8 ×8 dot matrix LED display; (10) one LCD; (11)

A/D & D/A circuit module; and (12) 8051 single chip module. The board contains

all frequent-used I/O devices of digital logic circuits to provide a learning

comprehend environment.

!"PC printer download interface circuit

The circuit provides downloading “configuration data” from PC printer port that is a

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

convenient rout for programming 10K chip. It saves the trivial works for

disassembling to set the interface. The only job that takes is to connect printer bus

line to PC printer port.

!"Power

AC 90V~260V, 50Hz/60Hz, DC 5V, 2A input, providing all the power needed for

all circuits and it has a short-circuit-protected measure.

LP-2900 CPLD Logic Design Lab Platform should be used with ALTERA

MAX+PLUS II software. Currently, the top three popular versions in the market of

Taiwan are (1) Business Version (9.1 version, February 1999). To make the whole

functions work, it requires a connecting key-pro to the printer port. (2) Student

Version (7.21SE version, June 1999). Required by the US universities to apply

CPLD courses, 7.21SE Version is designed for educating. Although this version

does not provide functional simulation (except timing simulation), and only supply

2 types of chip, EPM7128S and EPF10K20, however, it provides VHDL design

environment. (3) Baseline Version (9.23 Version, June 1999). Except for VHDL

design environment, it provides a design environment as graphic entry, text entry,

and waveform entry. Meanwhile, it provides functional and timing simulations.

This version can be used with any ALTERA chips. For free download and usage of

Student and Baseline Version, please login at http://www.altera.com.

The features of LP-2900 CPLD Logic Design Lab Platform are：

1. Easy to setup and collect;

2. Clear description on the board for easier operation;

3. EPF10K10TC144-4 CPLD chip on the CPLD chipboard provides constant

reloading for programming new circuits. This is very flexible and

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

convenient. Meanwhile, EPF10K10TC144-4 chip offers a wide range

circuit application from tiny to large circuits.

4. The pin status display of SMD LED shows the current status of each pin.

This equipment is quite convenient for circuit detection.

5. I/O device lab-board comprises most of the I/O devices required for digital

logic circuit, providing a comprehensive learning environment.

6. Used with MAX+PLUS II, it provides an integrated environment of design,

simulation, and verification of digital circuit. This integrated environment

can not only ease the universities’ courses on digital logic design, digital

circuit design, digital system design and VHDL digital circuit design but

also provide an excellent environment for the department of R&D to

develop circuits.

7. The book ”CPLD Logic Circuit Design and Practice” is edited by graphic-

oriented, arranged from simple to sophisticated, draw out a lots of

illustrations, instruct with detail descriptions. Teaching with that book to

present logic design instruction and practices, and unite theories and

phenomenon testimony are the brand new teaching methodology.

8. To complete the combined circuit practices using 8051 and CPLD.

9. Compatible with WIN95/98/2000/NT working systems.

9.2 Setting up LP-2900

!"Setting up LP-2900 CPLD Logic Design Lab Platform

 It requires only two steps to setup LP-2900,

1. Connecting the power cord with 110V socket；

2. Connecting one terminal of the printer bus line with the parallel port of PC,

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

which has MAX+PLUS II, and the other with the parallel port of LP-2900

CPLD Logic Design Lab Platform.

9.3 The Architecture and Circuits of LP-
2900

 1. Figure 9.3 illustrates LP-2900 Lab-Platform is composed by four parts,

CPLD chipboard, I/O Lab-board, PC printer download interface and power.

 2. Figure 9.4 demonstrates the connection status of the three components on

the CPLD chipboard. There are module connector, CLPD chip, and ISP

download bus connector.

 3. Figure 9.5 illustrates the connection status of the eleven parts on the I/O

Lab-board that are module connector, buzzer, 7 segment display, clock,

pulse keys, 8 ×8 dot matrix display, LCD module, 4 ×3 keyboard module,

8051 single chip, A/D & D/A module, and LED display, including the LED

of dice array.

 4. Figure 9.6 describes the connection of EPF10K10TC144-4.

 5. Figure 9.7 is the socket layout of the chip module.

 6. Figure 9.8 is the circuit layout of I/O status LED on chip module.

 7. Figure 9.9 is the download interface of EEPROM and printer parallel port.

 8. Figure 9.10 illustrates the connection on I/O Lab-board.

 9. Figure 9.11 demonstrates the module connector on CPLD chipboard.

 10. Figure 9.12 is the LED display driver on I/O Device Lab-board.

 11. Figure 9.13 is the driver of 7-segment display and buzzer on I/O Device

Lab-board.

 12. Figure 9.14 is the buttons of pulse and clock up/down on I/O Device Lab-

board.

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

 13. Figure 9.15 is the circuits of 8 × 8 Dot Matrix Display, LCD module, and 4

×3 keyboard.

14. Figure 9.16 is the circuits of data switch on I/O Device Lab-board, one of

which is a set of 8-key with LED display.

15. Figure 9.17 illustrates A/D and D/A circuits on I/O Device Lab-board.

16. Figure 9.18 demonstrates 8 × 8 Dot Matrix Module on I/O Device Lab-

board.

Figure 9.3 Blocks of LP-2900

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

Figure 9.4 Connection of the three major parts on CPLD chip-board

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

Figure 9.5 Block Diagram of I/O Device Lab-board

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

Figure 9.6 Connection of EPF10K10TC144-4

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

Figure 9.7 Chip Block-Pinout

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

Figure 9.8 Chip Block I/O Status LEDs

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

Figure 9.9 ISP and EEPROM Extend Download Circuit

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

Figure 9.10 Connectors on I/O Device Lab-board

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

 Figure 9.11 Module Connectors on CPLD chip-board

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

Figure 9.12 LED Display Driver on I/O Device Lab-board

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

Figure 9.13 7-Segment Display and Buzzer on I/O Device Lab-board

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

Figure 9.14 Pulse and Clock Up/Down Push Buttons on I/O Device Lab-board

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

Figure 9.15 Dot Matrix Display, keyboard, and LCD Module

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

Figure 9.16 Data Switches on I/O Device Lab-board

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

 Figure 9.17 8051, A/D and D/A

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

 Figure 9.18 8 × 8 dot matrix module on I/O device lab board

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

9.4 Pin arrangement of LP-2900

Pin arrangement data, an important data that highly used, is an essential data for

floor plane setup. The pin arrangement data of ALTERA EPF10K10TC144 on LP-

2900 is described in detail as follows.

9.4.1 Red-Yellow-Green LED

Code L1 L2 L3 L4 L5 L6 L7 L8

Device Red Yellow Green Red Yellow Green Red Yellow

Pin Pin 7 Pin 8 Pin 9 Pin 10 Pin 11 Pin 12 Pin 13 Pin 14

Code L9 L10 L11 L12 LED_COM

Device Green

LED

Red

LED

Yellow

LED

Green

LED

Common cathode of LED1〜

LED12

Pin Pin 17 Pin 18 Pin 19 Pin 20 Pin 141

† L1〜L12 are LED anode inputs for each LED

† LED_COM is the common cathode of all LED

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

9.4.2 7-Segment Display with Common Cathode

Code A B C D E F G DP

Device 7 Segment Display

Pin Pin 23 Pin 26 Pin 27 Pin 28 Pin 29 Pin 30 Pin 31 Pin 32

Code DE1 DE2 DE3 － － － － －

Device 74138 － － － － －

Pin Pin33 Pin36 Pin37 － － － － －

† DE1, DE2 and DE3 are connected to 74138 which outputs Y0〜Y5 as C1〜C6.

† C1〜C6 are the common cathodes of 6 7-segment display.

9.4.3 BUZZER

Code SP1

Device Sp1

Pin Pin 46

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

9.4.4 Electronic Dice

Code L13 L14 L15 L16 L17 L18 L19

Device Red Dice

Pin Pin 7 Pin 8 Pin 9 Pin 10 Pin 11 Pin 12 Pin 13

Code L20 L21 L22 L23 L24 L25 L26

Device Green Dice

Pin Pin 14 Pin 17 Pin 18 Pin 19 Pin 20 Pin 21 Pin 22

Code Dice_COM － － － －

Device Common cathode of L13〜L26 － － － －

Pin Pin 142 － － － －

† L13〜L26 are anode inputs for each LED

† Dice_COM is the common cathode of L13〜L26

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

9.4.5 LCD display

Code EN RS RW D0 D1 D2 D3 D4

Device LCD

Pin Pin 130 Pin 122 Pin 128 Pin 131 Pin 132 Pin 133 Pin 135 Pin 136

Code D5 D6 D7 － － － － －

Device LCD － － － － －

Pin Pin 137 Pin 138 Pin 140 － － － － －

9.4.6 CLOCK

Code L27 L28 L29 L30 L31 L32 L33 L34

Device Yellow LED

Pin Pin 23 Pin 26 Pin 27 Pin 28 Pin 29 Pin 30 Pin 31 Pin 32

Code DE1 DE2 DE3 Code OSC UP DOWN

Device 74138 Device OSC Button Button

Pin Pin 33 Pin 36 Pin 37

Pin Pin 55 Pin 121 Pin 125

† DE1, DE2 and DE3 are connected with 74138 which output Y6 as common

cathode of L27〜L34.

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

9.4.7 8 x 8 Dot Matrix LED Display

!"Common Anodes

Code Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 Row 7 Row 8

Device 8 ×8 Dot Matrix

Pin Pin 88 Pin 89 Pin 90 Pin 91 Pin 92 Pin 95 Pin 96 Pin 97

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

!"Red Cathodes

Code CR1 CR2 CR3 CR4 CR5 CR6 CR7 CR8

Device 8 ×8 Dot Matrix

Pin Pin 98 Pin 99 Pin 100 Pin 101 Pin 102 Pin 109 Pin 110 Pin 111

† CR1〜CR8 driven by HI

!"Green Cathodes

Code CG1 CG2 CG3 CG4 CG5 CG6 CG7 CG8

Device 8 ×8 Dot Matrix

Pin Pin 112 Pin 113 Pin 114 Pin 116 Pin 117 Pin 118 Pin 119 Pin 120

† CG1〜CG8 driven by HI

9.4.8 8051 Single Chip

Code P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7

Device 8051

Pin Pin 131 Pin 132 Pin 133 Pin 135 Pin 136 Pin 137 Pin 138 Pin 140

† P0.0〜P0.7 also connect with D0〜D7 of LCD

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

Code P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7

Device 8051

Pin Pin 17 Pin 18 Pin 19 Pin 20 Pin 21 Pin 22 Pin 141 Pin 142

† P1.0〜P1.7 also connect L21〜L26 and LED_COM and Dice_COM。

Code P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7

Device 8051

Pin Pin 7 Pin 8 Pin 9 Pin 10 Pin 11 Pin 12 Pin 13 Pin 14

† P2.0〜P2.7 also connect L1〜L8。

Code P3.0 P3.1 P3.2 P3.3 P3.4 P3.5 P3.6 P3.7

Device 8051

Pin Pin 41 Pin 144 Pin 98 Pin 99 Pin 100 Pin 101 Pin 122 Pin 128

† P3.2〜P3.5 also connect CR1~CR4 on 8 × 8 Dot Matrix

† P3.6〜P3.7 also connect RS and RW on LCD

9.4.9 DATA SWITCHES

Code SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8

Device Push Button

Pin Pin 47 Pin 48 Pin 49 Pin 51 Pin 59 Pin 60 Pin 62 Pin 63

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

Code SW9 SW10 SW11 SW12 SW13 SW14 SW15 SW16

Device Dip Switch

Pin Pin 64 Pin 65 Pin 67 Pin 68 Pin 69 Pin 70 Pin 72 Pin 73

Code SW17 SW18 SW19 SW20 SW21 SW22 SW23 SW24

Device Dip Switch

Pin Pin 78 Pin 79 Pin 80 Pin 81 Pin 82 Pin 83 Pin 86 Pin 87

9.4.10 PULSE

Code PS1 PS2 PS3 PS4

Device Push Button with LED

Pin Pin 54 Pin 56 Pin 124 Pin 126

9.4.11 KEYBOARD

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

Code DE1 DE2 DE3 RK1 RK2 RK3

Device KEYBOARD

Pin Pin 33 Pin 36 Pin 37 Pin 42 Pin 43 Pin 44

† DE1, DE2 and DE3 are connected to 74138 which outputs Y0〜Y3 connect to

C1〜C4 on the keyboard.

9.4.12 A/D, D/A

!"A/D →→→→ ADC0804

Code DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7

Device ADC0804

Pin Pin 131 Pin 132 Pin 133 Pin 135 Pin 136 Pin 137 Pin 138 Pin 140

† DB0〜DB7 also connect D0~D7 on LCD

Code /CS /RD DE1 DE2 DE3 AD_INTR

Device ADC0804

Pin Pin 38 Pin 128 Pin 33 Pin 36 Pin 37 Pin 143

† AD_WR connect to the output Y6 of 74138.

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

† DE1, DE2 and DE3 are connected to 74138 as inputs.

† /RD also connect RW on LCD

!"D/A-->AD7528

Code DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7

Device AD7528

Pin Pin 131 Pin 132 Pin 133 Pin 135 Pin 136 Pin 137 Pin 138 Pin 140

† DB0〜DB7 also connect D0~D7 on LCD

Code /CS /WR /DACA － － － － －

Device AD7528 － － － － －

Pin Pin39 Pin128 Pin122 － － － － －

† /WR also connect RW on LCD

† /DACA connect RS on LCD

9.5 Evaluations

Please do the following evaluations according to the questions listed below:

#" Do you know which Lab-Platform is introduced in this chapter?

#" Do you know which CPLD chip is adopted in this Lab-Platform?

#" Do you know the main functions of Lab-Platform? Do you know how to setup?

#" Do you know how to check the arrangement of Pins?

 CPLD Logic Design LAB Platform LP-2900 CPLD Logic Circuit Design and Practice

APPENDIX A

PLD Suppliers

and

Main Products

LEAP

A.1 PLD Suppliers and Main Products
Supplier ATMEL

Technology Flash or EPROM Erase by UV* Erase by UV* Erase by UV* Flash

Family ATF1500 ATV5000 ATF750B ATF2500B ATF16v8ce

Gates 1500 5000 750 2500

Speed (Mhz) 125 50 95 100

T pd (Max) 7.5 ns 25 ns 7.5 ns 7 ns 10 ns

GLB*** 32 128 20 24 8

Registers 32 128 20 48 8

I/O Pins 32 52 20 16

Package PLCC PLCC DIP DIP/PLCC DIP/PLCC

Other Features
Turbo, flash,

Low Power
Low Power Low Power Low Power

“Zero” Stand by

Power**

Supplier ATMEL

Technology Flash Flash SRAM SRAM SRAM

Family ATF220v10ce AT6010 AT6005 AT6003 AT6002

Gates 10000 5000 3000 2000

Speed (Mhz) 250 250 250 250

T pd (Max) 1.2 ns 1.2 ns 1.2 ns 1.2 ns

GLB*** 10 6400 3136 1600 1024

Registers 10 6400 3136 1600 1024

I/O Pins 20 204 108 120 96

Package DIP/PLCC PQFP PLCC/PGA PLCC/PQFP PLCC/PQFP

Other Features
“Zero” Stand by

Power **
Turbo mode

 Turbo mode,

Cache Logic

 Turbo mode,

Cache Logic

Turbo mode,

Cache Logic

*UV: Ultraviolet Ray; ** Typical “Zero” standby power is 10 µA; ***GLB (Generic Logic Block).

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

Supplier Cypress

Technology Flash Flash EPROM Flash Anti-Fuse

Family 16V8 22V10 7C340 7C370 PASIC380

Gates 1–8 K

Speed (MHz) 125 125 143 200

Tpd (Max) 7.5 ns 7.5 ns 15 ns 8.5 ns

GLB** 8 10 32-192 32-128 96–768

Registers 8 10 32-192 32-128 96–768

I/O Pins 10/8 12/8 80 134 44–180

Package DIP/PLCC DIP/PLCC PGA/PLCC
TQFR/PGA/

PLCC

PLCC/PGA/

TQFP

Other Features
 ISP* and support

VHDL

High Speed with

3.3V

*ISP: In System Programming。

Supplier ICT

Technology

Family PEEL16V8 PEEL20V8 PEEL22V10 PEEL18V8

Gates

Speed (MHz)

Tpd (Max) 25, 15, 10, 7, 5 25, 15, 10, 7, 5 25, 15, 10, 7, 5 25, 15, 10, 7, 5

GLB**

Registers 8 8 10 8

I/O Pins 8/8 12/8 12/10 10/8

Package
24 Pin

DIP/SOIC/PLCC

24 Pin

DIP/SOIC

24 Pin DIP/SOIC

28 Pin PLCC

20 Pin DIP/SOIC/

PLCC/TSSOP

Other Features

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

Supplier ICT

Technology EEPROM EEPROM EEPROM

Family PEEL22CG10 PEEL22C08 PA7024 PA7128 PA7140

Gates 40 36 72

Speed (MHz) 71.4 83.3 66

Tpd (Max) 25,15, 10, 7, 5 25,15,10, 7, 5 15, 20, 25 15, 20 20, 25

GLB**

Flipflops 10 8 40 36 60

I/O Pins 10/12 14/8 2/22 14/12 14/24

Package
24 Pins

DIP/SOIC

24 Pins

DIP/SOIC/TSS

OP

24 Pins

DIP/SOIC

28 Pins PLCC

28 Pins

DIP/SOIC/

PLCC

40 Pins DIP

44 Pins PLCC

Other Features

Supplier ALTERA

Technology EEPROM EEPROM EPROM
Flash/SRAM or

EPROM/SRAM

Family Classic MAX5000 MAX7000 Flash Logic

Gates 150–900 60–3750 60–5000 800–3200

Speed (MHz) 111.1 125 178.6 83.3

Tpd (Max) 7.5 ns 10 ns 5 ns 10 ns

GLB** 8–48 16–192 32–256 40–160

Registers 8–48 16–192 32–256
RAM 20480 Bits or

40–160

I/O Pins 64 84 164 172

Package
DIP/PLCC/PGA DIP/QFP/

PLCC/PGA

PLCC/PGA/ PQFP
PLCC/QFP

Other Features
 EPM7032V uses

3.3V

3.3V and 5V used

together

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

Supplier ALTERA

Technology EEPROM SRAM SRAM

Family MAX9000 FLEX8000 FLEX10K

Gates 6000–12000 2500–16000 10K–100K

Speed (MHz) 125 125 70

Tpd (Max) 12

GLB** 320–560 208–1296 576–4992

Flipflops 484–772 282–1500 720–5392

I/O Pins 168–216 78–208 150–406

Package PLCC/QFP/PGA PLCC/QFP/PGA PLCC/QFP/PGA

Other Features

Use single 5V ISP

EPF8282V uses 3.3V

Included EAB* can implement

DSP, CP, MICRO CONTROL,

RAM and FIFO.

*EAB: Embedded Array Block.

Supplier AMD

Technology E2CMOS E2CMOS E2CMOS E2CMOS E2CMOS E2CMOS

Family
MACH1

MACH110

P+ MACH111 MACH1

MACH120

MACH1

MACH130

P+

MACH131

MACH2

MACH210

Gates 900 900 1200 1800 1800 1800

Speed (MHz) 77 143 77 66 133 133

Tpd (Max) 12 5 12 15 7.5 7.5

GLB** 32 32 48 64 64 64

Flipflops 32 32 48 64 64 64

I/O Pins 38 38 56 70 70 38

Package
44 Pins PLCC 44-Pins PLCC

/TQFP

68 Pins

PLCC

84 Pins

PLCC

84 Pins

PLCC

44 Pins PLCC

Other Features

Note: Delay time of AMD element is predictable.

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

Supplier AMD

Technology E2CMOS E2CMOS E2CMOS E2CMOS E2CMOS E2CMOS

Family
MACH2

MACH220

P+

MACH211

P+

MACH221

MACH2

MACH230

P+

MACH231

MACH2

MACH215

Gates 2400 1800 2400 3600 3600 1500

Speed (Mhz) 77 133 133 66 133 77

Tpd (Max) 12 7.5 7.5 15 7.5 12

GLB** 96 64 96 128 128 64

Flipflops 96 64 96 128 128 64

I/O Pins 58 38 56 70 70 38

Package
68 Pins PLCC 44-Pins

PLCC /TQFP

68 Pins PLCC 84 Pins PLCC 84 Pins PLCC 44 Pins

PLCC

Other Features

Supplier AMD

Technology E2CMOS E2CMOS E2CMOS E2CMOS E2CMOS E2CMOS

Family
MACH3

MACH355

MACH4

MACH435

MACH4

MACH445

MACH4

MACH465

MACH5 V+

M5-128

MACH5 V+

M5-192

Gates 3500 5000 5000 10000 5000 7500

Speed (MHz) 47.6 83.3 83.3 83.3 125 125

Tpd (Max) 15 12 712 12 7.5 7.5

GLB** 96 128 128 256 128 192

Flipflops 96 192 192 384 128 192

I/O Pins 102 70 102 146 68, 104, 120 Same as left

column+160

Package
144 Pins

PPQF

84 Pins PLCC 100 Pins

PQFP

208 Pins

PQFP

PQFP/ TQFP 44 Pins PLCC

Other Features

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

Supplier AMD

Technology E2CMOS E2CMOS E2CMOS E2CMOS

Family
MACH5 V+

M5-256

MACH5 V+

M5-320

MACH5 V+

M5-384

MACH5 V+

M5-512

Gates 10000 12000 15000 20000

Speed (MHz) 125 125 125 125

Tpd (Max) 7.5 7.5 7.5 7.5

GLB** 256 320 384 512

Flipflops 256 320 384 512

I/O Pins 68, 104, 120, 160 120, 160, 184, 192 120, 160, 184, 192
120, 160, 184, 192,

256

Package PQFP/TQFP PQFP/BGA PQFP/BGA PQFP/BGA

Other Features

Supplier LATTICE

Technology E2CMOS E2CMOS E2CMOS E2CMOS E2CMOS

Family 1000 2000 3000 6000 PLSI & SPLSI

Gates 8000 6000 14000 20000 1000~11000

Speed (MHz) 125 154 100 70 50~150

Tpd (Max) 7.5 5.5 10 15 5.5

GLB** 192 128 320 192 32~256

Flipflops 288 128 480 416 32~384

I/O Pins 108 136 108 169 34~128

Package

PLCC, JLCC,
PQFP, CPGA,

TQFP

PLCC, TQFP,
PQFP, MQUAD

MQUAD

MQFP

PLCC, MQPF,
TQPF, CPGA,

PQFP

Other Features

1.ISP

2.Reconfigurable

1.ISP

2.Reconfigurable

1.ISP

2.Reconfigurable

1.ISP

2.Reconfigurable

3. Built-in SRAM

1.ISP

2.Daisy chain

3.Download

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

A.2 ALTERA’s CPLD Devices

 Till now(1996)，Seven family series of CPLD are provided by ALTERA:

 1. CLASSIC

 2. MAX5000

 3. MAX7000

 4. FLASH LOGIC

 5. FLEX8000

 6. MAX9000

 7. FLEX10K

In the CLPD logic world, CPLD almost produced by duplicating unitary cell. At the

same series, bit’s capacity size depends on the duplicated count. Thus once

comprehensive of the smallest element, the whole series elements could roughly in

control. Nevertheless, it’s probably not enough for a designer merely knowing the

smallest bit; the following items are required for user to know:

1. Manufacture technique: It refers to how to deal with memorial contacts with

either on or off way. Presently, applicable techniques included EPROM,

EEPROM, FLASH, SRAM and Anti-Fuse. Different manufacture technique

would have different process steps. For example, EEPROM user can clean

AMD originally design by electric method; but if configuration bit manufactured

by SRAM, which attribute belonged to volatility memory, once turning off

power, the content would no more exist. Thus the user should do more steps to

take care this feature, that means the user shall re-download configuration while

starting up computer.

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

2. Capacity: It’s no doubt that chip capacity is important. Over small chip couldn’t

layout all digital circuits into one chip. On the other hand, use chip with

exceeding capacity would cause too many unused circuits and raise capitalized

cost.

3. Fundamental structure: Include basic unit mentioned above and router source for

connecting internal element.

4. Specific function: Except structural specification mentioned above, some chip

could change timing delay and electric specification by setting, and things like

that could be as specific function.

 Each series will be discussed with the following four items:

!"Classic series

 1. Manufacture Techniques: Classics family mainly adopt EPROM which divided

into two packages: Weed-out windows and no weed-out windows. It is an One

Time Program (OTP) device if it used EPROM but no weed-out windows to

clear data by UV radiation.

 2. Capacity: Gate count from 150 to 900, but for macrocell it could be 8 to 16. The

characteristics of chip of Classic series are listed in Table A.1.

 3. Fundamental structure: In this family, different chip leads to different structure.

Figure A.1 is structure diagram shown big structure is composed by several

smaller compositions.

4. Specific function ：This family possess security bit for programming.

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

Table A.1 The device characteristics of Classic family

 Chip

Feature

EP22V10

EP22V10E

EP610

EP610T
EP610I

EP910

EP910T
EP910I

EP1810

EP1810T

Available gates 400 600 600 900 1800 1800

Usable gates 200 300 300 450 450 900

Macrocells 10 16 16 24 24 48

Maximum user I/O

pins

22 20 20 36 36 64

tPD (ns) 7.5 15(35)* 10 30 12 20 (45)

fCNT (MHz) 111.1 83.3 (28.6)* 100 33.3 100 50 (22.2)

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

Figure A.1 Architecture of Classic family

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

!"MAX5000 family

 1. Manufacture techniques：Same as Classic family.

 2. Capacity: Gate count is from 600 to 3750, but for macrocell, it could be 16 to

192. The device characteristics of this family are listed in Table A.2.

 3. Fundamental structure：Figure A.2 is architecture of MAX5000 family. In this

family, gathering 16 basic elements is called Logic Array Block (LAB). All

macrocell of same block will share all input lines and a P-Term block.

 4. Specific function：Possess security bit for scheming as well.

Table A.2 The device characteristics of MAX5000 family

CHIP
Feature

EPM5032 EPM5064 EPM5128 EPM5130 EPM5192

Available gates 1200 2500 5000 5000 7500

Usable gates 600 1250 2500 2500 3750

Macrocells 32 64 128 128 192

LABs 1 4 8 8 12

Expanders 64 128 256 256 384

Routing GLOBAL PIA PIA PIA PIA

Maximum user

I/O pins
24 36 60 68, 84 72

TPD (ns) 10 15 15 15 15

TASU (ns) 3 5 5 5 5

TCO (ns) 6 8 8 8 8

fCNT (MHz) 125 83.3 83.3 83.3 83.3

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

Figure A.2 Architecture of MAX5000 family

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

!"MAX7000 family

 1. Manufacture techniques: MAX7000 family manufactured in EEPROM manner.

 2. Capacity: Gate count is from 600 to 5,000, but imacrocells could be from 32 to

256. Table A.3 lists device characteristics of this family.

 3. Fundamental structure: In MAX7000 family, it could subdivide to three

subsystems: MAX7000, MAX7000E and MAX7000S. Figure A.3 to Figure A.5

indicate the architecture of them. Basically, their structure is similar, and the

mainly difference is MAX7000E owned 5V of ISP (In System Programmability),

having more four OE control lines than MAX7000, and capable to be an open

collect output.

 4. Specific Function: All device of this family possess security bits for

programming, and every macrocell could be respectively controlled as turbo

mode and non-turbo mode. Besides, of IO structure, MAX7000E and

MAX7000S have slew-rate control of signal output.

TableA.3 The characteristics of chips of MAX7000 series

CHIP
Feature

EPM703 EPM703 EPM706 EPM709 EPM712 EPM716 EPM719 EPM725

Available gates 1,200 1,200 2,500 3,600 5,000 6,400 7,500 10,000

Usable gates 600 600 1,250 1,800 2,500 3,200 3,750 5,000

Macrocells 32 32 64 96 128 160 192 256

Maximum user

I/O Pins
36 36 68 76 100 104 124 164

tPD (ns) 5 12 6 6 7.5 7.5 10 10

tSU (ns) 4 10 5 5 6 6 7 7

tFSU (ns) – – – – 3 3 3 3

tCO1 (ns) 3.5 7 4 4 4.5 4.5 5 5

fCNT (MHz) 178.6 90.9 151.5 151.5 125 125 100 100

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

Figure A.3 Architecture of MAX7000 family

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

Figure A.4 Architecture of MAX7000E family

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

Figure A.5 Architecture of MAX7000S series

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

!"Flash Logic family

 1. Manufacture techniques: In this family, each device simultaneously adopt two

techniques, it could be SRAM and EPROM or SRAM and FLASH to control

the same configuration bit. In other words, people download configuration data

directly to SRAM while the circuit in developing phase. After developed, write

the configuration data into nonvolatile memory EPROM or FLASH. By this

way, elasticity of developing phase and practice of developed time could be

both considered.

 2. Capacity: Gate count from 800 to 3,200, but for macrocells, it could be 40 to

160. Table A.4 lists device characteristics of this family, in which 740 and 780

manufactured by SRAM and EPROM, but 880 and 8160 are made by SRAM

and FLASH.

 3. Fundamental structure: Figure A.6 is the architecture of Flash Logic family.

The most distinctive part of this family is every LAB could evolve into 2 kinds

via setting. One is P-Term of MAX7000 family, and another is 128 × 1 0

SRAM memory. This alternative option is based on a LAB, and everyone

could plan out diverse types.

 4. Specific function: Peculiar function of this family mainly is on I/O parts. Every

I/O related to LAB, which in control individually, could be 5V I/O or 3.3 V I/O.

Beside, every I/O could work on open drain or pull high register independently.

This family also includes security bit for programming.

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

Table A.4 The characteristics of chips of Flash logic family

CHIP
Feature

EPX740 EPX780 EPX880 EPX8160

Available gates 1,600 3,200 3,200 6,400

Usable gates 800 1,600 1,600 3,200

Total SRAM

bits
5,120 10,240 10,240 20,480

Macrocells 40 80 80 160

Maximum user

I/O pins

44-P PLCC (32) 68-P

PLCC (52)

84-P PLCC (62)

132-P QFP (104)

84-P PLCC (62)

160-P QFP (104)
208-P QFP (172)

tPD (ns) 10 10 10 10

tCO (ns) 6 6 6 6

fCNT (MHz) 83.3 83.3 80 80

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

Figure A.6 Architecture of Flash logic family

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

!"FLEX8000 family

 1. Manufacture techniques: FLEX8000 is manufactured by using SRAM technique.

Due to FLEX8000 merely could be produced by volatility memorie that means if

power turn off and all bits configuration data would vanish at the same time.

Therefore, it’s necessary for each device shall be configurated again while

power turn on. We call this operation as “in circuit configuration” (ICR).

 2. Capacity: Gate count is from 2,500 to 16,000 and LE element could be 208 to

1,296. Table A.5 lists every device characteristic in this family.

 3. Fundamental structure: Figure A.7 is the fundamental structure of FLEX8000

family. It combined only with several blocks which shown totally different with

previous family structure. In fact, this family is no more adopt P-Term for

logical configuration, but use memory for storing Luck Up Table (LUT) to

implement logic function. By which, all 4 input logical configurations can

present with 16-bit memory. Owing to structure difference, this logical unit of

this family renames as LE (Logical Element). Structurally, LUT add two blocks,

CARRY and CASCADE, on back for concatenating information between LE.

In that case, for one thing it could save external signal input resource, and for

another it could avoid delaying time. In wholly framework, FLEX8000 adopt

connection bus of three-dimension, which includes horizontal and vertical

connection among LE blocks as well as the internal logic block connection. All

I/O signals are output through bus, and every I/O embedded one register for

signal storage.

 4. Specific function: Every LE of this family can be controlled in turbo mode and

non-turbo mode respectively. Besides, IO structure has slew-rate control.

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

Table A.5 The characteristics of chips of FLEX8000 family

CHIP

Feature

EPF8282

EPF8282V

EPF8282A

EPF8282AV

EPF8452

EPF8254A

EPF8636A

EPF8820

EPF8820A

EPF81188

EPF81188A

EPF81500

EPF81500A

Available

gates

5,000 8,000 12,000 16,000 24,000 32,000

Usable gates 2,500 4,000 6,000 8,000 12,000 16,000

Flipflops 282 452 636 820 1,188 1,500

Logic element 208 336 504 672 1,008 1,296

Maximum user

I/O pins
78 120 136 152 184 208

JTAG BST Yes No Yes Yes No Yes

Package

84P PLCC

100P TQFP

84P PLCC

160 PQFP

160 PGA 100

TQFP

84P PLCC

160P PQFP

192P PGA

208P RQFP

160P PQFP

192P PGA

208P RQFP

225P BGA

208P PQFP

232P PGA

240P RQFP

240P RQFP

280P PGA

304P RQFP

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

Figure A.7 Architecture of FLEX 8000 family

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

 Since FLEX8000 family is helpful for learning, further introduction to the internal

structure is needed. FLEX 8000 configured by Logic Area Blocks (LAB), I/O element

and interconnect FastTrack. Every LAB block consists of eight LE elements. Like

Figure A.8, LE is the smallest logic element of FLEX8000 family. Figure A.9 shows

that each LE composed by one 4-input (LUT), one programmable register, one carry

chain and one cascade chain. LUT could produce circuit and then come into quad

variable function quickly. The programmable register can program as D-Type, T-Type,

JK Type or SR Type, which input signals like clock, clear and preset are driven by

exclusive input pin, general use I/O input pin or by any internal logic. This LE

provides compose capability of combinational logic and sequential logic circuit. For

combinational logic circuit, LUT can skip over directly from programmable register

and then output from LE.

Figure A.8 FLEX8000 Device Block Diagram

FLEX8000 has two specific high-speed data links: carry-in chain and cascade chain for

connecting adjacent without via local interconnection. Figure A.10 shows that

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

high-speed counter and adder can be produced by carry chain. Carry chain can

produce high fan-in with lower timing delay circuit, e.g. OR cascade application in

Figure A.11 and an AND application in Figure A.12. However, overuse carry chain

and cascade chain would decrease applicable wire resource for other LE use. So, we

suggest user to apply them when in high-speed design requirement.

Figure A.9 FLEX8000 Logic Element

Figure A.10 FLEX8000 Carry Chain Operation

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

 Figure A.11 FLEX8000 OR-cascade Chain Operation

Figure A.12 FLEX8000 AND-cascade Chain Operation

 There are four operating modes of LE element in FLEX8000 family. Those are

Normal mode, Arithmetic Mode, Up/Down Count Mode and Clearable Count mode,

shown in Figure A.13 ~ Figure A.16. Each mode has ten input signals, which are Clock,

Clear, Preset, four signals come from local interconnect of LAB, one feedback from

programmable register, Cascade-in and Carry-in. Different mode uses different LE

resource. Normal mode has Cascade-in chain that suits for general circuit or decoder

with mass inputs. D1, D2, D3 and D4 come from local interconnect of LAB block. D3

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

and Carry-in are input to 1-of-2 multiplexer, which output then send to 4-input LUT.

The output of AND logic, output of LUT AND operates with Cascade-in from previous

step, can be as 1-of-2 multiplexer input, as D input of programmable register, or as

Cascade-out. Therefore, the output of LE can be via Flip-flop or not.

Figure A.13 FLEX8000 LE Normal Mode

Figure A.14 FLEX8000 LE Arithmetic Mode

Figure A.15 FLEX8000 LE Up/Down Count Mode

4-
input
LUT

prn
D Q

clrn

LE-out

Cascade-out

Cascade-inCarry-in

D1

D2

D3

D4

3-
input
LUT

prn
D Q

clrn

LE-out

Cascade-out

Cascade-inCarry-in

D1

D2

3-
input
LUT

Carray-out

3-
input
LUT

prn
D Q

clrn

LE-out

Cascade-out

Cascade-inCarry-in

ENA

U/D

Data

!Load

3-
input
LUT

Carray-out

1
0

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

Figure A.16 FLEX8000 LE Clearable Counter Mode

 Two 3-bit parallel input LUT of arithmetic mode is special suited to produce

high-speed adder, high-speed accumulator and high-speed comparator. Upper/down

counter mode provides counting enable, synchronous up/down control and data load.

No exception, Up/down counter mode also applies 3-bit parallel input LUT, one result

in count value and another produces high-speed carry. One 1-of-2 Multiplexer

provides synchronous data load, and asynchronous data load can completed merely

with Clear and Preset signals without using LUT resource. Clearable counter mode is a

little bit similar to up/down counter mode, in addition to synchronous clear control

replace synchronous up/down control, 1-of-2 Multiplexer’s output AND with

synchronous clear signal then output.

 Figure A.17 shows that the Preset of programmable register that is controlled by

d3 and LABCTRL1 and Figure A.18 shows that the Clear is controlled by d3,

LABCTR1 and LABCTL2.

3-

input

LUT

prn

D Q

clrn

LE-out

Cascade-out

Carry-in

Ena

!Clr

Data

!Load

3-
input

LUT

Carray-out

1

0

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

Figure A.17 Asynchronous preset of FLEX8000 LE

Figure A.18 Asynchronous clear of FLEX8000 LE

Operation mode of FLEX8000: For FLEX8000 adopted SRAM to save

configuration data, which needed re-download configuration data when plug-in, and

this process called configuration. When configuration completed, FLEX8000 reset

registers and enable I/O pin then works like logic circuit. This reset process called

initialization. From configuration to initialization, this stage named command mode,

and then enter general on-line work called user mode. SRAM allow configuring

FLEX8000 by downloading on-lined new configuration data. For this real-time

configuration can reinforce device enter configuration and initialization (namely

command mode) processes just by dedicated pin, then back to user mode. The whole

process only took less than 100ms. When device plug-in, it could be configured either

in automatically or controlled by external circuit. FLEX8000 can use embedded

oscillator or external clock signal of device to do initialize. Dedicate pins are used to

prn

Vcc

d3

LABCTRL1

 prn
D Q

 clrn

Vcc

d3

LABCTRL1

LABCTRL2

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

control when device enter configuration and initializing (namely command mode)

processes.

Configuration schemes of FLEX8000: Like Table A.6, FLEX 8000 provided six

kinds of configuration schemes. Under active schemes, FLEX8000 dominated all

configuration process and internal oscillator (typical value is 2~6 MHz) offer external

synchronizing clock and control signal. AS mode uses ALTERA configuration device

(serial type) to save configuration data, and APU & APD mode adopts Parallel

EPROM, such as 2732 or 2764, to save configuration data. When FLEX8000 in

passive mode, all configuration process controlled by external circuit and provided

clock from outside. What is called intelligent host referring to microprocessor unit

something like controller.

Table A.6 Data Source for Configuration

Configuration Scheme Acronym Data Source

Active Serial AS ALTERA configuration device

Active parallel up APU Parallel configuration device

Active parallel down APD Parallel configuration device

Passive serial PS Serial data path

Passive parallel synchronous PPS Intelligent host

Passive parallel asynchronous PPA Intelligent host

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

!"MAX9000 family

 1. Manufacture techniques: Like MAX7000 family manufactured by EEPROM.

2. Capacity: Gate count is from 6000 to 12000 and macrocell could be 320 to 560.

Table A.7 is device characteristics of MAX9000 family.

Table A.7 The characteristics of chips of MAX9000

CHIP
 Feature

EPM9320 EPM9400 EPM9480 EPM9560

Available gates 12000 16000 20000 24000

Usable gates 6000 8000 10000 12000

Flipflops 484 580 676 772

Macrocells 320 400 480 560

Maximum user

I/O pins
168 184 200 216

tPD1 (ns) 12 12 15 15

tFSU (ns) 3 3 5 5

tFCO (ns) 6 6 7 7

FCNT (Mhz) 125 125 118 118

 3. Fundamental structure: We can say MAX9000 family, its structure almost

follows MAX7000 family, is the extension of MAX7000 family. Figure A.19 is

the architecture of MAX9000 family. Since capacity of MAX9000 family larger

than MAX7000 family, the internal bus structure becomes as three dimensions.

All I/O have one register and all output from bus (same as FLEX8000).

MAX9000 generally parallel to MAX7000 in macrocell, but MAX9000 design

each LE with two outputs to promote utility rate of macrocells.

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

 4. Specific function: In this family, security bit embedded in every device. Each

macrocell could be controlled into turbo mode and non-turbo mode respectively.

Each IO structure also has slew-rate control. Besides, like MAX7000S family,

this family provides 5V ISP.

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

Figure A.19 Architecture of MAX9000 family

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

!"FLEX10K family

 1. Manufacture technique: FLEX10K is manufactured by SRAM (same as

FLEX8000) and ICR action is needed as well.

 2. Capacity: Typical gate count is from 10K to 100K and LE count is 576 to 4,992.

The embedded RAM block size of FLEX10K is from 6,144 bits to 24,576 bites.

Table A.8 is device characteristics of this family.

 3. Fundamental structure: In wholly structure, FLEX10K basically is the extension

of FLEX8000. Except for Embedded Array Block (EAB), its structure different

from traditional programmable logic. Briefly say, the detached RAM making

connection with traditional logic block by using internal bus. By this way,

general circuit could be completed in traditional LE. Besides, even a great

quantity of memory and registers are demanded, FLEX10K still can finish work

in Embedded Array Block (EAB) without wasting lot of LE and signal

connection resource those are used in traditional logic block. EAB has more

function than memory. At partial of arithmetic circuit, memory mapping is more

workable than logic configuration. Multiplier is the good example. However,

hundreds of ns are required for logic configuration of multiplier to compute

result, but memory mapping manner only requirs several tens of ns to access

memory. Figure A.20a and Figure A.20b are the architecture of FLEX10K

family. Most structure of FLEX10k similar to FLEXE8000, but each I/O pin of

FLEX10K has individual OE control, open drain and slew-rate control in I/O

structure.

4. Specific function: Turbo-mode and non-turbo mode respectively controlled by

every LE of this family. Each IO structure also possesses input slew-rate

control.

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

Table A.8 The characteristics of chips of FLEX10K family

CHIP
Feature

EPF10K10 EPF10K20 EPF10K30 EPF10K40 EPF10K50 EPF10K70 EPF10K100

Typical gates 10,000 20,000 30,000 40,000 50,000 70,000 100,000

Usable gates 7K~31K 15K~63K 22K~69K 29K~93K 36K~116K 46K~118K 62K~158K

LEs 576 1152 1728 2304 2880 3744 4992

RAM

bits
6,144 12,288 12,288 16,384 20,480 18,432 24,576

Flipflops 720 1,344 1,968 2,576 3,184 4,096 5,392

Maximum

user I/O

pins

150

198

246

278

310

358

406

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

Figure A.20a Architecture of FLEX 10K family (1)

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

Figure A.20b Architecture of FLEX 10K family (2)

 PLD Suppliers and Main Products CPLD Logic Circuit Design and Practice

APPENDIX B

The Built-in

Resources of

MAX+PLUS II

LEAP

 MAX+PLUS II provides more built-in resources to engineers whom are

familiar with standard discrete primitives can keep on using. There two categories,

Primitives and Macrofunctions, built-in resources are provided. Buffer, Flip-

flop/Latch, Input/output and Basic Logic are four resource classes in Primitives.

There are 20 categories in Macrofunctions, which include Adder, Frequency

Divider, ALU , Latch, Application Specific Function, Multiplier, Buffer,

Multiplexer, Comparator, Parity Generator/checker, Rate Multiplier, Counter,

Register, Decoder, Shift Register, Digital Filter, Storage Register, EDAC, SSI and

Encoder.

MAX+PLUS II has provided furnish built-in resources of standard discrete

primitives, for readers of this book (Graphic entry manner) who only need to key in

the name of circuit symbol like as AND3, XOR, OR4, 74138, …. Reader can take

built-in resources listed below for reference.

B.1 Primitives

B.1.1 Primitive Categories

 There are four built-in primitive categories in MAX+PLUS II. Those include

buffer, flip-flop and latch, input/output primitives and logic primitives.

B.1.2 Description of Primitives

 Primitives categorized as above and listed for description like following:

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

Buffer Primitives

Primitive Function Prototype

LCELL (MCELL) FUNCTION LCELL (in)

RETURNS (out);

SOFT FUNCTION SOFT (in)

RETURNS (out);

CARRY FUNCTION CARRY (in)

RETURNS (out);

CASCADE FUNCTION CASCADE (in)

RETURNS (out);

EXP FUNCTION EXP (in)

RETURNS (out);

GLOBAL (SCLK) FUNCTION GLOBAL (in)

RETURNS (out);

WIRE (GDFs only) OUT = input

IN

TRI FUNCTION TRI (in, oe)

RETURNS (out);

Flip-flop & Latch

Primitives

Primitive Function Prototype

SRFF FUNCTION SRFF (S, R, CLK, CLRN, PRN)

RETURNS (Q);

SRFFE FUNCTION SRFFE (S, R, CLK, CLRN, PRN, ENA)

RETURNS (Q);

TFF FUNCTION TFF (T, CLK, CLRN, PRN)

RETURNS (Q);

TFFE FUNCTION TFFE (T, CLK, CLRN, PRN, ENA)

RETURNS (Q);

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

DFF FUNCTION DFF (D, CLK, CLRN, PRN)

RETURNS (Q);

DFFE FUNCTION DFFE (D, CLK, CLRN, PRN, ENA)

RETURNS (Q);

JKFF FUNCTION JKFF (J, K, CLK, CLRN, PRN)

RETURNS (Q);

JKFFE FUNCTION JKFFE (J, K, CLK, CLRN, PRN, ENA)

RETURNS (Q);

LATCH FUNCTION LATCH (D, ENA)

RETURNS (Q);

Input & Output

Primitives/Ports

Primitive Description

BIDIR or INOUT AHDL Syntax: io: BIDIR;

VHDL Syntax: io: INOUT

INPUT or IN AHDL Syntax: in1: INPUT;

VHDL Syntax: in1: IN

OUTPUT or OUT AHDL Syntax: out1: OUTPUT;

VHDL Syntax: out1: OUT

Logic Primitives (GDFs only)

Primitive Description Name

AND OUT = logical AND of inputs

IN1, IN2,... IN12 = 2, 3, 4, 6, 8,

or 12 inputs

AND2, AND3, AND4, AND6,

AND8, AND12

NOR OUT = logical NOR of inputs

IN1, IN2,... IN12 = 2, 3, 4, 6, 8,

or 12 inputs

NOR2, NOR3, NOR4, NOR6,

NOR8, NOR12

NOT OUT = inverse of input

IN = 1 input

NOT

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

OR OUT = logical OR of inputs

IN1, IN2,... IN12 = 2, 3, 4, 6, 8,

or 12 inputs

OR2, OR3, OR4, OR6, OR8,

OR12

VCC Assigns a node or bus to VCC VCC

GND Assigns a node or bus to GND GND

XNOR OUT = logical exclusive

NOR of inputs IN1 and IN2

XNOR

BAND OUT = logical BAND of inputs

IN1, IN2,... IN12 = 2, 3, 4, 6, 8,

or 12 inputs

BAND2, BAND3, BAND4,

BAND6, BAND8, BAND12

BNAND OUT = logical BNAND of inputs

IN1, IN2,... IN12 = 2, 3, 4, 6, 8,

or 12 inputs

BNAND2, BNAND3,

BNAND4, BNAND6,

BNAND8, BNAND12

BNOR OUT = logical BNOR of inputs

IN1, IN2,... IN12 = 2, 3, 4, 6, 8,

or 12 inputs

BNOR2, BNOR3, BNOR4,

BNOR6, BNOR8, BNOR12

BOR OUT = logical BOR of inputs

IN1, IN2,... IN12 = 2, 3, 4, 6, 8,

or 12 inputs

BOR2, BOR3, BOR4,

BOR6, BOR8, BOR12

XOR OUT = logical exclusive

OR of inputs IN1 and IN2

XOR

NAND OUT = logical NAND of inputs

IN1, IN2,... IN12 = 2, 3, 4, 6, 8,

or 12 inputs

NAND2, NAND3, NAND4,

NAND6, NAND8, NAND12

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

B.2 Macrofunctions

B.2.1 Macrofunction Categories

 Macrofunctions include Adder, Frequency Divider, ALU, Latch,

Application_Specific function, Multiplier, Buffer, Multiplexer, Comparator, Parity

Generator/checker, Rate Multiplier, Counter, Register, Decoder, Shift Register,

Digital Filter, Storage Register, EDAC, SSI Function, Encoder.

B.2.2 Description of Macrofunctions

 According to above categories, Description of Macrofunctions are listed as

below:

Adders

Macrofunction Description Function Prototype

8FADD 8-Bit Full Adder FUNCTION 8FADD (cin, a[8..1], b[8..1])

RETURNS (cout, sum[8..1]);

8FADDB 8-Bit Full Adder FUNCTION 8FADDB (cin, a[8..1], b[8..1])

RETURNS (cout, sum[8..1]);

7480 Gated Full Adder FUNCTION 7480 (cn0, a1, a2, as, ac, b1,

b2, bs, bc)

RETURNS (cn1n, sum, sumn);

7482 2-Bit Binary Full Adder FUNCTION 7482 (a[2..1], b[2..1], c0)

RETURNS (sum[2..1], c2);

7483 4-Bit Binary Full Adder

with Fast Carry

FUNCTION 7483 (a[4..1], b[4..1], c0)

RETURNS (s[4..1], c4);

74183 Dual Carry-Save Full FUNCTION 74183 (1cn0, 1b, 1a, 2cn0, 2a, 2b)

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

Adder RETURNS (1sum, 1cn1, 2sum, 2cn1);

74283 4-Bit Full Adder with

Fast Carry

FUNCTION 74283 (a[4..1], b[4..1], cin)

RETURNS (cout, sum[4..1]);

74385 4-Bit Adder/Subtractor

with Clear

FUNCTION 74385 (clrn, 1s/an, 1a, 1b, 2s/an,

2a, 2b, 3s/an, 3a, 3b, 4s/an, 4a, 4b, clk)

RETURNS (1s, 2s, 3s, 4s);

Truth Table of 8FADD (Full Adder)

Inputs Outputs

CIN A8 .. A1 B8 .. B1 SUM8 .. SUM1

L 00000000 00000000 00000000

H 00000000 00000000 00000001 (CIN + A + B = SUM)
 . . .

. . .
. . .

H 00001001 00011000 00100010 (1 + 9 + 24 = 34)

. . .
. . .

. . .

Truth Table of 8FADDB (Full Adder)

Inputs Outputs

CIN A8..A1 B8..B1 SUM8..SUM1

0 00000000 00000000 00000000

1 00000000 00000000 00000001 (CIN + A + B = SUM)

. . .
. . .

. . .

1 00001001 00011000 00100010 (1 + 9 + 24 = 34)

. . .
. . .

. . .

Truth Table of 7480 (Full Adder)

Inputs Outputs

CN0 A* B** CN1N SUM SUMN

L L L H L H

L L H H H L

L H L H H L

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

L H H L L H

H L L H H L

H L H L L H

H H L L L H

H H H L H L

 * A = /AC + /AS + A1 & A2 (Note : “/” is an inversion symbol).

** B = /BC + /BS + B1 & B2。

Truth Table of 7482 (Full Adder)

Output

Input
When C0 = L When C0 = H

A1 B1 A2 B2 SUM1 SUM2 C2 SUM1 SUM2 C2

L L L L L L L H L L

H L L L H L L L H L

L H L L H L L L H L

H H L L L H L H H L

L L H L L H L H H L

H L H L H H L L L H

L H H L H H L L L H

H H H L L L H H L H

L L L H L H L H H L

H L L H H H L L L H

L H L H H H L L L H

H H L H L L H H L H

L L H H L L H H L H

H L H H H L H L H H

L H H H H L H L H H

H H H H L H H H H H

Truth Table of 7483 (Full Adder)

Output

Input
When C0 = L, C2 = L When C0 = H, C2=H

A1[A3] B1[3] A2[4] B2[4] S1[3] S2[4] C2[4] S1[3] S2[4] C2[4]

L L L L L L L H L L

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

H L L L H L L L H L

L H L L H L L L H L

H H L L L H L H H L

L L H L L H L H H L

H L H L H H L L L H

L H H L H H L L L H

H H H L L L H H L H

L L L H L H L H H L

H L L H H H L L L H

L H L H H H L L L H

H H L H L L H H L H

L L H H L L H H L H

H L H H H L H L H H

L H H H H L H L H H

H H H H L H H H H H

Note: The inputs A1, B1, B2 and C0 determined S1 and S2 outputs and internal carry C2. And then,

the other inputs C2, A3, B3, A4 and B4 determined S3, S4 and C4 outputs.

Truth Table of 74183 (Full Adder)

Inputs Outputs

CN0 B A SUM CN1

L L L L L

L L H H L

L H L H L

L H H L H

H L L H L

H L H L H

H H L L H

H H H H H

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

Truth Table of 74283 (Full Adder)

Outputs

Inputs When CPUT0 = L

[When COUT2 =L]

When COUT0 = H

[When COUT2 = H]

A1[A3]

B1[B3]

A2[A4]

B2[B4] SUM1

[SUM3]

SUM2

[SUM4]

COUT2

[COUT4]

SUM1

[SUM3]

SUM2

[SUM4]

COUT2

[COUT4]

L L L L L L L H L L

H L L L H L L L H L

L H L L H L L L H L

H H L L L H L H H L

L L H L L H L H H L

H L H L H H L L L H

L H H L H H L L L H

H H H L L L H H L H

L L L H L H L H H L

H L L H H H L L L H

L H L H H H L L L H

H H L H L L H H L H

L L H H L L H H L H

H L H H H L H L H H

L H H H H L H L H H

H H H H L H H H H H

Note: The inputs A1, B1, A2, B2 and COUT0 determined SUM1 and SUM2 outputs and internal

carry COUT2. And then, the other inputs COUT2, A3, B3, A4 and B4 determined SUM3,

SUM4 and COUT4 (COUT) outputs.

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

Truth Table of 74385 (Adder)

Inputs Data-in Carry

Flip-flop

CLRN

S/AN

A

B

CLK Before

L > H

After

L > H

Outputs

S

Function

L L X X X L L L Clear

L H X X X H H L Clear

H L L L ↑ L L L Add

H L L L ↑ H L H Add

H L L H ↑ L L H Add

H L L H ↑ H H L Add

H L H L ↑ L L H Add

H L H L ↑ H H L Add

H L H H ↑ L H L Add

H L H H ↑ H H H Add

H H L L ↑ L L H Subtract

H H L L ↑ H H L Subtract

H H L H ↑ L L L Subtract

H H L H ↑ H L H Subtract

H H H L ↑ L H L Subtract

H H H L ↑ H H H Subtract

H H H H ↑ L L H Subtract

H H H H ↑ H H L Subtract

Note:↑ stands for rising edge of signal.

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

Frequency Dividers

Macrofunction Description Function Prototype

FREQDIV Frequency Divider

FUNCTION FREQDIV (clr, clk, g)

RETURNS (dv2, dv4, dv8, dv16);

7456 Frequency Divider

FUNCTION 7456 (clr, clkb, clka)

RETURNS (qc, qb, qa);

7457 Frequency Divider

FUNCTION 7457 (clr, clkb, clka)

RETURNS (qc, qb, qa);

Arithmetic Logic Units

Macrofunction Description Function Prototype

74181 Arithmetic Logic

 Unit

FUNCTION 74181 (s[3..0], m, cn, a3n, a2n,

 a1n, a0n, b3n, b2n, b1n, b0n)

RETURNS (gn, pn, f3n, f2n, f1n, f0n, aeqb,

 cn4);

74182 Look-Ahead Carry

 Generator

FUNCTION 74182 (pn3, pn2, pn1, pn0, gn3,

 gn2, gn1, gn0, ci)

RETURNS (pn, gn, cz, cy, cx);

74381 Arithmetic Logic

 Unit/Function

 Generator

FUNCTION 74381 (s[2..0], a[3..0], b[3..0],

 cin)

RETURNS (pn, gn, f[3..0]);

74382 Arithmetic Logic

 Unit/Function

 Generator

FUNCTION 74382 (s[2..0], a[3..0], b[3..0],

 cin)

RETURNS (ovr, cn4, f[3..0]);

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

Truth Table of 74181 (Arithmetic Logic Unit) (1)

Seletion Active Low Data

M = L; Arithmetic Operations

S3

S2

S1

S0

M = H

Logic

Functions

Cn = L

(No Carry)

Cn = H

(With Carry)

L L L L F = /A F = A minus 1 F = A

L L L H F = /(AB) F = AB minus 1 F = AB

L L H L F = /A + B F = A(/B) minus 1 F = A(/B)

L L H H F = 1 F = minus 1 (2s Comp) F = ZERO

L H L L F = /(A+B) F = A plus (A + /B) F = A plus (A + /B) plus 1

L H L H F = /B F = AB plus (A + /B) F = AB plus (A + /B) plus 1

L H H L F = /(A$B) F = A minus B minus 1 F = A minus B

L H H H F = A + /B F = A + /B F = (A + /B) plus 1

H L L L F = (/A)B F = A plus (A + B) F = A plus (A + B) plus 1

H L L H F = A $ B F = A plus B F = A plus B plus 1

H L H L F = B F = A(/B) plus (A + B) F = A(/B) plus (A + B) plus 1

H L H H F = A + B F = (A + B) F = (A + B) plus 1

H H L L F = 0 F = A plus A* F = A plus A plus 1

H H L H F = A(/B) F = AB plus A F = AB plus A plus 1

H H H L F = AB F = A(/B) plus A F = A(/B) plus A plus 1

H H H H F = A F = A F = A plus 1

Note: “/” is an inversion symbol.

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

Truth Table of 74181 (2)

Seletion Active Low Data

M = L; Arithmetic Operations

S3

S2

S1

S0

M = H

Logic

Functions

/Cn = H

(No Carry)

/Cn = L

(With Carry)

L L L L F = /A F = A F = A

L L L H F = /(A+B) F = A + B F = A plus 1

L L H L F = (/A)B F = A + /B F = (A + /B) plus 1

L L H H F = 0 F = minus 1 (2s Comp) F = ZERO

L H L L F = /(AB) F = A plus A(/B) F = A plus A(/B) plus 1

L H L H F = /B F = (A + B) plus A(/B) F = (A+B) plus A(/B) plus 1

L H H L F = A $ B F = A minus B minus 1 F = A minus B

L H H H F = A (/B) F = A(/B) minus 1 F = A(/B)

H L L L F = /A + B F = A plus AB F = A plus AB plus 1

H L L H F = /(A$B) F = A plus B F = A plus B plus 1

H L H L F = B F = (A + /B) plus AB F = (A + /B) plus AB plus 1

H L H H F = AB F = AB minus 1 F = AB

H H L L F = 1 F = A plus A* F = A plus A plus 1

H H L H F = A + /B F = (A + B) plus A F = (A + B) plus A plus 1

H H H L F = AB F = (A + /B) plus A F = (A + /B) plus A plus 1

H H H H F = A F = A minus 1 F = A

* Each bit shift to next higher significant bit.

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

Truth Table of 74182 (Look-Ahead Carry Generator)

Function Table of GN

Inputs Output

GN3 GN2 GN1 GN0 PN3 PN2 PN1 GN

L X X X X X X L

X L X X L X X L

X X L X L L X L

X X X L L L L L

Other Combinations H

Function Table of PN

Inputs Output

PN3 PN2 PN1 PN0 PN

L L L L L

Other Combinations H

Function Table of CX

Inputs Output

GN0 PN0 C1 CX

L X X H

X L H H

Other Combinations L

Function Table of CY

Inputs Output

GN1 GN0 PN1 PN0 C1 CY

L X X X X H

X L L X X H

X X L L H H

Other Combinations L

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

Function Table of CZ

Inputs Output

GN2 GN1 GN0 PN2 PN2 PN0 C1 GN

L X X X X X X H

X L X L X X X H

X X L L L X X H

X X X L L L H H

Other Combinations L

Truth Table of 74381 (Arithmetic Logic Unit)

Inputs

Operation S2 S1 S0

Outputs

F[3..0]

Clear L L L L

B – A L L H B – A – Cn

A – B L H L A – B – Cn

A + B L H H A + B + Cn

A $ B H L L A $ B

A # B H L H A # B

A & B H H L A & B

Preset H H H H

 Note: 74182 to cascade multiple 74381 by using GN and PN outputs.

Truth Table of 74382 (Arithmetic Logic Unit)

Inputs

Operation S2 S1 S0

Outputs

F[3..0]

Clear L L L L

B – A L L H B – A – Cn

A – B L H L A – B – Cn

A + B L H H A + B + Cn

A $ B H L L A $ B

A # B H L H A # B

A & B H H L A & B

Preset H H H H

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

 For a 16 bits typical application, three 74381 cascades one 74382 and one

74182 generates Look-ahead carry, OVR and CN4 carry.

Latches

Macrofunction Description Function Prototype

EXPLATCH

Latch Implemented

 with Expanders

FUNCTION EXPLATCH (d, ena)

RETURNS (q);

INPLTCH Input Latch

Implemented with

 Expanders

FUNCTION INPLTCH (d, g)

RETURNS (q);

NANDLTCH /SR NAND Latch with

Expanders

FUNCTION NANDLTCH (sn, rn)

RETURNS (q, qn);

NORLTCH

SR NOR Latch with

 Expanders

FUNCTION NORLTCH (s, r)

RETURNS (q, qn);

7475 4-Bit Bistable Latch FUNCTION 7475 (1d, 2d, 3d, 4d, e12,

 e34)

RETURNS (1q, 1qn, 2q, 2qn, 3q, 3qn, 4q,

 4qn);

7477 4-Bit Bistable Latch FUNCTION 7477 (1d, 2d, 3d, 4d, e12,

 e34)

RETURNS (1q, 2q, 3q, 4q);

74116

Dual 4-Bit Latch with

 Clear

FUNCTION 74116 (1clrn, 2clrn, 1g1n,

 1g2n, 2g1n, 2g2n, 1d[4..1], 2d[4..1])

RETURNS(1q[4..1], 2q[4..1]);

74259

8-Bit Addressable Latch

 with Clear

FUNCTION 74259 (clrn, gn, s[2..0], data)

RETURNS (q[7..0]);

74279 Quad /SR Latch FUNCTION 74279 (s11n, s12n, r1n, s2n,

 r2n, s31n, s32n, r3n, s4n, r4n)

RETURNS (q[4..1]);

74373 Octal Transparent D- FUNCTION 74373 (oen, g, d[8..1])

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

 Type Latch with Tri-

 State Outputs

RETURNS (q[8..1]);

74373B

Octal Transparent D-

 Type Latch with Tri-

 State Outputs

FUNCTION 74373B (oen, g, d[8..1])

RETURNS (q[8..1]);

74375 4-Bit Bistable Latch FUNCTION 74375 (1d, 2d, 3d, 4d, e12,

 e34)

RETURNS (1q, 1qn, 2q, 2qn, 3q, 3qn, 4q,

 4qn);

74549 8-Bit 2-Stage Pipelined

 Latch

FUNCTION 74549 (g, g1n, g2n, insel,

 d[7..0], outsel, oen)

RETURNS (y[7..0]);

74604 Octal 2-Input Multi-

 plexed Latch with Tri-

 State Outputs

FUNCTION 74604 (clk, sel, a[1..8],

 b[1..8])

RETURNS (y[1..8]);

74841 10-Bit D-Type Latch

 with Tri-State Outputs

FUNCTION 74841 (oen, c, d[1..10])

RETURNS (q[1..10]);

74841B 10-Bit D-Type Latch

 with Tri-State Outputs

FUNCTION 74841B (d[10..1], oen, c)

RETURNS (q[10..1]);

74842 10-Bit D-Type Latch

 with Tri-State Outputs

FUNCTION 74842 (oen, c, d[1..10])

RETURNS (q[1..10]);

74842B 10-Bit D-Type

 Inverting Latch with

 Tri-State Outputs

FUNCTION 74824B (dn[10..1], oen, c)

RETURNS (q[10..1]);

74843 9-Bit Bus Interface D-

 Type Latch with Tri-

 State Outputs

FUNCTION 74843 (oen, clrn, pren, ena,

 d[1..9])

RETURNS (q[1..9]);

74844 9-Bit Bus Interface D-

Type Inverting Latch

with Tri-State Outputs

FUNCTION 74844 (oen, clrn, pren, ena,

 dn[1..9])

RETURNS (q[1..9]);

74845 8-Bit Bus Interface D-

 Type Latch with Tri-

FUNCTION 74845 (oen1, oen2, oen3,

 clrn, pren, ena, d[1..8])

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

 State Outputs RETURNS (q[1..8]);

74846 8-Bit Bus Interface D-

 Type Inverting Latch

 with Tri-State Outputs

FUNCTION 74846 (oen1, oen2, oen3,

 clrn, pren, ena, d[1..8])

RETURNS (q[1..8]);

74990 8-Bit Transparent Read-

 Back Latch

FUNCTION 74990 (oerb, c)

RETURNS (d[1..8], q[1..8]);

 Truth Table of EXPLATCH (Latch) Truth Table of 7475 (Latch)

Inputs Outputs Inputs

ENA D

Outputs

Q D E Q QN

L X Qo L H H H

H L L L H H L

H H H

X L Qo* /Qo

Truth Table of 74116 (Latch)

Inputs Outputs

Enable
CLRN

G1N G2N
D Q

L X X X L

H L L L L

H L L H H

H X H X Qo

H H X X Qo

Truth Table of 74279 (Latch)

Inputs

SN* RN

Outputs

Q

H H Qo

L H H

H L L

L L H**

 * For latches with double S inputs: H = both SN inputs high. L = one or both SN inputs low.

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

 ** This configuration is nonstable; that is, it may not persist when the SN and RN inputs return to

their inactive (high) level.

Truth Table of 74373 (Latch)

Inputs Outputs

0EN G D Q

H X X Z

L X X X

L H L L

L H H H

L L X Qo

Application-Specific Functions

Macrofunction Description Function Prototype

NTSC NTSC Video

 Control Signal

 Generator

FUNCTION NTSC (clock, reset)

RETURNS (csync, hd, vd, blank, burst, field);

PLL

Rising- and

 Falling-Edge

 Detector

FUNCTION PLL (a, b, nset)

RETURNS (nup, tri-up, ndown, tri-down);

Multipliers

Macrofunction Description Function Prototype

MULT2 2-Bit Sign Magnitude

 Multiplier

FUNCTION MULT2 (a[2..0], b[2..0], g)

RETURNS (y[4..0]);

MULT24 2-Bit-by-4-Bit

 Parallel Binary

 Multiplier

FUNCTION MULT24 (a[5..1], b[3..1], g)

RETURNS (y[7..1]);

MULT4 4-Bit Parallel Binary

 Multiplier

FUNCTION MULT4 (a[5..1], b[5..1], g)

RETURNS (y[9..1]);

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

MULT4B 4-Bit Parallel Binary

Multiplier

FUNCTION MULT4B (a[5..1], b[5..1], g)

RETURNS (y[9..1]);

TMULT4 4-Bit-by-4-Bit

 Parallel Binary

 Multiplier

FUNCTION TMULT4 (gan, gbn, a[5..1],

 b[5..1])

RETURNS (y[9..1]);

7497 Synchronous 6-Bit

 Rate Multiplier

FUNCTION 7497 (clk, clr, enn, strbn,

 b[5..0] , uni/cas)

RETURNS (y, zn, tcn);

74261 2-Bit Parallel Binary

 Multiplier

FUNCTION 74261 (b[4..0], m[2..0], g)

RETURNS (q4n, q[3..0]);

74284 4-Bit-by-4-Bit

 Parallel Binary

 Multiplier (Upper 4

 Bits of Result)

FUNCTION 74284 (gan, gbn, a[4..1],

 b[4..1])

RETURNS (y[8..5]);

74285 4-Bit-by-4-Bit

 Parallel Binary

 Multiplier (Lower 4

 Bits of Result)

FUNCTION 74285 (gan, gbn, a[4..1],

 b[4..1])

RETURNS (y[4..1]);

Truth Table of MULT2 (Multiplier)

Inputs Outputs

A2* A1 A0 B2* B1 B0 G Y4* Y3 Y2 Y1 Y0

X X X X X X L L L L L L

L a1 a0 L b1 b0 H L

L a1 a0 H b1 b0 H H

H a1 a0 L b1 b0 H H

H a1 a0 H b1 b0 H L

A multiply by B

* Can be considered as sign bit of Signed and Magnitude.

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

Truth Table of MULT24 (Multiplier)

Inputs Outputs

A5* A4 A3 A2 A1 B3* B2 B1 G Y7* Y6 Y5 Y4 Y3 Y2 Y1

X X X X X X X X L L L L L L L L

L a4 a3 a2 a1 L b2 b1 H L

L a4 a3 a2 a1 H b2 b1 H H

H a4 a3 a2 a1 L b2 b1 H H

H a4 a3 a2 a1 H b2 b1 H L

A 乘以 B

* Can be considered as sign bit of Signed and Magnitude.

Truth Table of 7497 (Multiplier)

Inputs Outputs

CLR ENN STRBN B5 B4 B3 B2 B1 B0 UNI/CAS Y ZN TCN

H X H X X X X X X H L H L

L L L B[5..0] H * ** ***

L H X X X X X X X H Yo Zno H

L L L X X X X X X L H

 * Y has B[5..0] low pulses in 64 clock cycles.

 ** ZN has B[5..0] high pulses in 64 clock cycles.

 *** TCN pulses low every 64 clock cycles for cascading.

Truth Table of 74284 (Multiplier)

Inputs Outputs

GAN GBN A[4..1] B[4..1] Y[8..5]

1 1 X X 0

1 0 X X 0

0 1 X X 0

0 0 A[4..1] B[4..1] Y[8..5] = A[4..1] ×[4..1]

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

Buffers

Macrofunction Description Function Prototype

BTRI Active-Low Tri-

 State Buffer

FUNCTION BTRI (oen, in)

RETURNS (out);

74240 Octal Inverting

 Tri-State Buffer

FUNCTION 74240 (1gn, 1a[1..4], 2gn,

 2a[1..4])

RETURNS (1y[1..4], 2y[1..4]);

74240B Octal Inverting

 Tri-State Buffer

 with 2 Sections

FUNCTION 74240B (a[4..1], b[4..1], agn, bgn)

RETURNS (ay[4..1], by[4..1]);

74241 Octal Tri-State

 Buffer

FUNCTION 74241 (1gn, 1a[1..4], 2g, 2a[1..4])

RETURNS (1y[1..4], 2y[1..4]);

74241B Octal Tri-State

 Buffer with 2

 Sections

FUNCTION 74241B (a[4..1], b[4..1], agn, bg)

RETURNS (ay[4..1], by[4..1]);

74244 Octal Tri-State

 Buffer

FUNCTION 74244 (1gn, 1a[1..4], 2gn,

 2a[1..4])

RETURNS (1y[1..4], 2y[1..4]);

74244B Octal Tri-State

 Buffer with 2

 Sections

FUNCTION 74244B (a[4..1], b[4..1], agn,bgn)

RETURNS (ay[4..1], by[4..1]);

74365 Hex Tri-State

 Buffer

FUNCTION 74365 (gn1, gn2, a[1..6])

RETURNS (y[1..6]);

74366 Hex Inverting Tri-

 State Buffer

FUNCTION 74366 (gn1, gn2, a[1..6])

RETURNS (yn[1..6]);

74367 Hex Tri-State

 Buffer

FUNCTION 74367 (1gn, 1a[1..4], 2gn,

 2a[1..2])

RETURNS (1y[1..4], 2y[1..2]);

74368 Hex Inverting Tri-

 State Buffer

FUNCTION 74368 (1gn, 1a[1..4], 2gn,

 2a[1..2])

RETURNS (1yn[1..4], 2yn[1..2]);

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

74465 Octal Tri-State

 Buffer

FUNCTION 74465 (gn[1..2], a[1..8])

RETURNS (y[1..8]);

74466 Octal Inverting

 Tri-State Buffer

FUNCTION 74466 (gn[1..2], a[1..8])

RETURNS (yn[1..8]);

74467 Octal Tri-State

 Buffer

FUNCTION 74467 (1gn, 1a[1..4], 2gn,

 2a[1..4])

RETURNS (1y[1..4], 2y[1..4]);

74468 Octal Inverting

 Tri-State Buffer

FUNCTION 74468 (1gn, 1a[1..4], 2gn,

 2a[1..4])

RETURNS (1yn[1..4], 2yn[1..4]);

74540 Octal Inverting

 Tri-State Buffer

FUNCTION 74540 (gn[1..2], a[1..8])

RETURNS (yn[1..8]);

74541 Octal Tri-State

 Buffer

FUNCTION 74541 (gn[1..2], a[1..8])

RETURNS (y[1..8]);

 Truth Table of 74244 (Buffer) Truth Table of 74466 (Buffer)

Inputs Outputs Inputs Outputs

GN A Y GN1 GN2 A YN

H X Z H X X Z

L L L X H X Z

L H H L L L H

L L H L

Multiplexers

Macrofunction Description Function Prototype

21MUX 2-Line-to-1-Line

Multiplexer

FUNCTION 21MUX (s, a, b)

RETURNS (y);

161MUX 16-Line-to-1-Line

Multiplexer

FUNCTION 161MUX (gn, sel[3..0],

 in[15..0])

RETURNS (out);

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

2X8MUX 2-Line-to-1-Line

 Multiplexer for 8-

 Bit Buses

FUNCTION 2X8MUX (sel, a[7..0], b[7..0])

RETURNS (y[7..0]);

81MUX 8-Line-to-1-Line

 Multiplexer

FUNCTION 81mux (c, b, a, d[7..0], gn)

RETURNS (y, wn);

74151 8-Line-to-1-Line

 Multiplexer

FUNCTION 74151 (c, b, a, d[7..0], gn)

RETURNS (y, wn);

74151B 8-Line-to-1-Line

 Multiplexer

FUNCTION 74151B (c, b, a, d[7..0], gn)

RETURNS (y, wn);

74153 Dual 4-Line-to-1-

 Line Multiplexer

FUNCTION 74153 (b, a, 1gn, 1c[3..0], 2gn,

 2c[3..0])

RETURNS (1y, 2y);

74157 Quad 2-Line-to-1-

 Line Multiplexer

FUNCTION 74157 (gn, sel, a[4..1], b[4..1])

RETURNS (y[4..1]);

74158 Quad 2-Line-to-1-

 Line Multiplexer

 with Inverting

 Outputs

FUNCTION 74158 (gn, sel, 1a, 2a, 3a, 4a,

 1b, 2b, 3b, 4b)

RETURNS (1yn, 2yn, 3yn, 4yn);

74251 8-Line-to-1-Line

 Data Selector with

 Tri-State Outputs

FUNCTION 74251 (c, b, a, d[7..0], gn)

RETURNS (y, wn);

74253 Dual 4-Line-to-1-Line

 Data Selectors with

 Tri-State Outputs

FUNCTION 74253 (b, a, 1gn, 1c[0..3], 2gn,

 2c[0..3])

RETURNS (1y, 2y);

74257 Quad 2-Line-to-1-Line

 Multiplexers with

 Tri-State Outputs

FUNCTION 74257 (gn, sel, a[4..1], b[4..1])

RETURNS (y[4..1]);

74258 Quad 2-Line-to-1-

 Line Multiplexers

 with In-verting Tri-

 State Outputs

FUNCTION 74258 (gn, sel, a[4..1], b[4..1])

RETURNS (yn[4..1]);

74298 Quad 2-Input FUNCTION 74298 (wrsl, clkn, a1, b1, c1,

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

 Multiplexer with

 Storage

 d1, a2, b2, c2, d2)

RETURNS (qa, qb, qc, qd);

74352 Dual 4-Line-to-1-

 Line Data Selector

 /Multiplexer with

 Inverting Outputs

FUNCTION 74352 (b, a, 1gn, 1c[0..3], 2gn,

 2c[0..3])

RETURNS (1yn, 2yn);

74353 Dual 4-Line-to-1-

 Line Data Selector

 /Multiplexer with

 Tri-State Inverting

 Outputs

FUNCTION 74353 (b, a, 1gn, 1c[0..3], 2gn,

 2c[0..3])

RETURNS (1yn, 2yn);

74354 8-Line-to-1-Line Data

 Selector/Multiplexer/

 Register with Tri-

 State Outputs

FUNCTION 74354 (gn1, gn2, g3, s[2..0],

 scn, dcn, d[7..0])

RETURNS (y, wn);

74356 8-Line-to-1-Line Data

 Selector/Multiplexer/

 Register with Tri-

 State Outputs

FUNCTION 74356 (gn1, gn2, g3, s[2..0],

 scn, clk, d[7..0])

RETURNS (y, wn);

74398 Quad 2-Input

 Multiplexer with

 Storage

FUNCTION 74398 (sel, a1, b1, c1, d1, a2,

 b2, c2, d2, clk)

RETURNS (qa, qan, qb, qbn, qc, qcn, qd, qdn);

74399 Quad 2-Input

 Multiplexer with

 Storage

FUNCTION 74399 (sel, a1, b1, c1, d1, a2,

 b2, c2, d2, clk)

RETURNS (qa, qb, qc, qd);

Truth Table of 2 × 8 MUX (Multiplexer)

Inputs Outputs

SEL A[7..0] B[7..0] Y[7..0]

H a[7..0] b[7..0] a[7..0]

L a[7..0] b[7..0] b[7..0]

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

Truth Table of 74151 (Multiplexer)

Inputs

Select Enable
Outputs

C B A GN Y WN

X X X H L H

L L L L D0 /D0

L L H L D1 /D1

L H L L D2 /D2

L H H L D3 /D3

H L L L D4 /D4

H L H L D5 /D5

H H L L D6 /D6

H H H L D7 /D7

Truth Table of 74298 (Multiplexer)

Inputs Outputs

WRSL CLKN QA QB QC QD

L A1 B1 C1 D1

H A2 B2 C2 D2

X H QAo* QBo* QCo* QDo*

* QAo..QDo equal to the level of QA to QD at the last falling edge of clock.

Comparators

Macrofunction Description Function Prototype

8MCOMP Note 8-Bit

 Magnitude

 Comparator

FUNCTION 8MCOMP (a[7..0], b[7..0])

RETURNS (altb, aeqb, agtb, aeb[7..0]);

8MCOMPB 8-Bit Magnitude

 Comparator

FUNCTION 8MCOMPB (a[7..0], b[7..0])

RETURNS (altb, aeqb, agtb, aeb[7..0]);

7485 Note 4-Bit

 Magnitude

 Comparator

FUNCTION 7485 (a[3..0], b[3..0], agbi, albi,

 aebi)

RETURNS (agbo, albo, aebo);

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

74518 Note 8-Bit Identity

 Comparator

FUNCTION 74518 (p[7..0], q[7..0], gn)

RETURNS (pq);

74518B 8-Bit Identity

 Comparator

FUNCTION 74518B (p[7..0], q[7..0], gn)

RETURNS (pq);

74684 8-Bit Magnitude/

 Identity

 Comparator

FUNCTION 74684 (p[7..0], q[7..0])

RETURNS (equaln, p_gr_qn);

74686 8-Bit Magnitude/

 Identity

 Comparator

FUNCTION 74686 (g1n, g2n, p[7..0], q[7..0])

RETURNS (equaln, p_gr_qn);

74688 8-Bit Identity

 Comparator

FUNCTION 74688 (gn, p[7..0], q[7..0])

RETURNS (equaln);

Truth Table of 7485 (Comparator)

Comparing Inputs Cascading Inpits Outputs

A3, B3 A2, B2 A1, B1 A0, B0 AGB1 ALB1 AEB1 AGB0 ALB0 AEB0

A3 > B3 X X X X X X H L L

A3 < B3 X X X X X X L H L

A3 = B3 A2 > B2 X X X X X H L L

A3 = B3 A2 < B2 X X X X X L H L

A3 = B2 A2 = B2 A1 > B1 X X X X H L L

A3 = B3 A2 = B2 A1 < B1 X X X X L H L

A3 = B3 A2 = B2 A1 = B1 A0 > B0 X X X H L L

A3 = B3 A2 = B2 A1 = B1 A0 < B0 X X X L H L

A3 = B3 A2 = B2 A1 = B1 A0 = B0 H L L H L L

A3 = B3 A2 = B2 A1 = B1 A0 = B0 L H L L H L

A3 = B3 A2 = B2 A1 = B1 A0 = B0 L L H L L H

A3 = B3 A2 = B2 A1 = B1 A0 = B0 X X H L L H

A3 = B3 A2 = B2 A1 = B1 A0 = B0 H H L L L L

A3 = B3 A2 = B2 A1 = B1 A0 = B0 L L L H H L

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

Truth Table of 74688 (Comparator)

Inputs Outputs

GN DATA EQUALN

H X H

L P = Q L

L P <> Q H

Parity Generators/Checkers

Macrofunction Description Function Prototype

74180 9-Bit Odd/Even

 Parity Generator/

 Checker

FUNCTION 74180 (a, b, c, d, e, f, g, h, evni,

 oddi)

RETURNS (evns, odds);

74180B 9-Bit Odd/Even

 Parity Generator/

 Checker

FUNCTION 74180B (d[7..0], evni, oddi)

RETURNS (evns, odds);

74280 9-Bit Odd/Even

 Parity Generator/

 Checker

FUNCTION 74280 (a, b, c, d, e, f, g, h, i)

RETURNS (even, odd);

74280B 9-Bit Odd/Even

 Parity Generator/

 Checker

FUNCTION 74280B (d[8..0])

RETURNS (evns, odds);

Truth Table of 74180 (Parity Generator/Checker)

Inputs

of Hs at
Outputs

A through H ENVI ODDI EVNS ODDS

Even H L H L

Odd H L L H

Even L H L H

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

Odd L H H L

X H H L L

X L L H H

Truth Table of 74280 (Parity Generator/Checker)

Outputs Number of Inputs A through I

that are High EVEN ODD

0 2 4 6 8 H L

1 3 5 7 9 L H

Converters

Macrofunction Description Function Prototype

74184 BCD-to-Binary

 Converte

FUNCTION 74184 (e, d, c, b, a, gn)

RETURNS (y[8..1]);

74185 Binary-to-BCD

 Converter

FUNCTION 74185 (e, d, c, b, a, gn)

RETURNS (y[8..1]);

Truth Table of 74184 (Converter) (1)

Inputs Outputs
BCD

E D C B A GN Y5 Y4 Y3 Y2 Y1

0–1 L L L L L L L L L L L

2–3 L L L L H L L L L L H

4–5 L L L H L L L L L H L

6–7 L L L H H L L L L H H

8–9 L L H L L L L L H L L

10–11 L H L L L L L L H L H

12–13 L H L L H L L L H H L

14–15 L H L H L L L L H H H

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

16–17 L H L H H L L H L L L

18–19 L H H L L L L H L L H

20–21 H L L L L L L H L H L

22–23 H L L L H L L H L H H

24–25 H L L H L L L H H L L

26–27 H L L H H L L H H L H

28–29 H L H L L L L H H H L

30–31 H H L L L L L H H H H

32–33 H H L L H L H L L L L

34–35 H H L H L L H L L L H

36–37 H H L H H L H L L H L

38–39 H H H L L L H L L H H

Any X X X X X H H H H H H

Input conditions other than those shown produce high levels at outputs Y1 to Y5.

Outputs Y6, Y7, and Y8 are not used for BCD-to-binary conversion.

Truth Table of 74184 (2)

Inputs Outputs
BCD

E* D C B A GN Y8 Y7 Y6

0 L L L L L L H L H

1 L L L L H L H L L

2 L L L H L L L H H

3 L L L H H L L H L

4 L L H L L L L H H

5 L L H L H L L H L

6 L L H H L L L L H

7 L L H H H L L L L

8 L H L L L L L L H

9 L H L L H L L L L

0 H L L L L L L L L

1 H L L L H L H L L

2 H L L H L L H L L

3 H L L H H L L H H

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

4 H L H L L L L H H

5 H L H L H L L H L

6 H L H H L L L H L

7 H L H H H L L L H

8 H H L L L L L L H

9 H H L L H L L L L

Any X X X X X H H H H

* When these devices are used as complement converters, input E is used as a mode control. When

this input is low, the BCD 9s complement is generated; when it is high, the BCD 10’s

complement is generated.

Input conditions other than those shown produce high levels at outputs Y6, Y7, and Y8.

Outputs Y1 through Y5 are not used for BCD 9s or 10s complement conversion.

Truth Table of 74185 (Converter)

Inputs Outputs
BCD

E D C B A GN Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1

0–1 L L L L L L H H L L L L L L

2–3 L L L L H L H H L L L L L H

4–5 L L L H L L H H L L L L H L

6–7 L L L H H L H H L L L L H H

8–9 L L H L L L H H L L L H L L

10–11 L L H L H L H H L L H L L L

12–13 L L H H L L H H L L H L L H

14–15 L L H H H L H H L L H L H L

16–17 L H L L L L H H L L H L H H

18–19 L H L L H L H H L L H H L L

20–21 L H L H L L H H L H L L L L

22–23 L H L H H L H H L H L L L H

24–25 L H H L L L H H L H L L H L

26–27 L H H L H L H H L H L L H H

28–29 L H H H L L H H L H L H L L

30–31 L H H H H L H H L H H L L L

32–33 H L L L L L H H L H H L L H

34–35 H L L L H L H H L H H L H L

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

36–37 H L L H L L H H L H H L H H

38–39 H L L H H L H H L H H H L L

40–41 H L H L L L H H H L L L L L

42–43 H L H L H L H H H L L L L H

44–45 H L H H L L H H H L L L H L

46–47 H L H H H L H H H L L L H H

48–49 H H L L L L H H H L L H L L

50–51 H H L L H L H H H L H L L L

52–53 H H L H L L H H H L H L L H

54–55 H H L H H L H H H L H L H L

56–57 H H H L L L H H H L H L H H

58–59 H H H L H L H H H L H H L L

60–61 H H H H L L H H H H L L L L

62–63 H H H H H L H H H H L L L H

Any X X X X X H H H H H H H H H

Rate

Multipliers

Macrofunction Description Function Prototype

74167 Synchronous

 Decade Rate

 Multiplier

FUNCTION 74167 (clk, clr, enn, strbn, b[3..0],

 uni/cas, set9)

RETURNS (y, zn, eno);

Truth Table of 74167 (Rate Multiplier)

Inputs
Outputs

CLR ENN STRBN B3 B2 B1 B0
#Clock

Pulses

UNI/

CAS Y ZN EN0

註

解

H X H X X X X X H L H H 1

L L L L L L L 10 H L H 1 2

L L L L L L H 10 H 1 1 1 2

L L L L L H L 10 H 2 2 1 2

L L L L L H H 10 H 3 3 1 2

L L L L H L L 10 H 4 4 1 2

L L L L H L H 10 H 5 5 1 2

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

L L L L H H L 10 H 6 6 1 2

L L L L H H H 10 H 7 7 1 2

L L L H L L L 10 H 8 8 1 2

L L L H L L H 10 H 9 9 1 2

L L L H L H L 10 H 8 8 1 2, 3

L L L H L H H 10 H 9 9 1 2, 3

L L L H H L L 10 H 8 8 1 2, 3

L L L H H L H 10 H 9 9 1 2, 3

L L L H H H L 10 H 8 8 1 2, 3

L L L H H H H 10 H 9 9 1 2, 3

L L L X X X X 10 L H 9 1 4

Note:1. This is a simplified illustration of the clear function. The states of Clocks and the strobe
can affect the logic level of Y and Z. A low UNI/CAS will cause output Y to remain high.

 2. Each rate illustrated assumes a constant value at rate inputs; however, these illustrations in
no way prohibit variable-rate inputs.

 3. These input conditions exceed the range of the decimal rate inputs.
4. UNI/CAS can be used to inhibit output Y.

Counters

Macrofunction Description Function Prototype

GRAY4 Gray Code Counter FUNCTION GRAY4 (clk, ena)

RETURNS (qd, qc, qb, qa);

UNICNT Universal 4-Bit Up/

 Down Counter Left/

 Right Shift Register

 with Asynchronous

 Set and Load, Clear,

 and Cascade

FUNCTION UNICNT (clk, clr, set, load,

 ctst, dnup, rtlt, cin, data, d, c, b, a)

RETURNS (qd, qc, qb, qa, cout);

16CUDSLR 16-Bit Binary Up/

 Down Counter Left/

 Right Shift Register

 with Asynchronous

 Set

FUNCTION 16CUDSLR (clk, clrn, setn,

 data, stct, dnup, ltrt)

RETURNS (q[16..1]);

16CUDSRB 16-Bit Binary Up/ FUNCTION 16CUDSRB (clk, clrn, setn,

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

 Down Counter with

 Left/Right Shift

 Register, Asyn-

 chronous Clear, and

 Asynchronous Set

 data, stct, dnup, ltrt)

RETURNS (q[16..1]);

4COUNT 4-Bit Binary Up/

 Down Counter with

 Synchronous Load

 (LDN), Asyn-

 chronous Clear, and

 Asynchronous Load

 (SETN)

FUNCTION 4COUNT (clk, clrn, setn, ldn,

 cin, dnup, d, c, b, a)

RETURNS (qd, qc, qb, qa, cout);

8COUNT 8-Bit Binary Up/

 Down Counter with

 Synchronous Load

 (LDN), Asyn-

 chronous Clear, and

 Asynchronous Load

 (SETN)

FUNCTION 8COUNT (clk, clrn, setn, ldn,

 dnup, gn, h, g, f, e, d, c, b, a)

RETURNS (qh, qg, qf, qe, qd, qc, qb, qa,

 cout);

7468 Dual Decade Counter FUNCTION 7468 (1clk1, 1clk2, 1clrn, 2clk,

 2clrn)

RETURNS (1qd, 1qc, 1qb, 1qa, 2qd, 2qc,

 2qb, 2qa);

7469 Dual Binary Counter FUNCTION 7469 (1clk1, 1clk2, 1clrn, 2clk,

 2clrn)

RETURNS (1qd, 1qc, 1qb, 1qa, 2qd, 2qc,

 2qb, 2qa);

7490 Decade or Binary

 Counter with Clear

 and Set-to-9

FUNCTION 7490 (set9a, set9b, clra, clrb,

 clka, clkb)

RETURNS (qd, qc, qb, qa);

7492 Divide-by-12

 Counter

FUNCTION 7492 (clra, clrb, clka, clkb)

RETURNS (qd, qc, qb, qa);

7493 4-Bit Binary Counter FUNCTION 7493 (clka, clkb, ro1, ro2)

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

 RETURNS (qd, qc, qb, qa);

74143 4-Bit Counter/Latch,

7-Segment Driver

FUNCTION 74143 (clk, clrn, strbn, pcein,

 scein, bin, rbin, dpi)

RETURNS (qd, qc, qb, qa, max, a, b, c, d, e,

 f, g, dpo, rbon);

74160 4-Bit Decade

 Counter with Syn-

 chronous Load and

 Asynchronous Clear

FUNCTION 74160 (clk, ldn, clrn, enp, ent,

 d, c, b, a)

RETURNS (qd, qc, qb, qa, rco);

74161 4-Bit Binary Up

 Counter with Syn-

 chronous Load and

 Asynchronous Clear

FUNCTION 74161 (clk, ldn, clrn, enp, ent,

 d, c, b, a)

RETURNS (qd, qc, qb, qa, rco);

74162 4-Bit Decade Up

 Counter with Syn-

 chronous Load and

 Synchronous Clear

FUNCTION 74162 (clk, ldn, clrn, enp, ent,

 d, c, b, a)

RETURNS (qd, qc, qb, qa, rco);

74163 4-Bit Binary Up

 Counter with Syn-

 chronous Load and

 Synchronous Clear

FUNCTION 74163 (clk, ldn, clrn, enp, ent,

 d, c, b, a)

RETURNS (qd, qc, qb, qa, rco);

74168 Synchronous 4-Bit

 Decade Up/Down

 Counter

FUNCTION 74168 (ldn, entn, enpn, u/dn,

 clk, d[3..0])

RETURNS (q[3..0], tcn);

74169 Synchronous 4-Bit

 Binary Up/Down

 Counter

FUNCTION 74169 (ldn, entn, enpn, u/dn,

 clk, d[3..0])

RETURNS (q[3..0], tcn);

74176 Presettable Decade

 Counter

FUNCTION 74176 (clrn, ldn, clk1, clk2, d,

 c, b, a)

RETURNS (qd, qc, qb, qa);

74177 Presettable Binary

 Counter

FUNCTION 74177 (clrn, ldn, clk1, clk2, d,

 c, b, a)

RETURNS (qd, qc, qb, qa);

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

74190 4-Bit Decade Up/

 Down Counter with

 Asynchronous Load

FUNCTION 74190 (clk, gn, ldn, dnup, d, c,

 b, a)

RETURNS (qd, qc, qb, qa, mxmn, rcon);

74191 4-Bit Binary Up/

 Down Counter with

 Asynchronous Load

FUNCTION 74191 (clk, gn, ldn, dnup, d, c,

 b, a)

RETURNS (qd, qc, qb, qa, mxmn, rcon);

74192

4-Bit Decade Up/

 Down Counter with

 Asynchronous Clear

 Registers

FUNCTION 74192 (clr, up, dn, ldn, d, c, b,

 a)

RETURNS (qd, qc, qb, qa, con, bon);

74193 4-Bit Binary Up/

 Down Counter with

 Asynchronous Clear

FUNCTION 74193 (clr, up, dn, ldn, d, c, b,

 a)

RETURNS (qd, qc, qb, qa, con, bon);

74196 Presettable Decade

 Counter

FUNCTION 74196 (clrn, ldn, clk1, clk2, d,

 c, b, a)

RETURNS (qd, qc, qb, qa);

74197 Presettable Binary

 Counter

FUNCTION 74197 (clrn, ldn, clk1, clk2, d,

 c, b, a)

RETURNS (qd, qc, qb, qa);

74290 Decade Counter with

 Clear

FUNCTION 74290 (clka, clkb, clra, clrb,

 set9a, set9b)

RETURNS (qd, qc, qb, qa);

74292 Programmable

Frequency Divider/

 Digital Timer

FUNCTION 74292 (clk1, clk2, clrn, e, d, c,

 b, a)

RETURNS (q, tp1, tp2, tp3);

74293 Binary Counter with

 Clear

FUNCTION 74293 (clka, clkb, clra, clrb)

RETURNS (qd, qc, qb, qa);

74294 Programmable

Frequency Divider/

 Digital Timer

FUNCTION 74294 (clk1, clk2, clrn, d, c, b,

 a)

RETURNS (q, tp);

74390 Dual Decade Counter FUNCTION 74390 (1clr, 1clka, 1clkb, 2clr,

 2clka, 2clkb)

RETURNS (1qd, 1qc, 1qb, 1qa, 2qd, 2qc,

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

 2qb, 2qa);

74393 Dual 4-Bit Up

Counter with

Asynchronous Clear

FUNCTION 74393 (a1, clr1, a2, clr2)

RETURNS (q1a, q1b, q1c, q1d, q2a, q2b,

 q2c, q2d);

74490 Dual 4-Bit Decade

 Counter

FUNCTION 74490 (1set9, 1clr, 1clk, 2set9,

 2clr, 2clk)

RETURNS (1qd, 1qc, 1qb, 1qa, 2qd, 2qc,

 2qb, 2qa);

74568 Decade Up/Down

Counter with

Synchronous Load

and Clear and

Asynchronous Clear

FUNCTION 74569 (clk, entn, enpn, aclrn,

 sclrn, u/dn, ldn, d[3..0], oen)

RETURNS (q[3..0], rcon, ccon);

74569 Binary Up/Down

 Counter with

Synchronous Load

and Clear and

Asynchronous Clear

FUNCTION 74569 (clk, entn, enpn, aclrn,

 sclrn, u/dn, ldn, d[3..0], oen)

RETURNS (q[3..0], rcon, ccon);

74590 8-Bit Binary Counter

 with Tri-State Out-

 put Registers

FUNCTION 74590 (gn, cclrn, ccken, cclk,

 rclk)

RETURNS (qh, qg, qf, qe, qd, qc, qb, qa,

 rcon);

74592 8-Bit Binary Counter

 with Input Registers

FUNCTION 74592 (cclrn, cloadn, rclk,

 ccken, cclk, h, g, f, e, d, c, b, a)

RETURNS (rcon);

74668 Synchronous Decade

 Up/Down Counter

FUNCTION 74668 (clk, entn, enpn, u/dn,

 ldn, d[3..0])

RETURNS (q[3..0], tcn);

74669 Synchronous 4-Bit

Binary Up/Down

Counter

FUNCTION 74669 (clk, entn, enpn, u/dn,

 ldn, d[3..0])

RETURNS (q[3..0], tcn);

74690 Synchronous Decade FUNCTION 74690 (gn, cclrn, ldn, enp, ent,

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

Counter with Out put

Registers,

Multiplexed Tri-State

Outputs, and

Asynchronous Clear

 rclrn, rclk, r/cn, cclk, d[3..0])

RETURNS (q[3..0], rco);

74691 Synchronous Binary

Counter with Output

Registers,

Multiplexed Tri-State

Outputs, and

Asynchronous Clear

FUNCTION 74691 (gn, cclrn, ldn, enp, ent,

 rclrn, rclk, r/cn, cclk, d[3..0])

RETURNS (q[3..0], rco);

74693 Synchronous Binary

 Counter with

Output Registers,

Multiplexed Tri-State

Outputs, and

Synchronous Clear

FUNCTION 74693 (gn, cclrn, ldn, enp, ent,

 rclrn, rclk, r/cn, cclk, d[3..0])

RETURNS (q[3..0], rco);

74696 Synchronous Decade

Up/Down Counter

with Output

Registers,

Multiplexed Tri-State

Outputs, and

Asynchronous Clear

FUNCTION 74696 (u/dn, r/cn, rclk, ldn, gn,

 entn, enpn, d3, d2, d1, d0, cclrn, cclk)

RETURNS (tcn, q3, q2, q1, q0);

74697 Synchronous Binary

Up/Down Counter

with Output

Registers,

Multiplexed Tri-State

Outputs, and

Asynchronous Clear

FUNCTION 74697 (u/dn, r/cn, rclk, ldn, gn,

 entn, enpn, d3, d2, d1, d0, cclrn, cclk)

RETURNS (tcn, q3, q2, q1, q0);

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

74698 Synchronous Decade

Up/Down Counter

with Output

Registers,

Multiplexed Tri-State

Outputs, and

Synchronous Clear

FUNCTION 74698 (u/dn, r/cn, rclk, ldn, gn,

 entn, enpn, d3, d2, d1, d0, cclrn, cclk)

RETURNS (tcn, q3, q2, q1, q0);

74699 Synchronous Binary

Up/Down Counter

with Output

Registers,

Multiplexed Tri-State

Outputs, and

Synchronous Clear

FUNCTION 74699 (u/dn, r/cn, rclk, ldn, gn,

 entn, enpn, d3, d2, d1, d0, cclrn, cclk)

RETURNS (tcn, q3, q2, q1, q0);

Truth Table of 4COUNT (Counter)

Inputs Outputs

CLK CLRN SETN LDN CIN DNUP D C B A QD QC QB QA COUT

X L X X X X L L L L X

X H L X X X d c b a D c b a X

↑ H H L X X d c B a D c b a X

↑ H H H L X X

↑ H H H H H L

↑ H H H H L

Hold

Count Down

Count Up L

X X X X H H L L L L H

X X X X H L H H H H H

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

Truth Table of 7490 (Counter)

Inputs Outputs

CLR* SET* CLK QD QC QB QA

H L X L L L L

L H X H L L H

H H X Illegal

L L Count

 *CLR = CLRA & CLRB.

 **SET = SET9A & SET9B.

Possible Counting Configurations:

DECADE: QA connected to CLKB

Count QD QC QB QA

0 L L L L

1 L L L H

2 L L H L

3 L L H H

4 L H L L

5 L H L H

6 L H H L

7 L H H H

8 H L L L

9 H L L H

BI-QUINARY: QD connected to CLKA

Count QD QC QB QA

0 L L L L

1 L L L H

2 L L H L

3 L L H H

4 L H L L

5 H L L L

6 H L L H

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

7 H L H L

8 H L H H

9 H H L L

 Binary: This mode can be an inefficient implementation of a binary counter

and is not recommended by ALTERA. For a four-bit counter with similar features, use

the 74161 or 4count macrofunction.

Truth Table of 74161 (Counter)

Inputs Outputs

CLK LDN CLRN ENP ENT D C B A QD QC QB QA RC0

X X L X X L L L L L

↑ L H X X d C b a D c b a *

↑ H H X L QD QC QB QA *

↑ H H L X QD QC QB QA *

↑ H H H H L L L L L

↑ H H H H L L L H L

↑ H H H H L L H L L

↑ H H H H L L H H L

↑ H H H H L H L L L

↑ H H H H L H L H L

↑ H H H H L H H L L

↑ H H H H L H H H L

↑ H H H H H L L L L

↑ H H H H H L L H L

↑ H H H H H L H L L

↑ H H H H H L H H L

↑ H H H H H H L L L

↑ H H H H H H L H L

↑ H H H H H H H L L

X H H H H H H H H H

* RCO = QD & QC & QB & QA & ENT.

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

Registers

Macrofunction Description Function Prototype

ENADFF Enabled D-Type

 Flip-flop

FUNCTION ENADFF (d, clk, clrn, prn, ena)

RETURNS (q);

XPDFFE D-Type Flip-flop Im-

 plemented with Ex-

 panders (or with

 DFF Primitive for

 FLEX 8000 Pro-

 jects)

FUNCTION EXPDFF (d, clk, clrn, prn)

RETURNS (q, /q);

7470 AND-Gated JK Flip-

 flop with Preset and

 Clear

FUNCTION 7470 (prn, clrn, clk, j1, j2, jn,

 k1, k2, kn)

RETURNS (q, qn);

7471 JK Flip-flop with

 Preset

FUNCTION 7471 (prn, clk, j1a, j1b, j2a, j2b,

 k1a, k1b, k2a, k2b)

RETURNS (q, qn);

7472 AND-Gated JK Flip-

 flop with Preset and

 Clear

FUNCTION 7472 (prn, clrn, clk, j1, j2, j3,

 k1, k2, k3)

RETURNS (q, qn);

7473 Dual JK Flip-flop

 with Clear

FUNCTION 7473 (1clrn, 1clk, 1j, 1k, 2clrn,

 2clk, 2j, 2k)

RETURNS (1q, 1qn, 2q, 2qn);

7474 Dual D-Type Flip-

 flop with Asyn-

 chronous Preset and

 Asynchronous Clear

FUNCTION 7474 (1prn, 1clrn, 1clk, 1d,

 2prn, 2clrn, 2clk, 2d)

RETURNS (1q, 1qn, 2q, 2qn);

7476 Dual JK Flip-flop

 with Asynchronous

 Preset and Asyn-

 chronous Clear

FUNCTION 7476 (1prn, 1clrn, 1clk, 1j, 1k,

 2prn, 2clrn, 2clk, 2j, 2k)

RETURNS (1q, 1qn, 2q, 2qn);

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

7478 Dual JK Flip-flop

 with Asynchronous

 Preset, Common

 Clear, and Common

 Clock

FUNCTION 7478 (clrn, 1prn, 1j, 1k, 2prn,

 2j, 2k, clk)

RETURNS (1q, 1qn, 2q, 2qn);

74107 Dual JK Flip-flop

 with Clear

FUNCTION 74107 (1j, 1k, 1clrn, 1clk, 2j,

2k, 2clrn, 2clk)

RETURNS (1q, 1qn, 2q, 2qn);

74109 Dual JK Flip-flop

 with Preset and

 Clear

FUNCTION 74109 (1prn, 1j, 1kn, 1clrn,

 1clk, 2prn, 2j, 2kn, 2clrn, 2clk)

RETURNS (1q, 1qn, 2q, 2qn);

74112 Dual JK Negative-

 Edge-Triggered

 Flip-flop with

 Preset and Clear

FUNCTION 74112 (1prn, 1j, 1k, 1clrn, 1clk,

 2prn, 2j, 2k, 2clrn, 2clk)

RETURNS (1q, 1qn, 2q, 2qn);

74113 Dual JK Negative-

 Edge-Triggered

 Flip-flop with

 Preset

FUNCTION 74113 (1prn, 1j, 1k, 1clk, 2prn,

 2j, 2k, 2clk)

RETURNS (1q, 1qn, 2q, 2qn);

74114 Dual JK Negative-

 Edge-Triggered

 Flip-flop with

 Preset, Common

 Clear, and Common

 Clock

FUNCTION 74114 (1prn, 1j, 1k, 1clk, 2prn,

 2j, 2k, clrn, clk)

RETURNS (1q, 1qn, 2q, 2qn);

74171 Quad D-Type Flip-

 flops with Clear

FUNCTION 74171 (clrn, clk, d1, d2, d3, d4)

RETURNS (q1, qn1, q2, qn2, q3, qn3, q4,

 qn4);

74172 Multi-Port Register

 File with Tri-State

 Outputs

FUNCTION 74172 (1grn, 2grn, 1r0, 1r1, 1r2,

 2w/r0, 2w/r1, 2w/r2, 1w0, 1w1, 1w2, 1da,

 1db, 2da, 2db, 1gwn, 2gwn, clk)

RETURNS (1qa, 1qb, 2qa, 2qb);

74173 4-Bit D-Type Re- FUNCTION 74173 (clr, clk, mn, nn, g1n,

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

 gister g2n, 1d, 2d, 3d, 4d)

RETURNS (1q, 2q, 3q, 4q);

74174 Hex D-Type Flipflop

with Common Clear

FUNCTION 74174 (clrn, clk, 1d, 2d, 3d, 4d,

 5d, 6d)

RETURNS (1q, 2q, 3q, 4q, 5q, 6q);

74174B Hex D-Type Flipflop

with Common Clear

FUNCTION 74174B (clrn, clk, d[6..1])

RETURNS (q[6..1]);

74175 Quad D-Type Flip

flop with Common

Clock and Clear

FUNCTION 74175 (clrn, clk, 1d, 2d, 3d, 4d)

RETURNS (1q, 1qn, 2q, 2qn, 3q, 3qn, 4q,

 4qn);

74273 Octal D-Type

Flipflop with

Asynchronous Clear

FUNCTION 74273 (clrn, clk, d[8..1])

RETURNS (q[8..1]);

74273B Octal D-Type Flip-

 flop with Asyn-

 chronous Clear

FUNCTION 74273B (clrn, clk, d[8..1])

RETURNS (q[8..1]);

74276 Quad J/K Flip-flop

 Register with

 Common Preset and

 Clear

FUNCTION 74276 (prn, clrn, 1j, 1kn, 1clk,

 2j, 2kn, 2clk, 3j, 3kn, 3clk, 4j, 4kn, 4clk)

RETURNS (1q, 1qn, 2q, 2qn, 3q, 3qn, 4q,

 4qn);

74374 Octal D-Type Flip-

 flop with Tri-State

 Outputs and Output

 Enable

FUNCTION 74374 (clk, oen, d[8..1])

RETURNS (q[8..1]);

74374B Octal D-Type Flip-

flop with Tri-State

Outputs and Output

Enable

FUNCTION 74374B (clk, oen, d[8..1])

RETURNS (q[8..1]);

74376 Quad JK Flip-flop

 with Common

 Clock and Common

 Clear

FUNCTION 74376 (clk, clrn, 1j, 1kn, 2j,

 2kn, 3j, 3kn, 4j, 4kn)

RETURNS (1q, 2q, 3q, 4q);

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

74377 Octal D-Type Flip-

flop with Enable

FUNCTION 74377 (en, clk, d[8..1])

RETURNS (q[8..1]);

74377B Octal D-Type Flip-

flop with Enable

FUNCTION 74377B (en, clk, d[8..1])

RETURNS (q[8..1]);

74378 Hex D-Type Flip-

 flop with Enable

FUNCTION 74378 (en, clk, d[6..1])

RETURNS (q[6..1]);

74379 Quad D-Type Flip-

 flop with Enable

FUNCTION 74379 (en, clk, d[4..1])

RETURNS (q[4..1], qn[4..1]);

74396 Octal Storage

 Register

FUNCTION 74396 (strbn, clk, d1, d2, d3,

 d4)

RETURNS (1q1, 1q2, 1q3, 1q4, 2q1, 2q2,

 2q3, 2q4);

74548 8-Bit 2-Stage Pipe-

 lined Register with

 Tri-State Outputs

FUNCTION 74548 (clk, clkenn1, clkenn2,

 insel, d[7..0], outsel, oen)

RETURNS (y[7..0]);

74670 4-Bit by 4-Bit Re-

 gister File with Tri-

 State Outputs

FUNCTION 74670 (wb, wa, gwn, rb, ra, grn,

 d[1..4])

RETURNS (q[1..4]);

74821 10-Bit Bus Interface

 Flip-flop with Tri-

 State Outputs

FUNCTION 74821 (oen, clk, d[1..10])

RETURNS (q[1..10]);

74821B 10-Bit D-Type Flip-

 flop with Tri-State

 Outputs

FUNCTION 74821B (d[10..1], oen, clk)

RETURNS (q[10..1]);

74822 10-Bit Bus Interface

 Flip-flop with Tri-

 State Inverting

 Outputs

FUNCTION 74822 (oen, clk, d[1..10])

RETURNS (q[1..10]);

74822B 10-Bit D-Type

Inverting Flip-flop

with Tri-State

Inverting Outputs

FUNCTION 74822B (dn[10..1], oen, clk)

RETURNS (q[10..1]);

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

74823 9-Bit Bus Interface

 Flip-flop with Tri-

 State Outputs

FUNCTION 74823 (oen, clrn, clkenn, clk,

 d[1..9])

RETURNS (q[1..9]);

74823B 9-Bit D-Type Flip-

flop with Tri-State

Outputs

FUNCTION 74823 (oen, clrn, clkenn, clk,

d[1..9])

RETURNS (q[1..9]);

74824 9-Bit Bus Interface

 Flip-flop with Tri-

 State Inverting

 Outputs

FUNCTION 74824 (oen, clrn, clkenn, clk,

 dn[1..9])

RETURNS (q[1..9]);

74824B 9-Bit D-Type Inver-

 ting Flip-flop with

 Tri-State Inverting

 Outputs

FUNCTION 74824B (dn[9..1], oen, clk, clrn,

 clkenn)

RETURNS (q[9..1]);

74825 8-Bit Bus Interface

 Flip-flop with Tri-

 State Ouputs

FUNCTION 74825 (oe1n, oe2n, oe3n, clrn,

 clkenn, clk, d[1..8])

RETURNS (q[1..8]);

74825B Octal D-Type Flip-

 flop with Tri-State

 Outputs

FUNCTION 74825B (d[8..1], oe1n, oe2n,

 oe3n, clk, clrn, clkenn)

RETURNS (q[8..1]);

74826 9-Bit Bus Interface

 Flip-flop with Tri-

 State Inverting Out-

 puts

FUNCTION 74826 (oe1n, oe2n, oe3n, clrn,

 clkenn, clk, d[1..8])

RETURNS (q[1..8]);

74826B Octal D-Type Inver-

 ting Flip-flop with

 Tri-State Inverting

 Outputs

FUNCTION 74826B (dn[8..1], oe1n, oe2n,

 oe3n, clk, clrn, clkenn)

RETURNS (q[8..1]);

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

Truth Table of ENADFF (Register)

Inputs Outputs

CLRN PRN ENA D CLK Q

L H X X X L

H L X X X H

L L X X X Illegal

H H L X X Qo

H H H L ↑ L

H H H H ↑ H

H H X X L Qo

Truth Table of 7474 (Register)

Inputs Outputs

PRN CLRN CLK D Q QN

L H X X H L

H L X X L H

L L X X Illegal

H H ↑ L L H

H H ↑ H H L

H H L X Qo* /Qo

 *Qo = Level of Q before clock pulse

Truth Table of 74374 (Register)

Inputs Outputs

OEN CLK D Q

H X X Z

L X X X

L ↑ L L

L ↑ H H

L L X Qo

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

Decoders

Macrofunction Description Function Prototype

16DMUX 4-Bit Binary-to-16-

 Line Decoder

FUNCTION 16DMUX (d, c, b, a)

RETURNS (q[15..0])

16NDMUX 4-Bit Binary-to-16-

 Line Decoder

FUNCTION 16NDMUX (d, c, b, a)

RETURNS (qn[15..0]);

7442 1-Line-to-10-Line

 BCD-to-Decimal

 Decoder

FUNCTION 7442 (d, c, b, a)

RETURNS (o0n, o1n, o2n, o3n, o4n, o5n,

 o6n, o7n, o8n, o9n);

7443 Excess-3-to-Decimal

Decoder

FUNCTION 7443 (d, c, b, a)

RETURNS (o0n, o1n, o2n, o3n, o4n, o5n,

 o6n, o7n, o8n, o9n);

7444 Excess-3-Gray-to-
 Decimal Decoder

FUNCTION 7444 (d, c, b, a)
RETURNS (o0n, o1n, o2n, o3n, o4n, o5n,
 o6n, o7n, o8n, o9n);

7445 BCD-to-Decimal
 Decoder

FUNCTION 7445 (d, c, b, a)
RETURNS (o0n, o1n, o2n, o3n, o4n, o5n,
 o6n, o7n, o8n, o9n);

7446 BCD-to-7-Segment
 Decoder

FUNCTION 7446 (ltn, rbin, d, c, b, a, bin)
RETURNS (oa, ob, oc, od, oe, 'of', og, rbon);

7447 BCD-to-7-Segment
 Decoder

FUNCTION 7447 (ltn, rbin, d, c, b, a, bin)
RETURNS (oa, ob, oc, od, oe, 'of', og, rbon);

7448 BCD-to-7-Segment
 Decoder

FUNCTION 7448 (ltn, rbin, d, c, b, a, bin)
RETURNS (oa, ob, oc, od, oe, 'of', og, rbon);

7449 BCD-to-7-Segment
 Decoder

FUNCTION 7449 (d, c, b, a, bin)
RETURNS (oa, ob, oc, od, oe, 'of', og);

74137 3-Line-to-8-Line De-
 coder with Address
 Latches

FUNCTION 74137 (gln, g1, g2n, c, b, a)
RETURNS (y[0..7]);

74138 3-Line-to-8-Line
 Decoder

FUNCTION 74138 (g1, g2an, g2bn, c, b, a)
RETURNS (y0n, y1n, y2n, y3n, y4n, y5n,
 y6n, y7n);

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

74139 Dual 2-Line-to-4-
 Line Decoder

FUNCTION 74139 (g1n, b1, a1, g2n, b2, a2)
RETURNS (y10n, y11n, y12n, y13n, y20n,
 y21n, y22n, y23n);

74145 BCD-to-Decimal
Decoder

FUNCTION 74145 (d, c, b, a)

RETURNS (o0n, o1n, o2n, o3n, o4n, o5n,
o6n, o7n, o8n, o9n);

74154 4-Line-to-16-Line
 Line Decoder

FUNCTION 74154 (g1n, g2n, d, c, b, a)
RETURNS (o0n, o1n, o2n, o3n, o4n, o5n,
 o6n, o7n, o8n, o9n, o10n, o11n, o12n, o13n,
 o14n, o15n);

74155 Dual 2-Line-to-4-
 Line
Decoder/Demulti-
 plexer

FUNCTION 74155 (2cn, 1c, selb, sela, 2gn,
 1gn)

RETURNS (2y0n, 2y1n, 2y2n, 2y3n, 1y0n,
 1y1n, 1y2n, 1y3n);

74156 Dual 2-Line-to-4-
 Line Decoder/
 Demultiplexer

FUNCTION 74156 (2cn, 1c, selb, sela, 2gn,
 1gn)
RETURNS (2y0n, 2y1n, 2y2n, 2y3n, 1y0n,
 1y1n, 1y2n, 1y3n);

74246 BCD-to-7-Segment
 Decoder

FUNCTION 74246 (ltn, rbin, bin, d, c, b, a)
RETURNS (oa, ob, oc, od, oe,f’, og, rbon);

74247 BCD-to-7-Segment
 Decoder

FUNCTION 74247 (ltn, rbin, bin, d, c, b, a)
RETURNS (oa, ob, oc, od, oe,f’, og, rbon);

74248 BCD-to-7-Segment
 Decoder

FUNCTION 74248 (ltn, rbin, bin, d, c, b, a)
RETURNS (oa, ob, oc, od, oe, f’, og, rbon);

74445 BCD-to-Decimal
 Decoder

FUNCTION 74445 (d, c, b, a)
RETURNS (o0n, o1n, o2n, o3n, o4n, o5n,
 o6n, o7n, o8n, o9n);

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

Truth Table of 16DMUX (Decoder)

Inputs Outputs

D C B A Q15 Q14 Q13 … Q3 Q2 Q1 Q0

L L L L L L L … L L L H

L L L H L L L … L L H L

L L H L L L L … L H L L

L L H H L L L … H L L L

L H L L L L L … L L L L

L H L H L L L … L L L L

L H H L L L L … L L L L

L H H H L L L … L L L L

H L L L L L L … L L L L

H L L H L L L … L L L L

H L H L L L L … L L L L

H L H H L L L … L L L L

H H L L L L L … L L L L

H H L H L L H … L L L L

H H H L L H L … L L L L

H H H H H L L … L L L L

Truth table of 74138 (Decoder)

Inputs

Enable Select
Outputs

G1 G2* C B A Y0N Y1N Y2N Y3N Y4N Y5N Y6N Y7N

X H X X X H H H H H H H H

L X X X X H H H H H H H H

H L L L L L H H H H H H H

H L L L H H L H H H H H H

H L L H L H H L H H H H H

H L L H H H H H L H H H H

H L H L L H H H H L H H H

H L H L H H H H H H L H H

H L H H L H H H H H H L H

H L H H H H H H H H H H L

* G2 = G2AN + G2BN.

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

Truth Table of 74246 (Decoder)

Inputs Outputs

LTN RBIN BIN D C B A OA OB OC OD OE OF OG RBON

H H H L L L L On On On On On On Off H

H L H L L L L Off Off Off Off Off Off Off L

H X H L L L H On On On Off Off Off Off H

H X H L L H L On On Off On On Off On H

H X H L L H H Off On On On Off Off On H

H X H L H L L On On On Off Off On On H

H X H L H L H On Off On On Off On On H

H X H L H H L On Off On On On On On H

H X H L H H H On On On Off Off Off Off H

H X H H L L L On On On On On On On H

H X H H L L H Off On On On Off On On H

H X H H L H L Off Off Off On On Off On H

H X H H L H H Off Off On On Off Off On H

H X H H H L L On On Off Off Off On On H

H X H H H L H Off Off Off On Off On On H

H X H H H H L Off Off Off On On On On H

H X H H H H H Off Off Off Off Off Off Off H

L X H X X X X On On On On On On On H

H X L X X X X Off Off Off Off Off Off Off H

Shift Registers

Macrofunction Description Function Prototype

BARRELST 8-Bit Barrel Shifter FUNCTION BARRELST (s[2..0], ldst, a, b,

 c, d, e, f, g, h, clk)

RETURNS (qa, qb, qc, qd, qe, qf, qg, qh);

BARRLSTB 8-Bit Barrel Shifter FUNCTION BARRLSTB (s[2..0], ldst,

 d[7..0], clk)

RETURNS (q[7..0]);

7491 Serial-In Serial-Out

 Shift Register

FUNCTION 7491 (clk, a, b)

RETURNS (qh, qhn);

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

7494 4-Bit Shift Register

with Asynchronous

Preset and

Asynchronous Clear

FUNCTION 7494 (p1a, p2a, p1b, p2b, p1c,

 p2c, p1d, p2d, pe1, pe2, clr, clk, ser)

RETURNS (out);

7495 4-Bit Parallel-Access

 Shift Register

FUNCTION 7495 (mode, clkl, clkr, ser,

 d[0..3])

RETURNS (q[0..3]);

7496 5-Bit Shift Register FUNCTION 7496 (clrn, pe, a, b, c, d, e, clk,

 ser)

RETURNS (qa, qb, qc, qd, qe);

7499 4-Bit Shift Register

 with /JK Serial In-

 puts and Parallel

 Outputs

FUNCTION 7499 (mode, clk2, clk1, j, kn, a,

 b, c, d)

RETURNS (qa, qb, qc, qd, qdn);

74164 Serial-In Parallel-Out

 Shift Register

FUNCTION 74164 (clk, clrn, a, b)

RETURNS (qa, qb, qc, qd, qe, qf, qg, qh);

74164B Serial-In Parallel-Out

 Shift Register

FUNCTION 74164B (clk, clrn, a, b)

RETURNS (q[7..0]);

74165 Parallel Load 8-Bit

 Shift Register

FUNCTION 74165 (clk, clkih, stld, ser, a, b,

 c, d, e, f, g, h)

RETURNS (qh, qhn);

74165B Parallel Load 8-Bit

Shift Register

FUNCTION 74165B (clk, clkih, stld, ser,

 d[7..0])

RETURNS (q7, q7n);

74166 8-Bit Shift Register

 with Clock Inhibit

FUNCTION 74166 (clrn, stld, clkih, clk, ser,

 a, b, c, d, e, f, g, h)

RETURNS (qh);

74178 4-Bit Shift Register FUNCTION 74178 (st, ld, ser, clk, a, b, c, d)

RETURNS (qa, qb, qc, qd);

74179 4-Bit Shift Register

 with Clear

FUNCTION 74179 (clrn, st, ld, clk, ser, a, b,

 c, d)

RETURNS (qa, qb, qc, qd, qdn);

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

74194 4-Bit Bidirectional

 Shift Register with

 Parallel Load

FUNCTION 74194 (clrn, s1, s0, clk, slsi,

 srsi, d, c, b, a)

RETURNS (qd, qc, qb, qa);

74195 4-Bit Parallel-Access

 Shift Register

FUNCTION 74195 (clrn, st/ldn, clk, j, kn,

 d[0..3])

RETURNS (q[0..3], q3n);

74198 8-Bit Bidirectional

 Shift Register

FUNCTION 74198 (clrn, s1, s0, clk, slsi,

 srsi, a, b, c, d, e, f, g, h)

RETURNS (qa, qb, qc, qd, qe, qf, qg, qh);

74199 8-Bit Parallel-Access
 Shift Register

FUNCTION 74199 (clrn, st/ldn, clkih, clk, j,
 kn, d[0..7])
RETURNS (q[0..7]);

74295 4-Bit Right-Shift
 Left-Shift Register
 with Tri-State Out-
 puts

FUNCTION 74295 (oe, ld/shn, clk, ser,
 d[3..0])
RETURNS (q[3..0]);

74299 8-Bit Universal Shift/
 Storage Register

FUNCTION 74299 (clrn, s1, s0, g1n, g2n,
 clk, sr, sl)
RETURNS (a/qa, b/qb, c/qc, d/qd, e/qe, f/qf,
 g/qg, h/qh, qa2, qh2);

74350 4-Bit Shift Register
 with Tri-State Out-
 puts

FUNCTION 74350 (oen, s0, s1, d-[3..1],
 d[0..3])
RETURNS (y[0..3]);

74395 4-Bit Cascadable

 Shift Register with

 Tri-State Outputs

FUNCTION 74395 (clrn, ld/shn, clk, ser,

 d[1..4], oen)

RETURNS (q[1..4], q4b);

74589 8-Bit Shift Register
 with Input Latches
 and Tri-State Out-
 put

FUNCTION 74589 (oen, srclk, ser, srldn,
 rclk, d[0..7])
RETURNS (qhn);

74594 8-Bit Shift Register
 with Output Latches

FUNCTION 74594 (srclrn, rclrn, srclk, rclk,
 ser)
RETURNS (qa, qb, qc, qd, qe, qf, qg, qh,
 qhn);

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

74595 8-Bit Shift Register

 with Output Latches

 and Tri-State

 Outputs

FUNCTION 74595 (gn, srclrn, srclk, rclk,

 ser)

RETURNS (qa, qb, qc, qd, qe, qf, qg, qh,

 qhn);

74597 8-Bit Shift Register

 with Input Register

FUNCTION 74597 (srclrn, srldn, rclk,

 d[7..0], srclk, ser)

RETURNS (qhn);

74671 4-Bit Universal Shift

 Register/Latch with

 Direct-Overriding

 Clear and Tri-State

 Outputs

FUNCTION 74671 (gn, r/sn, srclrn, s1, s0,

 srclk, serl, serr, a, b, c, d, rclk)

RETURNS (qa, qb, qc, qd, casc);

74672 4-Bit Universal Shift

 Register/Latch with

 Synchronous Clear

 and Tri-State Out-

 puts

FUNCTION 74672 (gn, r/sn, srclrn, s1, s0,

 srclk, serl, serr, a, b, c, d, rclk)

RETURNS (qa, qb, qc, qd, casc);

74673 16-Bit Shift Register FUNCTION 74673 (csn, r/wn, srclk, stclrn,

 mode, ser)

RETURNS (y[0..15], q15);

74674 16-Bit Shift Register FUNCTION 74674 (csn, r/wn, clk, mode,

 ser, p[15..0])

RETURNS (q15);

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

Truth Table of BARRELST (Shift Register)

Inputs Outputs

S2 S1 S0 LDST A..H CLK QA QB..QG QH

X X X X X L Qao Qbo..Qgo QHo

X X X H a..h ↑ a b..g h

L L L L X ↑ QAn QBn..QGn QHn

L L H L X ↑ QBn QCn..QHn QAn

L H L L X ↑ Qcn QDn..QAn QBn

L H H L X ↑ Qdn QEn..QBn QCn

H L L L X ↑ QEn QFn..QCn QDn

H L H L X ↑ Qfn QGn..QDn QEn

H H L L X ↑ QGn QHn..QEn QFn

H H H L X ↑ Qhn Qan..QFn QGn

Truth Table of 74164 (Shift Register)

Inputs Outputs*

CLK CLRN A B QA QB..QH

X L X X L QBo..QHo

L H X X Qao QAn..QGn

L > H H H H H QAn..QGn

L > H H L X L QAn..QGn

L > H H X L L QAn..QGn

* QAn, QGn = level of QA or QG before the most recent transition of the Clock; indicates a one-

bit shift.

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

Truth Table of 74165 (Shift Register)

Inputs Outputs

Parallel Internal Output
CLK CLK1H STLD SER

A..H QA QB QH QHN

X X L X a..h a B h /h

L L H X X QAo Qbo Qho /QGn

↑ L H H X H QAn* QGn*

↑ L H L X L Qan QGn /QGn

X H H X X QAo QBo QHo /QHo

* QAn, QGn = level of QA or QG before the most recent ↑ transition of the Clock.

Digital Filters

Macrofunction Description Function Prototype

74297 Digital Phase-

 Locked Loop

 Filter

FUNCTION 74297 (kclk, d/upn, enctr, d,

 c, b, a, idclk, phase_a1, phase_b,

 phase_a2)

RETURNS (idout, ecpd, xorpd);

Truth Table of 74297 (Digital Filter)

K Counter Function Table

Inputs

D C B A

Outputs

Modulo (K)

L L L L Inhibited

L L L H 2^3

L L H L 2^4

L L H H 2^5

L H L L 2^6

L H L H 2^7

L H H L 2^8

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

L H H H 2^9

H L L L 2^10

H L L H 2^11

H L H L 2^12

H L H H 2^13

H H L L 2^14

H H L H 2^15

H H H L 2^16

H H H H 2^17

XOR Phase Detector

Inputs

Phase_A1 Phase_B

Outputs

XORPD

L L L

L H H

H L H

H H L

Edge-Controlled Phase Detector

Inputs

Phase_A2 Phase_B

Outputs

ECPD

H or L ↓ H

↓ H or L L

H or L ↑ No Change

↑ H or L No Change

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

Storage Registers

Macrofunction Description Function Prototype

7498 4-Bit Data

 Selector/Storage

 Register

FUNCTION 7498 (clkn, wrdsl, a1, b1, c1, d1,

 a2, b2, c2, d2)

RETURNS (qa, qb, qc, qd);

74278 4-Bit Cascadable

 Priority Register

FUNCTION 74278 (p0, g, d[4..1])

RETURNS (y[4..1], p1);

Truth Table of 7498 (Storage Register)

Inputs Outputs

CLKN WRDSL A1 B1 C1 D1 A2 B2 C2 D2 QA QB QC QD

↓ L a1 b1 c1 d1 X X X X A1 b1 c1 d1

↓ H X X X X a2 b2 c2 d2 A2 b2 c2 d2

Truth Table of 74278 (Storage Register)

Inputs Internal Latch Nodes Outputs

P0 G D1 D2 D3 D4 /Q1 /Q2 /Q3 /Q4 Y1 Y2 Y3 Y4 P1

L H H X X X L X X X H L L L H

L H L H X X H L X X L H L L H

L H L L H X H H L X L L H L H

L H L L L H H H H L L L L H H

L H L L L L H H H H L L L L L

L L X X X X
Same function of /Q as

 on first 5 lines

H L X X X X

Latched when G goes low

L L L H

H H
Internal /Q levels are same function of D inputs as on

 the first 5 lines.
L L L H

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

EDAC

Macrofunction Description Function Prototype

74630 16-Bit Parallel
 Error Detection
 and Correction
 Circuit

FUNCTION 74630 (s1, s0, db[15..0], cb[5..0])
RETURNS (dbo[15..0], cbo[5..0], sef, def);

74636 8-Bit Parallel
 Error Detection
 and Correction
 Circuit

FUNCTION 74636 (s1, s0, db[7..0], cb[4..0])
RETURNS (dbo[7..0], cbo[4..0], sef, def);

Truth Table of 74636 (EDAC)

Control Error Flags Memory

Cycle S1 S2
EDAC Function Data I/O Check Word I/O

SEF DEF

Write L L Generate Check Word Inp Data Output Check Word L L

Read L H Read Data & Check Word Inp Data Input Check Word L L

Read H H Flag Errors Latch D Latch Check Write Enabled

Read H L
Correct Data & Synd

 Bits
Cor Data Syndrome Bits Enabled

Error Function Table

Total Number of Errors Error Flags

Data Word Check Word SEF DEF
Data Correction

0 0 L L Not Applicable

1 0 H L Correction

0 1 H L Correction

1 1 H H Interrupt

2 0 H H Interrupt

0 2 H H Interrupt

Check-Word Bits are derived from parity bits as follows

Check Word 8-Bit Data Word*

CB0 DB0, DB1, DB3, DB4

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

CB1 DB0, DB2, DB3, DB5, DB6

CB2 DB1, DB2, DB4, DB5, DB7

CB3 DB0, DB1, DB2, DB6, DB7

CB4 DB3, DB4, DB5, DB6, DB7

* The five check bits are parity bits derived from the data bits listed.

Error Syndrome Table

Syndrome Error Code
Error Location

CB0 CB1 CB2 CB3 CB4

DB0 L L H L H

DB1 L H L L H

DB2 H L L L H

DB3 L L H H L

DB4 L H L H L

DB5 H L L H L

DB6 H L H L L

DB7 H H L L L

CB0 L H H H H

CB1 H L H H H

CB2 H H L H H

CB3 H H H L H

CB4 H H H H L

No Error H H H H H

SSI Functions

Macrofunction Description Function Prototype

CBUF Complementary

 Buffer

FUNCTION CBUF (1)

RETURNS (2, 3);

INHB Inhibit Gate FUNCTION INHB (2, 3)

RETURNS (1);

7400 NAND2 Gate FUNCTION 7400 (2, 3)

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

RETURNS (1);

7402 NOR2 Gate FUNCTION 7402 (2, 3)

RETURNS (1);

7404 NOT Gate FUNCTION 7404 (2)

RETURNS (1);

7408 AND2 Gate FUNCTION 7408 (2, 3)

RETURNS (1);

7410 NAND3 Gate FUNCTION 7410 (2, 3, 4)

RETURNS (1);

7411 AND3 Gate FUNCTION 7411 (2, 3, 4)

RETURNS (1);

7420 NAND4 Gate FUNCTION 7420 (2, 3, 4, 5)

RETURNS (1);

7421 AND4 Gate FUNCTION 7421 (2, 3, 4, 5)

RETURNS (1);

7423 Dual 4-Input NOR
 Gate with Strobe

FUNCTION 7423 (1a, 1b, 1c, 1d, 1g, 2a, 2b,
 2c, 2d, 2g)
RETURNS (1y, 2y);

7425 Dual 4-Input NOR
 Gate With Strobe

FUNCTION 7425 (1a, 1b, 1c, 1d, 1g, 2a, 2b,
 2c, 2d, 2g)
RETURNS (1y, 2y);

7427 NOR3 Gate FUNCTION 7427 (2, 3, 4)
RETURNS (1);

7428 Quad 2-Input

 Positive NOR

 Buffer

FUNCTION 7428 (a1, b1, a2, b2, a3, b3, a4,

 b4)

RETURNS (y1, y2, y3, y4);

7430 NAND8 Gate FUNCTION 7430 (2, 3, 4, 5, 6, 7, 8, 9)

RETURNS (1);

7432 OR2 Gate FUNCTION 7432 (2, 3)

RETURNS (1);

7437 Quad 2-Input

 Positive NAND

FUNCTION 7437 (1a, 1b, 2a, 2b, 3a, 3b, 4a,

 4b)

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

 Buffer RETURNS (1y, 2y, 3y, 4y);

7440 Dual 4-Input

 Positive NAND

 Buffer

FUNCTION 7440 (1a, 1b, 1c, 1d, 2a, 2b, 2c,

 2d)

RETURNS (1y, 2y);

7450 Dual 2-Wide 2-
 Input AND-OR-
 INVERT Gate

FUNCTION 7450 (1x, 1xn, 1a, 1b, 1c, 1d, 2a,
 2b, 2c, 2d)
RETURNS (1yn, 2yn);

7451 Dual AND-OR-

 INVERT Gate

FUNCTION 7451 (1a, 1b, 1c, 1d, 1e, 1f, 2a, 2b,

 2c, 2d)

RETURNS (1yn, 2yn);

7452 AND-OR Gate FUNCTION 7452 (x, a, b, c, d, e, f, g, h, i)

RETURNS (y);

7453 Expandable 4-

 Wide AND-OR-

 INVERT Gate

FUNCTION 7453 (xn, x, a, b, c, d, e, f, g, h)

RETURNS (yn);

7454 4-Wide AND-OR-

 INVERT Gate

FUNCTION 7454 (a, b, c, d, e, f, g, h, i, j)

RETURNS (yn);

7455 2-Wide, 4-Input

 AND-OR-

 INVERT Gate

FUNCTION (a, b, c, d, e, f, g, h)

RETURNS (yn);

7464 4-2-3-2 Input

 AND-OR-

 INVERT Gate

FUNCTION 7464 (a, b, c, d, e, f, g, h, i, j, k)

RETURNS (y);

7486 XOR Gate FUNCTION 7486 (2, 3)

RETURNS (1);

74133 13-Input NAND

 Gate

FUNCTION 74133 (2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

 12, 13, 14)

RETURNS (1);

74134 12-Input NAND

 Gate with Tri-

 State Output

FUNCTION 74134 (2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

 12, 13, oen)

RETURNS (1);

74135 Quad XOR/XNOR FUNCTION 74135 (1a, 2b, 12c, 2a, 2b, 3a, 3b,

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

 Gates 34c, 4a, 4b)

RETURNS (1y, 2y, 3y, 4y);

74260 Dual 5-Input

 Positive NOR

 Gates

FUNCTION 74260 (a[0..4], b[0..4])

RETURNS (ayn, byn);

74386 Quad XOR Gate FUNCTION 74386 (a[1..4], b[1..4])

RETURNS (y[1..4]);

Encoders

Macrofunction Description Function Prototype

74147 10-Line-to-4-Line

 BCD Encoder

FUNCTION 74147 (1n, 2n, 3n, 4n, 5n, 6n,

 7n, 8n, 9n)

RETURNS (dn, cn, bn, an);

74148 8-Line-to-3-Line

 Octal Encoder

FUNCTION 74148 (ein, 0n, 1n, 2n, 3n, 4n,

 5n, 6n, 7n)

RETURNS (a2n, a1n, a0n, gsn, eon);

74348 8-Line-to-3-Line Pri-

 ority Encoder with

 Tri-State Outputs

FUNCTION 74348 (ei, d[0..7])

RETURNS (eo, gs, a[2..0]);

Truth Table of 74148 (Encoder)

Inputs Outputs

EIN 0N 1N 2N 3N 4N 5N 6N 7N A2N A1N A0N GSN E0N

H X X X X X X X X H H H H H

L H H H H H H H H H H H H L

L X X X X X X X L L L L L H

L X X X X X X L H L L H L H

L X X X X X L H H L H L L H

L X X X X L H H H L H H L H

L X X X L H H H H H L L L H

L X X L H H H H H H L H L H

L X L H H H H H H H H L L H

L L H H H H H H H H H H L H

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

Truth Table of 74348 (Priority Encoder)

Inputs Outputs

E1 D0 D1 D2 D3 D4 D5 D6 D7 E0 GS A2 A1 A0

H X X X X X X X X H H Z Z Z

L H H H H H H H H H L Z Z Z

L X X X X X X X L L H L L L

L X X X X X X L H L H L L H

L X X X X X L H H L H L H L

L X X X X L H H H L H L H H

L X X X L H H H H L H H L L

L X X L H H H H H L H H L H

L X L H H H H H H L H H H L

L L H H H H H H H L H H H H

True/Complement I/O

 Elements

Macrofunction Description Function Prototype

7487 4-Bit True/

 Complement I/O

 Element

FUNCTION 7487 (a[4..1], b, c)

RETURNS (y[4..1]);

74265 Quad Comple-

 mentary Output

 Elements

FUNCTION 74265 (1a, 2a, 2b, 3a, 3b, 4a)

RETURNS (1w, 1yn, 2w, 2yn, 3w, 3yn, 4w,

 4yn);

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

Truth Table of7487 (True/Complement I/O Element)

Inputs Outputs

B C Y1 Y2 Y3 Y4

L L /A1 /A2 /A3 /A4

L H A1 A2 A3 A4

H L H H H H

H H L L L L

Truth Table of 74265 (True/Complement I/O Element)

Inputs Outputs Inputs Outputs

1A (4A) 1W(4W) 1YN(4YN) 2A(3A) 2B(3B) 2W(3W) 2YN(3YN)

L L H L X L H

H H L X L L H

 H H H L

 The Built-in Resources of MAX+PLUS II CPLD Logic Circuit Design and Practice

	CPLD Logic Circuit Design and Practice
	All Rights Reserved
	Conter
	Page 1
	Page 2
	Page 3

	CHAPTER 1
	1.1 Introduction to Digital Logic
	1.2 Integrated Digital Logic Design Environment
	1.2.1 Techniques of Traditional Digital Circuit Design
	1.2.2 Integrated Digital Logic Design Environment

	1.3 Programmable Logic Device-PLD
	1.3.1 Alter CPLD

	1.4 PC Aided Digital Logic Design
	1.4.1 Alter EDA Tool-MAX+PLUS II

	1.5 Experimental Platform
	1.5.1 LP-2900 CPLD Logic Design Experimental Platform

	1.6 Evaluation and Test

	CHAPTER 2
	2.1 Numeric Expression
	2.1.1 Binary
	2.1.2 Oetal
	2.1.3 Hexadecimal

	2.2 Numerical System Conversion
	2.2.1 Binary vs. Decimal Conversion
	2.2.2 Octal-to-Decimal Conversion
	2.2.3 Hexadecimal-to-Decimal Conversion
	2.2.4 Binary-to-Octal Conversion
	2.2.5 Binary-to-Hexadecimal Conversion

	2.3 Numerical Complement
	2.3.1 9's Complement
	2.3.2 10's Complement
	2.3.3 1's Complement
	2.3.4 2's Complement

	2.4 Negative Binary Number Expression
	2.5 Binary Arithmetic Operations
	2.5.1 Binary Addition
	2.5.2 Binary Subtraction
	2.5.3 Binary Multiplication
	2.5.4 Binary Division

	2.6 Binary - coded Decimal (BCD) Code
	2.7 Review

	CHAPTER 3
	3.1 Boolean Algebra
	3.1.1 Truth Table and Boolean Algebra Expression
	3.1.2 Boolean Theorems and Boo;ean Algebra Laws
	3.1.3 Types of Boolean Algebraic Expression

	3.2 Boolean Algebra Simplification
	3.2.1 Boolean Theorem Simplification
	3.2.2 Karnaugh Map of Simplification
	3.2.3 Quine-McCluskey Method

	3.3 Logic Gate
	3.3.1 AND Gate
	3.3.2 OR Gate
	3.3.3 NOT Gate
	3.3.4 XOR Gate
	3.3.5 NAND Gate
	3.3.6 NOR Gate
	3.3.7 NXOR Gate
	3.3.8 Demorgan's Equal-effect Circuit

	3.4 Applications of Logic Gate
	3.5 Practices
	3.6 Review

	CHAPTER 4
	4.1 MAX+PLUS II Baseline Setup and Start
	4.2 How to Use Mouse
	4.3 Graphic Entry
	4.4 Functional Simulation
	4.5 Floorplan and Design Compilation
	4.6 Device Programming and Circuit Testing
	* CPLD Device Board
	* I/O Element Experimental Platform

	4.7 Use Graphic Entry to Complete LEDTEST Example
	4.8 Review

	CHAPTER 5
	5.1 The Design, Simulation and Test of General Combinational Logic Circuit
	5.2 The Design, Simulation and Test of Adder
	5.2.1 The Design, Simulation and Test of Half Adder
	5.2.2 The Design, Simulation and Test of Full Adder
	5.2.3 The Design, Simulation and Test of Ripple Carry Adder
	5.2.4 The Design, Simulation and Test of Carry Look-ahead Adder

	5.3 The Design, Simulation and Test of Subtractor
	5.3.1 The Design, Simulation and Test of Half Subtractor
	5.3.2 The Design, Simulation and Test of Full Subtractor
	5.3.3 The Design, Simulation and Test of 2's Complement Subtractor

	5.4 The Design, Simulation and Test of Comparator
	5.5 The Design, Simulation and Test of Encoder
	5.6 The Design, Simulation and Test of Decoder
	5.6.1 The Design, Simulation and Test of 4 to 16 Decoder
	5.6.2 The Design, Simulation and Test of BCD to 7 Segment Display

	5.7 The Design, Simulation and Test of MUX
	5.8 The Design, Simulation and Test of DMUX
	5.9 The Question of Hazards
	5.10 Evaluations

	CHAPTER 6
	6.1 Basic Concept of Sequential Logic Circuit
	6.1.1 The Synchronous and Asynchronous Operation
	6.1.2 The Latch and Flip-flops
	1. SR Latch
	2. Gate controlled Flip-flops
	3. Edge trigger Flip-flops

	6.1.3 The State Tables and State Diagrams
	6.1.4 Mealy State Machine and Moore State Machine
	6.1.5 The Design Progress of Synchronous Sequential Logic

	6.2 The Design, Simulation and Test of Synchronous Counter
	6.2.1 Four-bit Binary Counter
	6.2.2 BCD Counter

	6.3 The Design, Simulation and Test of Synchronous Shift Register
	6.3.1 SISO Shift Register
	6.3.2 SIPO Shift Register
	6.3.3 PISO Shift Register
	6.3.4 PIPO Shift Register

	6.4 The Design, Simulation and Test of Synchronous Shift Count Register
	6.4.1 Ring Counter
	6.4.2 Johnson Counter

	6.5 The Design, Simulation and Test of Asynchronous Counter
	6.5.1 Asynchronous Four-bit Binary Counter
	6.5.2 Asynchronous BCD Counter
	6.5.3 Asynchronous Mod 14 Counter

	6.6 Evaluation

	CHAPTER 7
	7.1 Frequency Generator
	7.1.1 ÷ 2 Divider Design
	7.1.2 ÷ 5 Divider Design
	7.1.3 ÷ 10 Divider Design
	7.1.4 ÷ 50 Divider Design
	7.1.5 Frequency Generator

	7.2 Simple Electronic Dice
	7.2.1 Dice Decoder Circuit
	7.2.2 MOD6 Counter
	7.2.3 Dice Game Circuit

	7.3 Timer
	7.3.1 Decimal Counter
	7.3.2 60-carry Counter Circuit
	7.3.3 12-carry Counter Circuit
	7.3.4 Scan Display Circuit
	7.3.5 Timer Circuit

	7.4 Simple Traffic Light Controller
	7.4.1 State Machine
	7.4.2 Lightening Timer
	7.4.3 Simple Traffic Light Controller

	7.5 Dot Matrix Displayer Test Circuit
	7.6 Keyboard Scan and Display Scan Circuit
	7.6.1 Disbounce and single-key detector
	7.6.2 Keyboard Decoder
	7.6.3 Date Buffer
	7.6.4 Complete Keyboard Scan and Display Scan Circuit

	7.7 LCD Interface Circuit
	7.7.1 Descriptions of LCD Module
	7.7.2 Date Path Circuit of LCD Interface
	7.7.3 Control Circuit of LCD Interface Circuit
	7.7.4 Complete LCD Interface Circuit

	7.8 Evaluations

	CHAPTER 8
	8.1 A/D Converter - ADC0804
	8.2 D/A Converter - AD7528
	8.3 Single Chip–8051
	8.4 Design Example – Connecting with ADC0804, AD7528, and 8951
	8.5 Evaluation

	CHAPTER 9
	9.1 Function Description to LP-2900
	9.2 Setting up LP-2900
	9.3 The Architecture and Circuit of LP-2900
	9.4 Pin arrangement of LP-2900
	9.4.1 Red-Yellow-Green LED
	9.4.2 7-Segment Display with Common Cathode
	9.4.3 BUZZER
	9.4.4 Electronic Dice
	9.4.5 LCD display
	9.4.6 CLOCK
	9.4.7 8 x 8 Dot Matrix LED Display
	9.4.8 8051 Single Chip
	9.4.9 DATA SWITCHES
	9.4.10 PULSE
	9.4.11 KEYBOARD
	9.4.12 A/D, D/A

	9.5 Evaluation

	APPENDIX A.
	A.1 PLD Suppliers and Main Products
	A.2 Alter’s CPLD Devices
	1. CLASSIC
	2. MAX5000
	3. MAX7000
	4. FLASH LOGIC
	5. FLEX8000
	6. MAX9000
	7. FLEX10K

	APPENDIX B.
	B.1 Primitives
	B.1.1 Primitive Categories
	B.1.2 Description of Primitives

	B.2 Macrofunction
	B.2.1 Macrofunction Categories
	B.2.2 Description of Macrofunctions

