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CHAPTER 1 
 
 

  

 Introduction to 
Digital Logic 

LEAP



1.1 Introduction to Digital Logic 

In general, all physical quantities in nature such as temperature, humidity, length, 
speed, and time are continuously changing. We call these continuously changing 
signals as “analog” signals. In contrast to analog, there is a discrete signal called 
“digital” signals. A signal processing system with use of analog signals is called 
“analog system”. Signals in this kind of system continuously fluctuate over time 
between high and low voltages. For example, signals are changing from –10 voltage 
to +10 voltage. Similarly, a signal processing system with use of digital signals is 
called “digital system”, and signals in this system can only be considered either on or 
off, high or low values. For example, signals can change either 0 voltage or +5 
voltage. 
 
From above, we could know there are two systems to process signals. One is analog 
system and the other is digital system. Generally, a digital system comes with more 
benefits than analog. It is programmable, faster, precise, and flexible. Besides, as the 
signals are discrete but not continuous, a digital system can be less affected by the 
changes of elements’ natures such as the problem of a worn-out transistor. Those are 
the reasons why digital systems are greatly adopted in the world. 
 
For sure, all physical quantities in nature are shown in the form of analog signals. 
They are measurable, visible and controllable. If we would like to take the advantages 
of digital systems, we have to transform signals from analog to digital and process by 
digital systems. The transforming process is as below: 

 
     Analog Signals  Analog Signals        Digital Signals 

Physical Quantity→Sensor→Analog-to-Digital Converter→Digital Processing System 
 

Sensors can transform the natural physical quantities into electronic signals such as 
voltage or current signals that are still analog signals. Electronic signals will then 
been transformed into digital signals by Analog/Digital Converter. Actually, 
Analog/Digital Converter is responsible for sampling and quantization. Sampling is 
to take the value of a physical quantity at one point and then mark it as a digital 
number, and this is what we called “Quantization”. Processed digital signals will be 
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transformed into analog signals in some circumstances to have better control on some 
objectives such as flow control gates, fans, and heaters etc. The transforming process 
is as below: 

      Digital Signals          Digital Signals 

Digital Processing System → Digital-to-Analog Converter →Controlled Machines 

Figure 1.1, it is the flow control diagram for a chemical factory. A/D Converter, 
Digital Processing System, and D/A Converter are the key points in Figure 1.1 as 
well as in this book. To introduce digital processing systems, we will discuss the 
topic from the basic theory first, including Numeric System (Chapter 2), Boolean 
algebra (Chapter 3), and then Basic Gate (Chapter 3), combinational logic (Chapter 5) 
as well as Sequential Circuit (Chapter 6). More over, we will talk about A/D 
Converter and D/A Converter in Chapter 8. In the rest of the Chapter 2, we will 
introduce a new logic design environment called “Integrated Digital Logic Design 
Environment”. This integrated environment will greatly give us logic design and 
simulation. In Chapter 4, we will further discuss how to set up and use the EDA tool, 
MAX+PLUS II. 

Figure 1.1 A Flow Control Diagram for a Chemical Factory 
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1.2 Integrated Digital Logic Design 

Environment  

Currently, engineers can use two different chips to make PCB (Printed Circuit Board) 
when they design circuits. One is standard/discrete logic such as TTL/COMS 74/54 
family; the other is ASIC (Application-Specific Integrated Circuits). ASIC shown in 
Figure 1.2 can be divided into 4 different catalogs: PLD (Programmable Logic 
Devices), Gate Array, Cell-Based IC, and Full-Custom IC. 
 

Standard logic is TTL/CMOS (e.g.: 74/54 family) that comes with a specific 
function. This is the first device to make digital logic circuits and digital systems in 
history. As the needs for digital circuits are more and more complicated and the new 
technologies are developed faster than before, standard circuits gradually cannot 
satisfy customers, and, as a result, a new market is there for Gate Array, Cell-Based 
IC, and Full-Custom IC. All the devices use different ways to design circuits and 
different process to produce circuits. For a programmable logic device (PLD), it is an 
integrated circuit that has user-configuration functions, including Boolean expression 
or registered function etc, to customize the circuits and meet customer’s needs. Those 
functions make PLDs quite different than TTL/CMOS standard devices. As long as 
the elements have the user-configuration functions, they are PLD elements, including 
3 different catalogs: 1.) PAL/GAL with simple functions, low capacity, and low pin 
counts, 2.) FPGA (Field-Programmable Gate Array) with high capacity, higher pin 
counts, and 3.) CPLD (Complex PLD) with high capacity and high pin counts. Those 
different PLDs have their own different structures and internal-memory-type design 
technologies. Depended on requirements, we could choose the right devices. PAL is a 
simple PLD, which has gate counts from 100 to 1000 and IC pin counts within 28-pin. 
It is an old process with bipolar procedure, can only write data once, and cannot 
delete old data. Its advantage is faster speed, but its disadvantage is more electrical 
consumption. GAL, another simple PLD, uses CMOS as its process. It can rewrite 
data and has less electrical consumption. However, its operating speed is slower than 
PAL relatively. 
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Logic

Standard Logic ASIC

PLDs Gate Array Cell-Based IC Full-Custom IC
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FLEX8000

 
Figure1.2 Catalogs of logic devices 

 
FPGA/CPLD process is CMOS. Currently there are five techniques to produce 
FPGA/CPLD: EPROM, EEPROM, FLASH, SRAM and Anti-Fuse. FPGA has higher 
density. Compared with CPLD, it uses less logic gates and focuses on registers. 
However, its routing is complicated, causing the problems of varying and longer 
timing delay. For new comers or students, they definitely think FPGA is more 
difficult and have to study harder and longer to understand it. Currently, XILINX, 
Actel, Atmel and AT&T are the key suppliers, and, among them, XILINX has greater 
market share and is the biggest FPGA supplier in the market. For CPLD, it cans 
multi-erase data, program data, and fixed delay. It also allows users to apply and 
design easily. The main suppliers of CPLD include AMD, ALTERA, Lattice, Cypress, 
and ICT etc. Among them, AMD and ALTERA are the two key players in the market. 
 
As the adoption of higher density and new process of PLD, the prices are gradually 
decreasing, and, as a result, PLD has given consumers higher-density, more effective, 
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and cheaper devices than standard logic. In another words, we could put all 
TTL/COMS standard circuits from a big board to a small piece of CPLD. It reduces 
room for a big board and time for welding process, and speed the circuit up 
significantly. Therefore, PLD has greatly been seen as a “super star”. 
 

 

 
 

1.2.1 Techniques of Traditional Digital 

Circuit Design  

As we mentioned before, Standard/Discrete Logic or ASIC can be used to make 
circuit board. The function of Full-Custom IC is fully user-defined, but Gate Array is 
a semi-product and therefore its function is defined based on this. For Cell-Based IC, 
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Table 1.1 is the comparison for PLD, Standard/Discrete Logic, and Full-Custom IC. 
Clearly, PLD has the great advances in speed, density, price, developing time, 
modifiability, prototyping, development tools, integrity, and time to market. 
 
 

    

 
Table1.1 Comparison of logic devices  

Requirements PLD Discrete Device ASIC 

(Full-Custom IC) 

Speed Very Fast Slow Very Fast 

Density High Low Very High 

Price Cheap Expensive Very Cheap 

Developing Short Proper Long 

Modifiabili Very Flexible Proper Very Inflexible 

Prototyping  Very Easy Very Very Difficult 

Tools Easy Access and Not Not Expensive 

Integrity Very Small Very Big Very Small 

Time to Short Proper Long 



its function is to use well-defined cells in a cell base to complete circuit design. 
Usually, when engineers use these kinds of ASIC chips or even add with some of 
standard logic to design circuit boards, they are making PCB (Printed Circuit Board) 
samples directly. In another words, after completing circuit designs by computers, we 
will assign a third party to produce and weld all elements, or only ask a third party to 
weld SMD (Surface Mounted Device) with high pin counts and take the rest of the 
production procedures by ourselves. We might add/decrease elements to/from sample 
version 1, and have line jumping or line cutting and testing to have more correct 
sample boards. After completing the testing for sample version 1, we then assign a 
third party to produce sample version 2, and back to test it again. To have finalized 
circuits, we might have sample version 3 or version 4 if needed. If all correction has 
been done and all the requirements are met, the circuit board development is 
completed. We could start mass production in next. These kinds of circuits are mainly 
for digital system circuit designs. Currently, most of R&D in high tech industries uses 
the ways to design and produce new circuits. 
 
The traditional ways of the design of digital logic circuit for standard logic, which is 
greatly accepted by the public, is as follow: 
 

!"Design circuits on the papers. 
!"Weld or wire all elements by practice board. 
!"Test circuit board by the tools such as multifunctional meter, logic probe, oscillator 

display, and functional generator. 
!"Correct circuit designs and circuit boards by adding or decreasing elements and by line 

jumping and line cutting testing. 
!"Assign a third party to produce circuit sample boards; after testing and correcting sample 

boards, start mass production. 
 
Designing circuits on papers is very ineffective and inefficient. It is not easy to edit 
and make a change on papers. It is also unattractive, time consuming, and not easy to 
store. Except engineers having great experience in circuit designs, without scientific 
verification, there will definitely have a great of mistakes in designs. Moreover, 
workers use practice board to weld or wire all elements. It is going to make the job 
more complicated, time consuming, and defective. In order to weld all the elements, 
the size of a board used for standard logic very big. It is hard to decrease the board 
size, and, thereafter, against the market trends requiring light and small circuit boards. 
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As Standard logic is not going to be on production lines, we could predict that the 
way to design circuits will not be accepted by the market soon. It is a fact. It is the 
trend in the market. 
 

1.2.2 Integrated Digital Logic Design 

Environment 

Because PCs functions are more and more, memory size is larger and the prices are 
lower than before, the world PC users are increasing significantly. As a result, 
electronic design automatic (EDA) is greatly available in the market. The EDA 
software can be used in PC platform. EDA software offers the functions including 
graphics, texts, and waveform entry. It offers a great user-friendly environment to 
modify designs and manage files and we called this is the scientific ways to manage 
files. EDA software also gives users the environment to scientifically verify circuits: 
functional simulation and timing simulation. With the two simulations, new comers 
or less experiencing engineers almost can precisely complete the circuit designs.  
 
With the increase of the high-density requirement and the adoption of new process, 
PLD prices are decreasing gradually. Compared with standard logic, PLD, 
consequently, can give users better devices with higher density, more efficiency, and 
cheaper prices. This allows us to use programmable CPLD devices with SRAM 
technology to design an experimental platform. Except SRAM CPLD devices, this 
platform also has power, PC downloading interface, and I/O elements such as LED, 
seven segments display, buzzer, clocks, switches, pulse switches, 4×3 keyboard, 8×8 
dot matrix display, LCD display, and A/D & D/A circuit modules. The main purpose 
of the platform is to offer a simple and accessible environment to verify circuits and 
to reduce the time of circuit design. To perform the process, we have to download the 
circuits to the SRAM CPLD devices in the platform first, and then give required 
clock or input signals, inspect the results to ensure if the circuits meet specifications.  
 
To integrate PCs, EDA software, and experimental platform, we will briefly introduce 
the general flow of integrated digital logic design in Figure 1.3. We use EDA 
software on PC to make design entry and to simulate circuits. To verify the designed 
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circuits, we need to download “Configuration Bits” to SRAM CPLD devices in 
platform by the cables connecting between PC and the platform. If there are still 
defects after testing, we go back to the previous steps: modifying the designs, 
re-doing the simulation, downloading the circuits and re-testing the circuits until 
correct. After circuits are finalized, we then could produce the circuits.  
 

 
Figure 1.3 General flow of integrated digital logic design 

 

Figure 1.4 details the flow of integrated digital logic circuit design. For this flow, we 
will briefly discuss in Section 1.4, and have further discussion with real examples in 
Chapter 4. Table 1.2 to 1.5, we will compare the differences between traditional and 
integrated logic circuit designs in terms of tools, elements, circuit design flow, and 
study requirements. 
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Figure 1.4 Flow of integrated logic circuit design 
 

Table1.2 Comparison of traditional and integrated digital logic design (by tools) 
Types Tools 

Traditional Digital Logic 
Design 

#" Multifunctional Meter 
#" Oscillator Display  
#" Logic Probe 
#" Logic Analyzer  
#" Experimental board and Wiring Tool or 
Welding Iron 
#" … 

Integrated Digital Logic 
Design 

#" Multifunctional Meter 
#" Oscillator Display 
#" Logic Probe  
#" PCs and EDA Design Tools 
#" Experimental Platform  

 

 
 
 

 

Design Entry Functional Compilation 

Functional  Simulation 

Design Compilation 

Floorplan 

Timing Simulation 

Programming 
/Download and Test 

OK 
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Table 1.3 Comparison of traditional and integrated digital logic design  

(By elements) 
Types Elements 

Traditional Digital Logic 
Design 

#" Resister 
#" Capacitor 
#" LED, Seven Segment Display, Dot 

Matrix Display, LCD 
#" SSI, MSI, LSI 
#" A/D, D/A 
#" Transistor, Amplifier 
#" VLSI Chips 
#" Wild Spread PCB 
#" … 

Integrated Digital Logic 
Design 

#" Resister  

#" Capacitor 

#" LED, Seven Segment Display, Dot 
Matrix Display, LCD 

#" PLD components 

#" A/D, D/A 

#" Transistor, Amplifier 

#" VLSI Chips 

#" Compacted PCB 

#" … 
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Table 1.4 Comparison of traditional and integrated digital logic design  

(By circuit design flow) 
Types Circuit Design Flow 

Traditional Digital Logic 
Design 

#" Specification Definition  

#" Circuits Design on Papers (Only 
Schematic Entry) 

#" Chips Selection 

#" PCB Welding or Wiring 

#" Circuit Testing and Modifying 

電路修改Integrated Digital Logic 
Design 

#" Specification Definition 

#" Data Input (Including Schematic, Text, 
and Waveform) 

#" Design Compilation  

#" Design Simulation 

電路驗證 

Table 1.5 Comparison of traditional and integrated digital logic design 

(By study requirements) 
Types Study Requirements 

Traditional Digital Logic 
Design 

#" Great Experience and Knowledge 
Needed 

#" Use of Various Equipment  

#" Time Consuming and Great Experience 
Requirement for PCB Welding or 
Wiring 

#" Problems with Keeping Design 
Information 
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Integrated Digital Logic 
Design 

 

#" Less Experience and Knowledge 
Needed 

#" Decrease of Using Various Equipment  

#" Time Saving, Ease of Understanding 
the Knowledge, and Good Information 
Maintenance, Reuse of Information, 
and Convenience of Modifying Design 
Data by Computer Aided Design  

#" Decrease of PCB Welding or Wiring 
 

To the integrated digital logic design flow, we have following conclusions:  
 

1. EDA computer aided design can effectively help us to learn new knowledge 

and save time. It can also keep design information well; reuse and modify 

the information easily. 

2. It decreases the work of welding or wiring circuit boards. It also reduces 

defects from human factors. 

3. It has “Design Entry→ Circuit Simulation→ Downloading Testing” 

streamline process, which is just right to today faster circuit development. 

4. By performing the above process, PCB samples are almost completed and 

finalized, and have fewer defects. We then could decrease the possibilities 

to reproduce another samples and therefore shorten the developing time.   

5. Because CPLD has great programmability, we could make samples and 

perform “Design Entry→ Circuit Simulation→ Downloading Testing” 

process at the same time. It helps us to shorten or avoid the time to wait for 

samples. (Note: LP-2900 is completed by this development mode.) 

6. Because CPLD has great higher gate counts which can integrate many logic 

chips in a small board. 
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The integrated digital logic design flow can also be lectured in school. Instructors can 
introduce theories first, talk design and simulation next, and then prove the theories 
by downloading and testing circuits. Students will well understand the theories after 
taking the course. Each of theories or design examples can been proved by testing in 
class immediately. Students will have great impression and understanding, and so feel 
confident, willing to study further knowledge about digital logic. Unlike the flow of 
integrated digital logic design, the flow of traditional digital logic design will not 
have IC simulation after the introducing theories and design examples. It requires 
users to weld circuits or put components on breadboards by her/himself to test 
circuits. Welding process is very time consuming, plus bad connection in breadboards 
and human factors can cause faulty problems and prolong the processing time. 
Student might feel discouraged and only understand one or two simple logic designs 
and practices. If so, there will have no hope and improvement for our digital circuit 
design. Isn’t it? 
 

1.3 Programmable Logic Device - PLD 
In previous section, we have mentioned that engineers could use Standard/Discrete 
Logic (e.g. TTL/COMS 74/54 family) and ASIC to make circuit boards. ASIC shown 
in Figure 1.2 can be divided into 4 different catalogers: Programmable Logic Devices, 
Gate Array, Cell-Based IC, and Full-Custom IC. However, higher performance, 
high-density logic integration, greater cost-effectiveness, and short development 
cycle are the four key factors considered by customers to buy chips. “Higher 
performance” is clock speed rate or coherent signal propagation, and is closely 
related to circuit process and architecture. For “high density logic integration”, it 
means that the device can integrate more logic gate counts in same area. This is one 
of the goals when engineers design circuits in the second run. They try to put more 
circuits in a smaller area to reduce PCB space and cost. “Greater cost-effectiveness” 
is of performing the same performance of circuit with less expense. “Short 
development cycle”, it obviously means to shorten development period, including the 
stages: design entry, compiling process, simulation, and programming as well as PCB 
testing. Definitely, the shorter developed time the better to catch up time to market. 
From the comparison shown in Table 1.1, PLD has greater advantages than 
Standard/Discrete Logic for all comparison items, but is inferior to Full-Custom IC in 
density and cost. 
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Programmable logic device (PLD) is a kind of IC. It has a user-configuration function, 
which allows users to customize their logic functions including Boolean expression 
and/or registered function. It is quite different from TTL/COMS standard logic that 
only provides fixed functions in early stage. As PLD density is increasing and the 
new process is adopted, prices are gradually decreasing, and therefore PLD has been 
able to offer higher density, higher performance, and lower prices than standard logic. 
It is becoming very valuable in the market. 
 
All devices that come with user-configuration functions can be seen as PLD devices. 
They include PAL/GAL devices with the simple, low-density, low-pin-count features, 
field-programmable gate array (FPGA) with high-density and high-pin-count features, 
and complex PLD with high-density and high-pin-count feature. Those PLDs have 
their own different internal structures and internal memory design models. It is 
depended on the needs and the sizes of the circuits to select devices properly. To PAL, 
it is a simple programmable logic device, which has gate counts from 100 to 1000 
and IC pin counts within 28 pins. Bipolar process is used for PAL, which is an old 
product and can only record once and cannot delete old data. PAL has the potential of 
faster speed, but it can consume more electric power. For GAL, it is also a simple 
PLD, but is mad CMOS. GAL can rewrite and delete data many times. Its speed rate 
is slower but power consumption is less than PAL. 
 
FPGA and CPLD are made by CMOS. Currently there are five techniques used in 
FPGA/CPLD, and those are EPROM, EEPROM, FLASH, SRAM, and Anti-Fuse. 
FPGA has higher density. The difference from CPLD is of that FPGA has less logic 
gates and focuses on registers. However, FPGA routing is complicated, causing the 
unfixed and longer timing delay. For students, it definitely is not easy to understand, 
and has to take longer to study the knowledge. Currently, there are some key 
suppliers in the market such as XILINX, Actel, Atmel, and AT&T. Among them, 
XILINX is the biggest supplier having the greatest market share in the market.  CPLD, 
on the other hand, can rewrite and delete date unlimitedly and fix timing delay. It is 
also easy to use and make designs. The key CPLD suppliers include AMD, ALTERA, 
Lattice, Cypress, and ICT, etc. Among them, AMD and ALTERA are the two biggest 
suppliers in the market. (See Appendix A - PLD Suppliers and Main Products.) 
 
Presently, PLD is applied in telecommunications such as mobile phones and radio 
bases, etc. It is also used in data communication network such as LAN, ATM, and 
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printers as well as scanners. For sure, it will be promoted into TV game and 
educational markets in the future.  
 
PLD is constructed by configuration cell, logic cell, and interconnect. Configuration 
cell is a kind of memory. Engineers can program the cell to remember the connection 
processes between I/O pins and logic cells, between logic cells and logic cells, and 
between logic cells and interconnect.  The process of those configuration cells is 
called “technology”, and all current PLD application technologies are listed in Table 
1.6. 
 

Table 1.6 Technologies of PLD configuration cell  

Technologies Re-configurable Erase Methods Types Security 

EPROM Yes Ultraviolet Ray Nonvolatile Yes 

EEPROM Yes Electrical Erase Nonvolatile Yes 

FLASH Yes Electrical Erase Nonvolatile Yes 

Anti-Fuse No --- Nonvolatile Yes 

SRAM Yes Power Off Volatile No 

 
Logic cell has two main design trends. One is “Macrocell” with the structure of “sum 
of production term”; the other is “logic element” with the structure of “Look-up 
Table” (LUT). In Macrocell, all productions are summed up for exclusive-OR 
operation and then connected to a programmable flip-flop. Thus, Macrocell has 
greater logic capacity, and is only constrained by the number of productions (It also 
called “P-term”.) A Marcocell usually has 20 to 40 logic gates. Logic element is 
usually made with 4 to 8 input LUT circuits, 1 or 2 programmable flip-flop, one 
faster carry circuit, and one sequentially-connected circuit to increase fan in (speed 
will not be affected a lot after sequentially connecting.). A logic element usually has 
10 to 20 logic gates, and therefore a logic element is basically smaller than Marocell. 
PLD with sum of production term has more logic gates, and so is very suitable for the 
circuits requiring more combination logic designs. On the other hand, PLD with logic 
elements is useful for the sequential logic circuits requiring more registers. 
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Interconnect structures give channels to deliver information from I/O ports to logic 
elements. Currently “FPGA segmented interconnect” and “CPLD continuous 
interconnect” are two mainly connection types, and this is the key difference between 
FPLD and CPLD interconnects structures.  FPGA segmented interconnect uses 
varying length lines connected by pass transistor or anti-fuses to connect logic cells. 
Each connecting point has an on/off element to control connecting direction. To build 
up required interconnection, all signals will have to pass through cells by several long 
or short channels. Thus, whenever we modify a design, the routed path will be 
different and delay changes, and consequently, this segment connection cannot 
predict the time delay by interconnection. For continuous interconnection, it uses 
metal wires to round elements in horizontal and vertical directions. Each metal wire 
only can transfer one signal, and this is what we called “global” interconnection. 
Several (8 to 16) logic elements are collected in one Logic Area Block, LAB. 
Elements are connected to each other by local interconnection first and become LAB 
blocks, and then, LAB blocks are linked together to complete the whole connection 
by global interconnection. As a result of this interconnection, the delay is predictable. 
 
To sum above, we have following conclusions: 
 

!"Because there is a complicated wiring job to decide, the time to translate 
FPGA is longer than CPLD. 

!"Because CPLD interconnection is simple, it quite reduces wiring spaces, 
and the number of gates can also be increased a lot by use of three-metal 
process. 

!" FPGA is helpful for data path application such as pipeline design. CPLD, 
comparably, is useful for logic applications.  

 

ALTERA is a US company. It is specialized in PLD and sells all different PLD products, 
including PLD (Programmable Logic Device), PAL (Programmable Array Logic), 
PLA (Programmable Logic Array), GAL (General Array Logic), and FPGA 
(Field-Programmable Gate Arrays), etc., popular in the current market. In early age, 
an electronic engineer had to use breadboard and many logic elements to verify a new 
circuit design. Welding devices and correcting mistakes also made an engineer worn 
out. Contrarily, today an engineer can just use PLD and remodel the circuit designs in 
computer. It is just like making your own circuit devices on your own tables. It 
cannot just save welding time but also avoid any mistakes caused in welding process. 
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Moreover, it can reduce the PCB space to meet the market trends requiring smaller 
and lighter electronic products. 
 
Because digital logic can be calculated by mathematics, we can use different circuits 
to achieve the same circuit functions shown as in Figure 1.5. Initially, an AND-OR 
can replace AND-OR-AND integrated circuit. We then assume we would like to 
make a simple structure which connections can be changed, as we need.  

 
Figure 1.5 AND-OR-AND logic circuit 

 

Figure 1.6 PLD evolution 
 
Similarly, the structure in Figure 1.6b is a simple single structure. It is made by 
several multi-input AND gates and OR gates. Each AND gate input uses the same 
input signals that can be connected to AND gate directly or inversely. However, not 
all input signals will be connected to AND gates. Users can decide if input signals 
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would be connected to AND gate. For example, if we have the logic function F = {/A 
& B & D} + {C & D}, we can design a circuit as Figure 1.6b.  If users have 
different circuit designs, they would also get different functions, and that is the first 
idea for programmable logic. For further explanation, we only have to extend the 
structure in Figure 1.6b, and logic functions will become more complicated 
consequently. This multi-input AND gates are called as P-term. For old PLD 
integrated circuit, it only has multiple P-terms like the structure in Figure 1.6b. Today, 
this kind of structure cannot meet most of engineers’ demands. This is because of less 
gate counts and lack of Flip-flop. Therefore, in Figure 1.7, we add Latch and channel 
selection functions to the basic structure in Figure 1.6. 
 
Until now, the general logic we have talked about is only a general structure. It 
requires users to decide which connection points they would like to link together and 
would not. Of course, referring to element structure, users can decide whether to 
make an interconnection for all circuit functions. For elements requiring less 
interconnection points, it might be acceptable. However, if elements have more than 
thousand interconnection points, this job would become very tedious and users would 
easily make mistakes. Thus, we need computer aids to help us to design circuits 
easily, and then use the software to make interconnection plan. Thereafter, we know a 
completed programmable logic world have to be done by programmable hardware 
and software to help design interconnection. For the two parts, we will discuss in the 
following section. 

Figure 1.7 Macrocell structure 

    CPLD Logic Circuit Design and Practice                      Introduction to Digital Logic 



 
First, we would like to introduce ALTERA hardware. Usually PLD application is 
restricted by the hardware including inner gates and I/O pins. ALTERA produces gates 
from 150 to 1 million and pins from 20 pins to 560 pins for its devices. Definitely, 
those numbers are still being updated, and we know ALTERA can give users broad and 
various selections. Beside that, interconnection is also one of ALTERA’s unique features. 
Because ALTERA uses metal wires for its interconnections, and it adds extra metal wire 
connection between any two Logic Blocks. We call this connections as “continuous 
interconnect”, different from “segmented interconnect”. Because of this difference, 
its interconnection time delay is predictable and would not be affected by 
interconnection path.  

1.3.1 ALTERA CPLD: 

Until 2000, ALTERA devices can be divided into 10 different families: 
 

1. CLASSIC 

2. MAX3000 

3. MAX5000 

4. MAX7000 

5. FLASH LOGIC 

6. FLEX6000 

7. FLEX8000 

8. MAX9000 

9. FLEX10K 

10. FLEX20K 
 
MAX7000 family has members: MAX7000, MAX7000E, MAX7000S, MAX7000A 
and MAX7000AE, etc. FLEX10K family has members: FLEX10K, FLEX10KA, 
FLEX10KB, and FLEX10KE, etc. 
In the programmable logic world, the unique feature is a logic cell can be reproduced 
continuously in a chip. The difference between higher capacity and lower capacity of 
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devices in the same family is the amount of the reproduced logic cells. Therefore, we 
could understand other devices from the smallest device in the same family.  
 
Other relevant information, please see Appendix A and B. 
 

1.4 PC Aided Digital Logic Design 
In previous section, we have briefly talked about ALTERA devices, and know 
ALTERA has all family devices. However, we still have many questions need 
for solutions. As a device has a lot of interconnection points, if users have to make 
connected-or-disconnected decisions for all points, it will obviously increase the 
difficulties to the job. Thus, a good PLD must have great design software to help 
users complete the work effectively and efficiently, and so ALTERA is currently more 
focusing on software development while designing great family devices.   
 
PLD Computer Aid Digital Circuit Design means engineers could use computers to 
complete PLD digital circuit design. This is a new design environment. It offers an 
integrated data management, hierarchical design, and multi-window environment. 
The design process includes four steps: design entry, compilation process, 
verification simulation, and PLD programming. The first step is “design entry”. It 
includes graphic editor, text editor, and waveform editor. A hierarchical mix entry, 
which is a combination with graph, text, and waveform, is the best way of design.  
 
Compilation is the process including the testing of electric feature of entry circuits 
(e.g. short cut and source less input, etc.), circuit synthesize and netlist extract for 
functional simulations, circuit floorplan (that is to fit the circuit into PLD), and the 
netlist extract for timing simulation as well as the creation of PLD programming files. 
Verification simulation can be divided into functional simulation and timing 
simulation. Functional simulation is actually timing simulation when we assume 
propagation delay and setup time is zero. Timing simulation, on the other hand, is the 
simulation performing based on the value of the propagation delay and setup time 
from actual circuit floorplan into real PLD. Functional simulation could roughly 
verify circuits first to ensure circuit functions meet specifications. Timing simulations 
then further ensure the circuits work well in PLD. 
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Then after verification, programming PLD is a must process. There are two 
technologies: (1) download with SRAM technologies; (2) programming with 
EPROM, EEPROM, and FLASH are adopted in PLD. The download technology is 
useful during R&D and learning periods; programming, however, is very helpful 
when circuits are well developed already or circuits would not be modified in a short 
time. No matter which technologies we would use, it needs to have development tools 
to complete the work effectively and efficiently.  
 
From a design diagram, the PLD Computer Aid Digital Circuit Design System is the 
great tool for engineers or students to complete their work efficiently. Because the 
systems can offer great circuit entries, verification simulation, devices programming 
environments as well as integrated data management, they shorten the time to design 
new circuits and catch up the time to market efficiently. Besides the above basic 
functions, PLD Computer Aid Digital Circuit Design System also has the following 
features: 

 

1. Hierarchical design with mixed entries: Graphic editor is quite useful for a small 
logic design. Because the transformation can easily completed from Truth table 
or state diagram to logic gates by workforce. Logic gates are then entered into 
the form of graphic editor. However, it will become very time consuming and 
easy to make mistakes to complete the transformation by workforce when trying 
to make a big logic design. Therefore, like writing any programs in C language, 
we use texts to describe circuits and have computers, which specialize in 
computing and mapping algorithms to handle the transformation, making circuit 
modification easy. Moreover, a circuit has hundred thousand of gates, which 
have great duplication, and graphic entry becomes a hard and complicated task. 
No matter in terms of design or fault detection, graphic entry is more difficult 
than text. Beside graphic and text entries, we could also use waveform entry to 
describe circuits. By wave entry, we could know the output that input data 
would be related to, if we assume the circuits as a dark box. The computers are 
asked for the generation of Truth table or state diagram. Thus, the generated 
circuits might not be the simplest ones. The three entries have their own benefits 
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and drawbacks. They are all useful in different areas. If we use the three 
together, we could further improve efficiency in design and affectivity in 
teamwork. To combine the three together, hierarchical design function, therefore, 
is essential. 

 

2. Structure independent: During the early stages of design entry, functional 
compilation (including logic synthesis and minimization as well as netlist 
extract for simulation), and functional simulation, engineers do not have to 
concern which PLD device will be used and what the internal structure is. This 
is what we called “Structure Independent”.  Until the end of design 
compilation, by technology mapping algorithms, we then place synthesized 
circuit on the selected PLD. If the circuits are too big to be fitted in a piece of 
device, we might partition the circuits before placement or change a bigger 
device. This unique feature gives a great flexibility for future use of PLD.  

 

3. Providing industry-standard LPM: LPM element is a macro-function, which 
allows users to change its sizes based on parameters. For example, the length of 
LPM counters and LPM adders is a parameter that can be changeable; the type 
and the number of bits of LPM multiplexer and LPM register are another 
changeable parameters. The LPM provides a simplified design entry and has 
better circuit integration.  

 

4. Providing time driven compilation: To increase performance of the designed 
circuits is the goal for engineers in the second stage, or to meet the propagation 
delay (tpd) and the speed (fmax) are defined on the deign specification. If a 
development system could provide time driven compilation, it could reduce 
much complicated work based on the user specification to synthesize circuit 
integrate and plan as well as allocate circuits.  
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5. Providing multi-device simulation function: When designing big circuits, we 

usually partition circuit into several smaller PLD devices. At this moment, a 

singular-device simulation might have some problems and cannot fully and 

efficiently assist engineers to complete their whole design projects. Therefore, it 

would be better to have multi-device simulation functions to make design 

process more smoothly, easily, and correctly.  

 
6. Great Design-rule checking ability: In design process, if development systems 

could early find some unreliable logic problems such as static hazards, race 

condition, multi-level clocks and asynchronous input, etc., we could greatly 

decrease circuit failures. Therefore, this feature can much shorten the leading 

time to launch new circuits in the market.  

 
7. Providing standard CAE interface: To connect with other EDA design systems, 

we should systems that have interfaces able to read and write VHDL and EDIF. 

Because of the interface to connect with other systems, we could share design 

resources and conveniently and efficiently complete the design projects with our 

team members.  

 
In the next section, we will detail the EDA tool of ALTERA-- MAX+PLUS II. 
 

1.4.1 ALTERA EDA Tool-MAX+PLUS II 
ALTERA EDA tool is a kind of software called “ MAX+PLUS II”. Until 2000, it already 
has version 9.x. This software can support designers from design entry to the creation 
of programming file that programs interconnection as well as simulation process. In 
another words, designers can use the same software to complete all design process. 
There is no need to get another software from third party to support ALTERA hardware 
devices. Once designers familiar with MAX+PLUS II, all logic design can be totally 
completed by this same software. In this case, designers or students do not have to 
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continuously learn different software and therefore save more time. When designers 
need same-function logic circuit, they do not have to repeat the design process again 
and only have to save the circuit as an element in MAX+PLUS II firmware library. 
By calling the element, designers can add the circuit into their designs, and 
interconnect each of element inputs and outputs to reduce lots of work for logic 
design entry. 
 

 
Figure 1.8 MAX + PLUS II functional diagram and design flow 

 
MAX+PLUS II is a window application tool. It ca be used with Windows 95/98 and 
Windows NT. At the same time, ALTERA also offers a workstation edition. Therefore, 
the use of MAX+PLUS II is the same as the use of general window applications. 
Mostly it operates with graphs. Figure 1.8 indicates MAX+ PLUS II functional 
diagram and design flow. Fundamentally, a programmable logic design has 3 major 
steps:  
 

Design entry: In previous section, we already know workforce cannot 
program all interconnection points efficiently, and it will become more 
difficult for a bigger circuit design. Thus, we need a user-friendly tool to 
describe the logic circuit that we want. It is just like programming. 
Designers can use C language to write programs. They can also use 
assembly or even machine codes to write programs. It is easy to understand 
the advantages and disadvantages of design entry by using C language. 
Figure 1.9 indicates the graphic entry in MAX+PLUS II.  
 
Design compilation: After design entry, incorrect description or electric faults 
can be detected by compilation. Once all circuits are correct, compilers will 
follow designers’ direction to synthesize circuits into selected devices (that is 
logic synthesis and floorplan.), and generate programming files for programming 
devices. 
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Verification and programming: After completing above two steps, we already 
have a programmed device. However, there might still have some problems. For 
example, design description is accurate but circuit function is incorrect. In 
another words, it is because design is incorrect (logic error) or devices cannot 
meet the real requirements (timing error). Therefore, it is still necessary to use 
real circuits to verify the devices and ensure they are applicable in the real world. 
Simulation, as a result, could identify circuit operation status without physical 
circuits. It greatly helps designers to detect faulty problems in early design 
process. 

 

Figure 1.9 Graphic entry in MAX+PLUS II 
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The following is MAX + PLUS II functional description: 

 

Design entry：Fundamentally, MAX+PLUS II has three ways to input designs. Those 

three can be used together in one circuit design; that is, they can mutually use 
together. Designers can choose the best ways to make each partial circuit as 
“sub-circuit” separately, and combine all of them together finally. In MAX+PLUS II, 
it also has had standardized 74 family functional elements. Designers can call the 
elements out and use them directly. MAX+PLUS II software also provides the 
features of Library of Parameterized Modules (LPM). Designers only need to set up 
LPM parameters in advance. Various functional circuits will be generated 
automatically with different bits and functions. For example, memory, adder, and 
multiplier are parameterized.  

 

Graphic entry: Graphic entry is the most acceptable technology by designers. 
To complete design entry, it only requires interconnection between 
functional blocks, like drawing circuit diagrams. Figure 1.9 is Graphic entry 
in MAX+PLUS II. 

 
Text entry: Though it is easy to design circuits by graphic entry, it pre-requires 

all designs completely first, including Truth-value table or state diagram 
needed to be reformed into logic circuits by workforce, and then entered in 
graphs. However, once a design fault is found and needs to be corrected, we 
have to redo all calculation and design entry. Contrarily, if by text editors, 
we only have to correct the design fault, not to redo the whole process, and 
then have computers to handle all the calculation, and that is computers’ 
expertise. For sure, this is just one of text entry benefits. Not like graphic 
entry, text entry does not have hundreds or thousands of graphs needed to 
enter. It makes the jobs easier on circuit design and error detection for 
devices with thousand gates. MAX+PLUS II totally have three description 
languages: ALTERA Hardware Description Language, AHDL, Very high speed 
integrated circuit Hardware Description Language, VHDL, and Verilog 
HDL. Figure 1.10 is Text entry in MAX+PLUS II. 
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Figure 1.10  Text entry in MAX+PLUS II 
 

Waveform entry: Waveform is the third way of MAX+PLUS II design entries. 
It allows users to describe circuit functions by drawing waveform directly. 
Figure 1.11 is Waveform entry in MAX+PLUS II. 

 
Industry-standard CAE entry: EDIF is an industry-standard CAE netlist file. 

MAX+PLUS II uses this standard file format to communicate with other 
CAD software such as Synopsis, Viewlogic, Cadence, and Mentor Graphics, 
etc. It also offers functional library for them. Currently, MAX+PLUS II has 
two standards. One is EDIF200 and the other is EDIF300. 
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Figure 1.11  Waveform entry in MAX+PLUS II 
 

Design compilation: No matter what design technologies and ALTERA devices 
are adopted, to complete logic synthesis after verifying a circuit’s electric 
features, it is necessary to pass compilation process shown in Figure 1.12. 
Once compilation is finished, we will get programming files and some 
information such as the reports of delay status and pin count arrangement. 
During this process, it also provides some convenient tools to help designers 
find faults and increase efficiency. The functions of compilation are 
described as below:  

 
(1) Design-rules checking: In the early of compilation, it can detect potential 

problems from design files, such as oscillation and pointing out location as a 
reference for designers. 

(2) Logic synthesis and fitting: This is the core part of the whole software. It can 
give you logic synthesis and circuit fitting based on the PLD structures you 
choose. After giving synthesis and fitting, it then decides all interconnection 
for the whole circuit design. 

(3) Multi-device partitioning: If a design file cannot be fitted in a certain 
selected device, software will automatically divide the design file into two 
more devices.  This process could be fully or partially done by workforce. It 
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allows us not really separate design files, and only has to reset data for future 
use.  

(4) Timing-driven compilation: This function allows users to set up some timing 
parameters such as delayed time and highest frequency, etc. A compiler will 
follow the parameter setting and try to come out desired solutions on its best. 
However, because of the structures of logic elements, designers can take 
advantages of time-driven compilation only when adopting the devices of 
FLEX8000 and FLEX10K families. If adopting other family devices, it is not 
necessary to have this kind of function. 

(5) Automatic error location: During compilation process, whenever a design fault 
is found, systems will show an error message. By using automatic error 
location features, the systems will automatically open the files that have errors 
occurred, and then indicate the error locations clearly. 

 

Figure 1.12  Design compilation in MAX+PLUS II 
  

Verification and programming: 
(1) Simulation: Designers can use waveform editor to define the input waveform 

of the designed circuits. After entering waveforms, the software can 
automatically simulate and display output waveforms for inspecting design. 
In MAX+PLUS II, there are three simulations: 1.) Timing simulation 
including delay time and setup time of devices selected by designers, 2.) 
Functional simulation excluding delay time and setup time of devices 

    CPLD Logic Circuit Design and Practice                      Introduction to Digital Logic 



selected by designers, and 3.) Multi-device simulation allowing users 
interconnect several ALTERA devices and then simulate all together. 

(2) Timing analysis: This function helps designers to understand timing 
performance by numbers at the beginning of design projects. The timing 
performance, for example, is as delay time, setup time, and registered 
performance analysis shown in Figure 1.13 to 1.17.  

 

 Figure 1.13 Timing simulation in MAX+PLUS II 
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 Figure 1.14 Functional simulation in MAX+PLUS II 

 Figure 1.15 Time analysis in MAX+PLUS II—delay time analysis 
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 Figure 1.16 Time analysis in MAX+PLUS II—setup time analysis 

 

  
Figure 1.17 Time analysis in MAX+PLUS II—registered performance analysis 

    CPLD Logic Circuit Design and Practice                      Introduction to Digital Logic 



(3) Device programming: When software completes all process, configuration 

data will be programmed or written into relative devices for testing 

hardware.  

 
The above is the introduction of ALTERA devices and software. Currently, ALTERA 
provides free software of MAX+PLUS II for users with registration requirement. The 
operation process of the free software is the same as commercial version but only 
available for the devices of the families of CLASSIC, MAX5000, EPM7032, 
EPM7064, and EPM7096 as well as EPF8282. Meanwhile, it does not support 
waveform entry, and multi-device partitioning and simulation, etc. Other than that, 
the rest of the functions are exactly the same as MAX+PLUS II commercial version. 
About the user guide, MAX+PLUS II has great on-line help. We will further discuss 
how to set up and use the software of MAX+PLUS II Baseline 9.23 in Chapter 4. 

1.5 Experimental Platform  
An experimental platform is essential in the integrated digital logic design 
environment. It not just requires SRAM CPLD device, but also power, downloading 
interface, and I/O elements which include LED, seven segments display, buzzer, 
clocks, switches, pulse switches, 43 keyboard, 8×8 dot matrix display, liquid display, 
and A/D & D/A circuit modules. The main purpose of the platform is to offer a 
simple and accessible environment to test circuits and to reduce the time needed for 
circuit design.  
 

1.5.1 LP-2900 CPLD Logic Design 

Experimental Platform  

In Figure 1.18, LP-2900 CPLD logic design experimental platform was the new 
product of Leap Company in 1999. The company currently focuses on the 
development of the logic experimental platform, which has the learning environment 
that integrates design, simulation, and verification. The development also has the 
educational features such as easy setup, great access, quick response, and progressive 
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learning. It is based on ALTERA EPF10K10TC144-4 CPLD to develop a multi-function 
logic design experimental platform. The platform has CPLD device board, I/O 
element experimental board, PC download interface, and power. 

 

$"CPLD  

On the CPLD device board, there are an ALTERA 10K device, an EPROM device socket,  
a reset switch, and a pin status display LED which is a surface mounted device 
(SMD). ALTERA EPF10K10TC144-4 CPLD devices provide flexibility and convenience 
for continuously downloading and programming new circuits. The sockets of 
EPROM devices can be plugged EPROM devices programmed with “configuration 
data”, providing another way to program EPF10K10TC144-4 CPLD devices. A reset 
switch changes 10K devices from user mode to command mode. After circuit 
configuration and circuit reset, 10K devices would back to original user mode. A pin 
status display LED is a SMD device that displays the status of all pin counts, making 
circuit defects easy to find out. 
 
$"I/O element experimental board  

The big board under CPLD devices is I/O element experimental board. This big 
board totally has 12 different I/O elements including: 1.) 4 sets of red, yellow, and 
green LED; 2.) 6 common cathode 7-segment displays; 3.) One buzzer; 4.) Two 
electronic dices; 5.) One clock circuit; 6.) 3 sets of 8-bit data switches; 7.) 4 pulse 
switches; 8.) One 4×3 keyboard; 9.) One 8×8 dot matrix display; 10.) One LCD 
display; 11.) A/D & D/A circuit modules, and 12.) 8051 module. The experimental 
board almost includes all I/O elements generally used in digital logic circuits. It 
provides a whole completed learning environment or fast prototyping circuit design 
environment.  
 
 
 
 
 
 
 
 
 

    CPLD Logic Circuit Design and Practice                      Introduction to Digital Logic 



Figure 1.18 Overview of LP-2900 CPLD logic design experimental platform 
 
$"PC Printer Download Interface  

To program 10K devices, a download interface provides a great convenient parallel 
channel to download “configuration data” from a PC printer port. It is not necessary 
to install or remove interface, but plug in printer cables. 
 
$"Power  

AC 90V〜260V 50/60Hz, 2A input provides power for all circuits and has short 

circuit protection.  
 
Other reference, please see Chapter 9 in this book.  

    CPLD Logic Circuit Design and Practice                      Introduction to Digital Logic 



1.6 Evaluation and Test  
Please answer the following questions to review this chapter. 
 
#" Do you know what benefits of digital systems are better than analog systems?  
#" Do you know what characteristics A/D converters and D/A converters play 

respectively?  
#" Do you know what design environments are introduced in this chapter? 
#" Could you indicate what types of devices are been used by engineers today?  
#" Do you know why standard logic devices would be gradually disappeared?  
#" Do you know the factors making “Integrated Digital Logic Design 

Environment”? 
#" Could you name some of PLD suppliers?  
#" Could you explain why ALTERA 8K and 10K devices are able to continuously 

download and program new circuits? 
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CHAPTER 2 
 

 

Numerical System 

LEAP



In the digital world, it is unavoidable to describe something by numbers. How many 

numerical systems expressing numbers are in the digital world? How do they 

express? In this chapter, we will focus on conversion and expression of those 

numerical systems. We also will introduce binary arithmetic and BCD codes in this 

chapter.  

2.1 Numeric Expressions 
Because humans have ten fingers and toes, naturally we would like to count 

numbers by our fingers, and that is what we called “decimal system”. In another 

words, each number is from 0 to 9 (unit, decimal, hundred)，and then carry to next 

digits after counting to 10. Decimal system is the most popular numerical system in 

our lives. Beside decimal, there also have binary, octal, and hexadecimal commonly 

used in numerical systems. Table 2.1 indicates the common expressions of the 

numerical systems.  

 

A numerical system’s base is the number of the symbols included in this system. 

Decimal system, for example, has 10 symbols of 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. 

Therefore its base is 10. Each weight in numerical systems is the multiple of the 

base of its previous weight. For instance, 2725D is a four-digit number. 

 

      5 ―――――― its weight is 100 

      2 ―――――― its weight is 101 = 100 (the weight of 5)×10 

      7 ―――――― its weight is 102 = 101 (the weight of 2)×10 

      2 ―――――― its weight is 103 = 102 (the weight of 7)×10 
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Table 2.1 Numerical system common expression 

Numerical System Expression Example 

Decimal Add D (decimal) after the last digit (omissible) 1245D or 1245 

Binary Add B (binary) after the last digit 01010101B 

Octal Add O (octal) after the last digit 4767O 

Hexadecimal Add H (hexadecimal) after the last digit 1A2FH 

Therefore, 2725D is 2 × 103 + 7 × 102 + 2 × 101 + 5 × 100. 

 

In general, an r-base numerical system uses the numbers from 0 to r-1. Value N 

could be express by an r-base system as below: 

 

N = an ×rn + an–1 × rn–1 + an–2 × rn–2 + an–3 × rn–3 +…+ a1 × r1 + a0 × r0 

 

In the equation, “n” represents 0, 1, 2, 3, … The symbol “r” is the base of the 

numerical system, and “a” is the number from 0 to r – 1. 

 

For value N from 0 to 1 could be expressed:  

 

N = a–1 × r–1 + a–2 × r–2 + a–3 × r–3 + a–4 × r–4 +…+ a–n+1 × r–n+1 + a–n × r–n 

 

Thus, a decimal fraction 0.8125 is: 

 

0.8125 = 0.8000 + 0.0100 + 0.0020 + 0.0005 

                      = 8 × 10–1 + 1× 10–2 + 2 × 10–3 + 5 × 10–4 

 = a–1 × 10–1 + a–2 × 10–2 + a–3 × 10–3 + a–4 × 10–4 

 

Where a–1 = 8, a–2 =1, a–3 =2 and a–4 =5 
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2.1.1 Binary  
As mentioned before, a numerical system base is the number of the symbols used in 

the system. For a binary system, it has 2 symbols: 0 and 1. Therefore its base is 2. In 

numerical systems, each weight is the multiple of the base of the previous weight; 

for example, 01001100B: 

 

      0 ―――――― its weight is 20 

      0 ―――――― its weight is 21 = 20 (the weight of 0) × 2 

      1 ―――――― its weight is 22 = 21 (the weight of 0) × 2 

      1 ―――――― its weight is 23 = 22 (the weight of 1) × 2 

      0 ―――――― its weight is 24 = 23 (the weight of 1) × 2 

      0 ―――――― its weight is 25 = 24 (the weight of 0) × 2 

      1 ―――――― its weight is 26 = 25 (the weight of 0) × 2 

      0 ―――――― its weight is 27 = 26 (the weight of 1) × 2 

 

Therefore, 01001100B = 0 × 27 + 1 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 1 × 22 + 0 × 21 

+ 0 × 20. For value N from 0 to 1, its binary expression is: 

 

N = a–1 × 2–1 + a–2 × 2–2 + a–3 × 2–3 + a–4 × 2–4 +…+ a–n+1 × 2–n+1 + a–n × 2–n 

 

The binary expression of 0.1101B is: 

 

0.1101B = 0.1000 + 0.0100 + 0.0000 + 0.0001 

       = 1 × 2–1 + 1 × 2–2 + 0 × 2–3 + 2 × 2–4 

2.1.2 Octal  
Because a base is the number of symbols used in a numerical system, an octal 
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numerical system therefore has 8 symbols including 0, 1, 2, 3, 4, 5, 6, and 7, and its 

base is 8. In a numerical system, each weight is the multiple of the base of the 

previous weight. For further understanding, we make an example, 37014O: 

 

      4 ―――――― its weight is 80 

      1 ―――――― its weight is 81 = 80 (the weight of 4) × 8 

      0 ―――――― its weight is 82 = 81 (the weight of 1) × 8 

      7 ―――――― its weight is 83 = 82 (the weight of 0) × 8 

      3 ―――――― its weight is 84 = 83 (the weight of 7) × 8 

 

Therefore, 37014O = 3 × 84 + 7 × 83 + 0 × 82 + 1 × 81 + 4 × 80 

For value N from 0 to 1, its octal expression is: 

 

N = a–1 × 8–1 + a–2 × 8–2 + a–3 × 8–3 + a–4 × 8–4 +…+ a–n+1 × 8–n+1 + a–n × 8–n 

 

Thus, the octal of 0.2154O is: 

 

0.2154O = 0.2000 + 0.0100 + 0.0050 + 0.0004 

  = 2 × 8–1 + 1 × 8–2 + 5 × 8–3 + 4 × 8–4 

2.1.3 Hexadecimal 
A base of a numerical system is the number of symbols used in the system. For a 

hexadecimal system, its base is 16, having 16 symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, 

B, C, D, E, and F. The letters A, B, C, D E, and F represent the values of 10, 11, 12, 

13, 14, and 15. Each weight is the multiple of the base of the previous weight. 

702a4cH, for example, is a six-digit hexadecimal number. 
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      c ―――――― its weight is 160 

      4 ―――――― its weight is 161 = 160 (the weight of c) × 16 

      a ―――――― its weight is 162 = 161 (the weight of 4) × 16 

      2 ―――――― its weight is 163 = 162 (the weight of a) × 16 

      0 ―――――― its weight is 164 = 163 (the weight of 2) × 16 

      7 ―――――― its weight is 165 = 164 (the weight of 0) × 16 

 

Thus, 702a4cH is 7 ×165 + 0 ×164 + 2 ×163 + a ×162 + 4 ×161 + c ×160. 

For value N from 0 to 1, its hexadecimal expression is as below: 

 

N = a–1 × 16–1 + a–2 × 16–2 + a–3 × 16–3 + a–4 × 16–4 +…+ a–n+1 × 16–n+1 + a–n × 16–n 

 

The hexadecimal expression of 0.2c09H is: 

 

0.2c09H = 0.2000 + 0.0c00 + 0.0000 + 0.0009 

 = 2 × 16–1 + c × 16–2 + 0 × 16–3 + 9 × 16–4 

2.2 Numerical System Conversion 
Usually people use decimal systems for daily bases, but computers use binary or 

hexadecimal systems. It is unavoidable to make a conversion between various 

numerical systems. Normally we could find binary mutually exchanging with 

decimal, binary mutually converting with hexadecimal, and hexadecimal mutually 

converting with decimal.  
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2.2.1 Binary vs. Decimal Conversion 

!"Binary-to-Decimal Conversion 

It is very easy to convert an r-base number to a decimal number. It only needs to 

sum up the products of all digits multiplied by weight values. For example:  

 

101011.011B = 1 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 + 0 × 2 –1 + 1 × 

 2–2 + 1 × 2–3 

 =  1 × 32 + 1 × 8 + 1 × 2 + 1 + 1 × 0.25 + 1 × 0.125  

 = 43.375D  

!" Decimal-to-Binary Conversion 

In general, a value N that we usually called is a decimal. To make a conversion 

from decimal to binary, we could use binary expression to find out each “a” factor.  

The conversion process is shown as below: 

 

  N = a–n ×2n + a–n–1 × 2n–1 + a–n–2 ×2n–2 + a–n–3 × 2n–3 +…+ a1 × 21 + a0 × 20 

 = (a–n × 2n–1 + a–n–1 × 2n–2 + a–n–2 × 2n–3 + a–n–3 × 2n–4 +…+ a1) × 2 + a0 

  (After N divided by 2, and the remainder is a0) 

 = ((a–n × 2n–2 + a–n–1 × 2n–3 + a–n–2 × 2n–4 + a–n–3 × 2n–5 +…+a–2) × 2 + a1) × 2 + a0 

  (After the quotient divided by 2, and the remainder is a–1) 

 = (((a–n× 2n–3 + a–n–1 × 2n–4 + a–n–2 × 2n–5 + …+ a–3) × 2 + a–2) × 2 + a1) × 2 + a0  

After the new quotient divided by 2, and the remainder is a–2. We then proceed the 

same process until the quotient is smaller than 2. 

  

For further explanation, we make an example, 43D converting to binary, as below: 
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                 )   43D         Lowest bit 

2) 21--------1  

                2) 10--------1 

 2) 5--------0 

                   2)  2--------1 

                    2) 1--------0 

                                 Highest bit 

                   43D = 101011B  

2.2.2 Octal-to-Decimal Conversion 

!"Octal-to-Decimal Conversion 

We already know it is easy to convert an r-base number to a decimal number and it 

only needs to sum up products of all digits multiplied by weight values. Thus,  

 

370.14O = 3 × 82 + 7 × 81 + 0 × 80 + 1 × 8–1 + 4 × 8–2 

 = 3 × 64 + 7 × 8 + 1 × 8–1 + 4 × 8–2 

 = 192 + 56 + 0.125 + 0.0625 

 = 248.1875D 

!"Decimal-to-Octal Conversion 

In general, a value N that we usually called is a decimal. To make a conversion 

from decimal to octal, we could use octal expression to find out each “a” factor. The 

conversion process is shown as below:  
 

N = a–n × 8n + a–n–1 × 8n–1 + a–n–2 × 8n–2 + a–n–3 × 8n–3 +…+ a1 × 81 + a0 × 80 

 = (a–n × 8n–1 + a–n–1 × 8n–2 + a–n–2 × 8n–3 + a–n–3 × 8n–4 +…+ a1) × 8 + a0  
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 (After N divided by 8, and the remainder is a0) 

 = ((a–n×8n–2 + a–n–1 × 8n–3 + a–n–2 × 8n–4 + a–n–3 × 8n–5 +…a–2) × 8 + a1) × 8 + 

a0   (After quotient is divided by 8, and the remainder is a1) 

 = (((a–n × 8n–3 + a–n–1 × 8n–4 + a–n–2 × 8n–5 +…+ a–3) × 8 + a–2) × 8 + a1) × 8 + a0  

The remainder of the new quotient divided by 8 is a–2; follow the same process until 

quotient is smaller than 8. 

For example, 243D converting to an octal number is as below:  

8)    243D 

8) 30-------3 

 3-------6 

                         243D = 363O 

2.2.3 Hexadecimal-to-Decimal Conversion 

!"Hexadecimal-to-Decimal Conversion 

We already know it is easy to convert an r-base number to a decimal number and it 

only needs to sum up products of all digits multiplied by weight values. Thus,  

 

370.14 H = 3 × 162 + 7 ×161 + 0 × 160 + 1 × 16–1 + 4 ×16–2 

 = 3 × 265 + 7 × 16 + 1 × 16–1 + 4 ×16–2 

           = 795 + 112 + 0.0625 + 0.015625 

           = 907.078125D 

!"Decimal-to-Hexadecimal Conversion 
Similarly, to make a conversion from decimal to hexadecimal, we could use 
hexadecimal expression to find out each “a” factor. The conversion process is 
shown as below: 
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N = a–n×16n + a–n–1 × 16n–1 + a–n–2 × 16n–2 + a–n–3 × 16n–3 +…+ a1 × 161 + a0 × 160 

 = (a–n × 16n–1 + a–n–1 × 16n–2 + a–n–2 × 16n–3 + a–n–3 × 16n–4 +…+ a1) × 16 + a0 

  (After N divided by 16, the remainder is a–0) 

 = ((a–n × 16n–2 + a–n–1 × 16n–3 + a–n–2 × 16n–4 + a–n–3 × 16n–5 +…+ a–2) × 16 + a1) × 16  + 

a0   (After the quotient is divided by 16, and the remainder is a–1) 

 = (((a–n × 16n–3 + a–n–1 × 16n–4 + a–n–2 × 16n–5 +…+ a–3) × 16 + a–2) × 16 + a1) × 16 + 

a0   (After the new quotient is divided by 16, the remainder is a–2) 

 

Follow the procedure until the quotient is smaller than 16. 

For example, 542D converts to a hexadecimal number as follows: 

 

                    16) 542D 

                     16) 33-------E 

 2-------1 

                          542D = 21eH 

 

2.2.4 Binary-to-Octal Conversion 

!"Binary-to-Octal Conversion 

Because an octal number could be referred to three binary numbers, shown in table 

2.2. Therefore, when converting a binary number to an octal number, it only needs 

to partition into groups with 3 digits in a group from the right to the left of the 

binary number. If there are not enough 3 digits in the last group, add “0” on the left 

side of the last digit. The divided groups could be orderly changed to an octal digit 

by looking up a cross-reference list. For example: 
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1100110001B 

↓ 

 001 100 110 001 B 

 ↓ ↓ ↓ ↓ 

 1 4 6 1 O 

 
Table 2.2 Octal-to-Binary cross-reference list 

Octal Binary 

0 000 

1 001 

2 010 

3 011 

4 100 

5 101 

6 110 

7 111 

!"Octal-to-Binary Conversion 

Conversely, for an octal-to-binary conversion, it only needs to follow the 

cross-reference list shown as above to convert an octal digit to three binary digits. 

For example:  

 

 3 5 7 6 3  O 

 ↓ ↓ ↓ ↓ ↓ 

 011 101 111 110 011 B 
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2.2.5 Binary-to-Hexadecimal Conversion 

!"Binary-to-Hexadecimal Conversion 

Because a hexadecimal number could be referred to four binary numbers, shown in 

table 2.3. Therefore, when converting a binary number to an hexadecimal number, it 

only needs to partition into groups with 4 digits from the right to the left of the 

binary number. If there are not enough 4 digits in the last group, add “0” on the left 

side of the last digit. The divided groups could be orderly referred to a hexadecimal 

digit by looking up a cross-reference list. For example: 

 

1101110001B 

↓ 

 0011 0111 0001 B 

 ↓ ↓ ↓ 

 3 7 1 H 

 
Table 2.3 Hexadecimal-to-Binary cross-reference list 

Hexadecimal Binary 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 
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9 1001 

A 1010 

B 1011 

C 1100 

D 1101 

E 1110 

F 1111 

!"Hexadecimal-to-Binary Conversion 

Conversely, for a hexadecimal-to-binary conversion, it only needs to follow the 

cross-reference list shown as above to convert a hexadecimal number to four binary 

digits. For example:  

 

 3 C 7 E 3 H 

 ↓ ↓ ↓ ↓ ↓ 

 0011 1100 0111 1110 0011 B 

2.3 Numerical Complement 

2.3.1 9’s Complement 
9’s complement is a diminished complement of a decimal number. 9’s complement 

of a number is determined by subtracting the number from 9.   
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 (1) 9’s complement of 4 (2) 9’s complement of 39 

 9 99 

 – 4 – 39 

 5 60 

 (3) 9’s complement of 517  (4) 9’s complement of 5408 

 999 9999 

 –  517  –  5408 

 482 4591 

2.3.2 10’s Complement 
10’s complement is another complement of a decimal complement number. 10’s 

complement of a number is the difference between 10 and the number. The other 

definition of 10’s complement of a number is to subtract the number from 9 and 

plus 1. For example:  

 

(1) 10’s complement of 4 (2) 10’s complement of 39 (3) 10’s complement of 517 

 9         99 999 

 –  4  –  39  –  517 

 5  60  482   

 +  1 +  1 +  1 

 6  61  483 

2.3.3 1’s Complement 
1’s complement is a diminished complement of a binary number. 1’s complement of 

a number is determined by subtracting the number from 1. For example: 
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(1) 1’s complement of 010B       (2) 1’s complement of 1001B      (3) 1’s complement of 10101110B 

 

 111 1111 11111111 

 – 010  – 1001  – 10101110 

 101 0110 01010001 

 

2.3.4 2’s Complement 

2’s complement is another binary complement number. It is defined as “ 1’s 

complement of a number plus 1”. For example:  

 

(1) 1’s complement of 010B  (2) 1’s complement of 1001B  (3) 1’s complement of 10101110B 

 111  1111 11111111 

 – 010  – 1001  – 10101110 

 101  0110  01010001 

 +   1  +    1  +        1 

 110   0111  01010010 

2.4 Negative Binary Number Expression                
In digital systems such as digital calculators and digital computers, processing 

positive and negative numbers is unavoidable, and, therefore, it is necessary to have 

proper expression on binary positive/negative numbers. Totally there are 3 ways to 

express positive/negative binary numbers described as below: 

!"Signed-Magnitude Expression： 

The highest bit of a binary number is sign bit, and the rest are magnitude bits to 
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indicate the number. For sign bits, “0” is a positive number and “1” is a negative 

number. For example: 

 011101    is   29 

 111101    is  –29 

Table 2.4 is a numerical cross-reference list of 8-bit signed-magnitude expression. 

Its numerical expression is from +127 to 0 and from -0 to –127. “0” in this table 

could be expressed as +0 (00000000) and –0 (10000000).  

 
Table 2.4 Numerical cross-reference list of 8-bit signed-magnitude expression  

+/- Number 8-bit Signed-magnitude Expression 
+127 01111111 
+126 01111110 
+125 01111101 

… … 
+4 00000100 
+3 00000011 
+2 00000010 
+1 00000001 
+0 00000000 
–0 10000000 
–1 10000001 
–2 10000010 
–3 10000011 
–4 10000100 
… … 

–125 11111101 
–126 11111110 
–127 11111111 
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!"1’s Complement Expression: 

1’s complement is the way to express a negative number. For example:  

 011101    is   29  

 100010    is  –29 

100010 is 1’s complement of 011101.  

 

Table 2.5 is a numerical cross-reference list of 8-bit 1’s complement expression. Its 

numerical expression is from +127 to 0 and from –0 to –127. “0” is expressed as +0 

(00000000) and –0 (11111111). 
 

Table 2.5 Numerical cross-reference list of 8-bit 1’s complement expression  

+/- Number 8-bit 1’s Complement Expression 

+127 01111111 

+126 01111110 

+125 01111101 

… … 

+4 00000100 

+3 00000011 

+2 00000010 

+1 00000001 

0 00000000 

–0 11111111 

–1 11111110 

–2 11111101 

–3 11111100 

–4 11111011 
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… … 

–125 10000010 

–126 10000001 

–127 10000000 

!"2’s Complement Expression 

2’s complement is another way to express a negative number. For example: 

 

 011101   is   29 

 100011   is  –29 

100011 is 2’s complement of 011101. 

 

Table 2.6 is a numerical cross-reference list of 8-bit 2’s complement expression. Its 

numerical expression is from +128 to 0 and from 0 to –127. “0” in this 

cross-reference list can be only expressed as 0 (00000000). Obviously, 2’s 

complement expression can have one more number for its numerical expression 

than the other two described in section 2.4 and 2.5.  
 

Table 2.6 Numerical cross-reference list of 8-bit 2’s complement expression  

+/- Number 8-bit 2’s Complement Expression 

+128 10000000 

+127 01111111 

+126 01111110 

+125 01111101 

… … 

+4 00000100 

+3 00000011 
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+2 00000010 

+1 00000001 

0 00000000 

–1 11111111 

–2 11111110 

–3 11111101 

-4 11111100 

… … 

–125 10000011 

–126 10000010 

–127 10000001 

2.5 Binary Arithmetic Operations  

Like decimal, in 2’s complement system, binary can have arithmetic operations: 

addition, subtraction, multiplication, and division。Their arithmetic operations are 

introduced in the following sections. 

2.5.1 Binary Addition  
Binary add operation has four basic rules as below: 

 

 0B  0B  1B  1B 

 + 0B  +1B  +0B  +1B 

 0B  1B  1B  10B  

                                                           Carry 

Referring to the addition of multi-digit binary, we have to take “carry bit” into 

account in the operation. For example: 
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 1 0 0 1 1 1 0 1B 

                       +  0 0 1 1 1 0 1 0B 

                1 1       ←     Carry Bit 
1 1 0 1 0 1 1 1B 

2.5.2 Binary Subtraction 
As add operation, binary subtraction also has four basic rules: 

     

 0B 0B  1B 1B 

 –  0B –  1B –  0B –  1B 

 0B 11B  1B       0B 

                      ↑ 

                     Borrow 

While subtracting multi-digit binary numbers, we have to consider “borrow bit”. 

For example: 

 

 1 0 0 1 1 1 0 1B 

                       –  0 1 1 1 1 0 1 0B 

              1 1     1     ←   Borrow Bit 

 0 0 1 0 0 0 1 1B 

!"Subtraction of 2’s Complement 

In binary numerical arithmetic, we could use 2’s complement addition to finish 

subtraction by adding minuend and 2’s complement of subtrahend together and then 

ignoring end-round carry. For example: 
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 1 0 0 1 1 1 0 1B   1 0 0 1 1 1 0 1B 

         – 0 1 1 1 1 0 1 0B                +   1 0 0 0 0 1 1 0B 

     1 1   1    ← Borrow  →  1    1 1 1      ← Carry 

 0 0 1 0 0 0 1 1B  1 0 0 1 0 0 0 1 1B 

                                 ↑ 

                                 Ignoring end-around carry 

2.5.3 Binary Multiplication  
As previous arithmetic operations, binary multiplication has four basic rules: 

 

     0B   0B   1B   1B 

   ×0B × 1 B  × 0 B  ×1B 

 0B   0B   0B   1B 

 

To multiple multi-digit binary numbers, the calculation is the same as decimal 

multiplication. For example: 
 

       1 0 0 1 1 1B    Multiplicand 

             ×      0 1 0 0 1 0B    Multiplier 

              0 0 0 0 0 0     1st Partial Product 

             1 0 0 1 1 1       2nd Partial Product 

                  0 0 0 0 0 0         3rd Partial Product 

                 0 0 0 0 0 0           4th Partial Product 

                1 0 0 1 1 1             5th Partial Product 

            +   0 0 0 0 0 0               6th Partial Product 

          0 1 0 1 0 1 1 1 1 1 0B    Final Product 
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2.5.4 Binary Division 
 Like decimal division, binary division can use long division. For example: 

 

                          1  0 B           Quotient 

         Divisor       11 B) 1 1 0 B           Dividend 

   (1)                    1 1   

                          0 0 B           Remainder 

 

                            1  1 B 

     1 1 B) 1 0 0 1 B 

   (2)                      1 1   

                            1 1  

          1 1 

          0 0 B 

 

 

                            1 0. 1 B 

    1 0 0 B) 1 0 1 0. 0 B 

   (3)                    1 0 0   

                            1 0 0 

                            1 0 0  

                            0 0 0 B 

2.6 Binary - coded Decimal (BCD) Code

In digit logic circuit, all arithmetic processes are completed by binary. However, we 

are used to decimal systems in our daily lives. In section 2.2, we have already 
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known binary-decimal conversion, and it is truly uneasy. Therefore, a combination 

between binary and decimal codes is made, called “BCD Code” (Binary Coded 

Decimal). For coding, it only uses 4-bit binary numbers from 0 to 9 shown as in 

table 2.7.  

 
Table 2.7 BCD Code-to-Decimal cross-reference list 

BCD Code Decimal 

0000 0 

0001 1 

0010 2 

0011 3 

0100 4 

0101 5 

0110 6 

0111 7 

1000 8 

1001 9 

In another words, each digit of a decimal number could be expressed as a 4-bit 

binary number in BCD code. For example: a decimal number of 5168D could be 

referred to a 16-bit binary number, 0101000101101000B, in BCD code. The way to 

convert numbers is as below: 

 

 

 3 5 7 6 3D 

 ↓ ↓ ↓ ↓ ↓ 

 0011 0101 0111 0110 0011B 
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2.7 Review  
Please answer the following questions to review this chapter: 

#"Do you know what numerical systems are? Which numerical system is mostly 

used in our daily lives? 

#"Do you know what numbers or digits can be found in an octal number? 

#"Do you know how to get 10’s complement of a decimal number? 

#"Do you know how to get 2’s complement of a binary number? 

#"Do you know how to express a negative number of a binary number? 

#"Do you know the four basic rules of all binary arithmetic operations? 

#"Do you know what BCD code is? 
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CHAPTER 3 
 

 

 Basic Logic 
Theories 

 

LEAP



In this chapter, we will introduce some basic logic theories such as Boolean algebra 

and theorem, Boolean algebra simplification, and basic logic gates, etc. Two major 

digit logic circuits, combinational and sequential logic circuits, also will be 

introduced in Chapter 5 and 6 in this book separately.  

3.1 Boolean Algebra 
Boolean algebra is different from general algebra. “0” and “1” are its only algebra 

numbers. “NOT”, “AND”, and “OR” are its basic algebra operations shown in 

Table 3.1. Therefore, “Boolean algebra” is easy. A great English mathematician 

George Boolean publishes it in 1854. “1” and “0” can be seen as numbers or logic 

status. Like general algebra, Boolean algebra has variables that are usually 

expressed in letters such as A, B, C and D in Table 3.1. Those variables can only 

represent 0/ 1 or false/true, respectively. 

 

From basic operations, Boolean algebra shown in Table 3.2 can also define some 

other compound operations.  

!"Basic Operations 
Table 3.1 Basic operations in Boolean algebra 

Abbreviation 
Symbol of  

Operation 
Example Explanation  

NOT 
Operation ’ X = A’ X is opposite to A. 

AND Operation • X = A•B•C 
While all of A, B, and C are 
equal to “1”, X is “1”; 
otherwise, X is “0”. 
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OR Operation 

 
+ 

 
X = A + B + C + D 

At least one of A, B, C, and D is 
“1”, X is “1”; otherwise, X is 
“0”. 

Note：In Boolean Algebra, operational symbol “•” is usually omitted for convenience. 

!"Further Developed Operations  
Table 3.2 Other Boolean algebra’s operations 

Abbreviation 
Symbol of  

Operation 
Example Explanation  

NAND 
Operation  X = (A•B•C)’ After AND operation, perform 

NOT operation. 
NOR 
Operation  X = (A + B + C)’ After OR operation, perform 

NOT operation. 

XOR 
Operation 
(Exclusive 
OR) 

⊕ X = A ⊕ B 
  = A’B + AB’ 

1. NOT operation on A/B first. 
2. AND operation on A’B (AB’) 

later. 
3. And then OR operation on 

A’B and AB’ 

NXOR 
Operation 
(Inclusive 
OR) 

 X = (A ⊕ B)’ After XOR operation, complete 
NOT operation. 

 

In daily bases, we could also find some Boolean algebra examples. For example, If 

it is “raining” (expressed by variable A) outside and I am “going out for business” 

(expressed by variable B), I have to “bring my umbrella” (expressed by variable Y).  

Therefore, “bring my umbrella” becomes valid only if the assumptions of “raining” 

and “going out for business” are all occurred, and this is AND operation; that is, Y 

= AB. For another example, if going to Dr. Sun Yat-Sen Memorial Hall, we could 

“drive our own car” (expressed by variable A), “ride a motorcycle” (expressed   
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variable B), or “take a bus” (expressed by variable C). All transportation can take us 

to our destination (expressed by variable Z). This is what we called “OR operation”; 

that is, Z = A + B + C. We could take one of the three ways to go to Dr. Sun Yat-

Sen Memorial Hall. 

3.1.1 Truth Table and Boolean Algebra Expression 
 

Assume there is an issue of “if tomorrow is Sunday (A) and John asks me to see a 

movie (B), I will go to see a movie with him (X).” We could use a table called 

“Truth table” to list all the possible situations about the issue.  

 
Table 3.3 Examples by Truth table 

Input 

A B 

Output 

X 
Explanation 

0 0 0 
Since tomorrow is not Sunday and John 
does not ask me out for a movie, I will 
not go to see a movie with him. 

0 1 0 
Though John asks me out, I will not go to 
see a movie with him since tomorrow is 
not Sunday. 

1 0 0 
Though tomorrow is Sunday, I will not 
go to see a movie with John since he does 
not ask me out. 

1 1 1 
Since tomorrow is Sunday and John asks 
me out, I will go to see a movie with him. 
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In Table 3.3, “0” in column A means “tomorrow is not Sunday” and “1” means 

“tomorrow is Sunday”. “0” in column B means “John does not ask me out to see a 

movie” and “1” means “John asks me out to see a movie”. “0” in column X means 

“I will not go to see a movie with John” and “1” means “I will go to see a movie 

with John”. From this example, we could understand that Truth table could give us 

a clear idea. In the above table, A and B have two numbers (0 and 1) separately. 

Therefore, totally there are 2×2 = 4 different possible situations.   

 

The content of Truth table can be expressed by algebra expression. However, how 

could we express an algebra expression of X? The answer is simple! It only needs to 

find out all combinations causing output X equal to “1” and then perform “OR” 

operation to link all combinations together. Therefore, X ＝ AB (omitted the  

operational symbol of “•”). To verify if X is what we describe in Truth table, we 

could use 0 or 1 to substitute A and B. 

 

Let’s make another example for further understanding of how to use a Truth table.    

Assume there is a committee that has 5 members going to vote. To pass the voting 

issue, the committee requires reaching an agreement from a half of the members 

without waiving any right to vote. Therefore, how many different situations are 

there after voting the issue? Because each member has two choices: agree 

(expressed by “1”) or disagree (expressed by “0”), totally there are 2 ×2× 2 × 2 × 2 

= 25 = 32 different results from voting, and the Truth table is shown as Table 3.4:  
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      Table 3.4 Truth table for 5-member committee voting an issue 
Committee Voting Result 

A B C D E R 
0 0 0 0 0 0 
0 0 0 0 1 0 
0 0 0 1 0 0 
0 0 0 1 1 0 
0 0 1 0 0 0 
0 0 1 0 1 0 
0 0 1 1 0 0 
0 0 1 1 1 1 
0 1 0 0 0 0 
0 1 0 0 1 0 
0 1 0 1 0 0 
0 1 0 1 1 1 
0 1 1 0 0 0 
0 1 1 0 1 1 
0 1 1 1 0 1 
0 1 1 1 1 1 
1 0 0 0 0 0 
1 0 0 0 1 0 
1 0 0 1 0 0 
1 0 0 1 1 1 
1 0 1 0 0 0 
1 0 1 0 1 1 
1 0 1 1 0 1 
1 0 1 1 1 1 
1 1 0 0 0 0 
1 1 0 0 1 1 
1 1 0 1 0 1 
1 1 0 1 1 1 
1 1 1 0 0 1 
1 1 1 0 1 1 
1 1 1 1 0 1 
1 1 1 1 1 1 
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Then we come out a question “How to express algebra expression R?” and the 

answer is quite simple. It only needs to find out all combinations making output R 

equal to “1” and then adopt “OR” operations to include all combinations together. 

Therefore: 

 

    R = A’B’CDE + A’BC’DE + A’BCD’E + A’BCDE’ + A’BCDE + AB’C’DE + 

AB’CDE’ + AB’CD’E + AB’CDE + ABC’D’E + ABC’DE’ + ABC’DE +

 ABCD’E’ + ABCD’E + ABCDE’ + ABCDE 

3.1.2 Boolean Theorems and Boolean Algebra Laws 

!"Boolean Theorems 
Boolean theorems are the identities such as Equations 3.1~3.9. They are developed 
from Boolean algebra operation. We could use those identities also called “Boolean 
theorems” to simplify the complicated Boolean algebra expressions. For example, in 
section 3.1.1, algebra expression R is not the simplest expression since it dose not 
come with the least variables and operations. 

1. With 0/1 Operations  
 OR Operation: A+0 = A ............................................................. (3.1) 
 AND Operation: A•1 = A ........................................................ (3.2) 
 OR Operation: A+1 = 1 .............................................................. (3.3) 
 AND Operation: A•0 = 0 ......................................................... (3.4) 

2. Equal theorem 
 OR Operation: A + A = A .......................................................... (3.5) 
 AND Operation: A•A = A ....................................................... (3.6) 

3. Complementary theorem 
 OR Operation: A + A’ = 1 .......................................................... (3.7) 
 AND Operation: A•A’ = 0 ....................................................... (3.8) 
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4. Involution theorems 
 (A’)’ = A .................................................................................... (3.9) 

  The further explanation of those theorems are described as below: 

 

1. With 0/1 Operation  

(1) A + 0 = A: The OR operation of algebra A with “0” is A. When A = 1, 

OR operation of algebra A with “0” is 1; similarly, when A = 0, OR 

operation of algebra A with “0” is 0. 

(2) A•1 = A: The AND operation of algebra A with “1” is A. When A = 1, 

AND operation of algebra A with “1” is 1; similarly, when A = 0, AND 

operation of algebra A with “1” is 0. 

(3) A + 1 = 1：The OR operation of algebra A with “1” is 1. When A = 1, 

OR operation of algebra A with “1” is 1; similarly, when A = 0, OR 

operation of algebra A with “1” is still 1.  

(4) A•0 = 0：The AND operation of algebra A with “0” is 0. When A = 1, 

AND operation of algebra A with “0” is 0; similarly, when A = 0, AND 

operation of algebra A with “0” is still 0. 

2. Equal theorem: Equal theorem can be divided into to categories: “OR equal 

theorem” and “AND equal theorem”. 

(1) OR equal theorem: OR operation of algebra A with A is A, and OR 

equal theorem is the result of the OR operation. Therefore, OR equal 

theorem is algebra A. When A = 1 and A = 1, OR operation is 1; 

similarly A = 0 and A = 0, OR operation is 0.  

(2) AND equal theorem: AND operation of algebra A with A is A. AND 

equal theorem is the result of the AND operation. Therefore, AND equal 

theorem is algebra A. When A = 1 and A = 1, AND operation is 1; 

similarly, when A = 0 and A = 0, AND operation is 0.  
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3. Complementary theorem: Complementary theorem can also be divided into 

two categories: “OR complementary theorem” and “AND complementary 

theorem”.  

(1) OR complementary theorem: OR operation of algebra A with A’ is 1.  

OR complementary theorem is the result of the OR operation. Therefore, 

OR complementary theorem is 1. When A = 1 and A’ = 0, OR operation 

of A with A’ is 1; similarly, when A = 0 and A’ = 1, the OR operation is 

still 1.  

(2) AND complementary theorem: AND operation of algebra A with A’ is 0. 

AND complementary theorem is the result of AND operation of algebra 

A with A’. Therefore, AND complementary theorem is 0. When A = 1 

and A’ = 0, the AND operation is 0; similarly, when A = 0 and A’ = 1, 

the AND operation is still 0.  

4. Involution theorems： In the theorems, algebra A will back to its original 

value after running NOT operation twice. 

!"Boolean Algebra Law 

In Boolean algebra operation, we still need to follow some laws described as bellow: 

 

1. Commutative law 

 OR operation: A+B = B+A ....................................................  (3.10) 

 AND operation: A•B = B•A ..............................................  (3.11) 

2. Associative law 

 OR operation: A + (B + C) = (A + B) + C .............................  (3.12) 

 AND operation: (A•B)•C = A•(B•C) ...........................  (3.13) 

3. Distributive law 

 AND operation: A•(B + C) = (A•B) + (A•C) .................  (3.14) 
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 OR operation: A + (B•C) = (A + B)•(A + C) ....................  (3.15) 

 

  The verification of Equation 3.14 is shown in Table 3.5 as below:  

 
Table 3.5 Verification of Equation 3.14 by Truth table 

Input Output 

A B C A•(B + C) (A•B) + (A•C) 

0 0 0 0 0 

0 0 1 0 0 

0 1 0 0 0 

0 1 1 0 0 

1 0 0 0 0 

1 0 1 1 1 

1 1 0 1 1 

1 1 1 1 1 

 

 The following is the verification of Equation 3.15:  

 

(A + B)•(A + C) = A (A + C) + B (A + C) .......... After apply AND  

                             distributive law 

 = AA + AC + AB + BC............ After reapply AND  

                                            distributive law  

              = A + AC + AB + BC............... After apply equal theorem  

 = A•1 + AC + AB + BC......... After apply Equation 3.2  

 = A (1 + C + B) + BC............... After reapply AND  

                                            distributive law 

 = A + BC………………………After apply Equation 3.3  
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4. Elimination law 

 OR operation: A+(A•B) = A ................................................  (3.16) 

 AND operation: A•(A+B) = A .............................................  (3.17) 

 

5. Demorgan’s theorem 

 OR operation: (A + B)’ = A’•B’ ..........................................  (3.18) 

 AND operation: (A•B)’ = A’ + B’ .......................................  (3.19) 

 

Note 1: In Boolean algebra, we usually omit the operation symbol “•” for convenience.  

Note 2: We could verify Commutative law, Associative law, Elimination law, and Demorgan’s theorem by Truth table.  

 

In Boolean algebra, commutative law and associative law tell us that the sequence 

of written variables is not related to the consequence of any operations. 

 

6. Boolean Simplification Theorem  

 

  XY + XY’ = X .......................................................................  (3.20) 

  (X + Y)(X + Y’)= X ...............................................................  (3.21) 

  X + XY = X ............................................................................  (3.22) 

  X (X + Y) = X ........................................................................  (3.23) 

  (X + Y’) Y = XY ....................................................................  (3.24) 

  (XY’) + Y = X + Y .................................................................  (3.25) 

 

 

 

 

    CPLD Logic Circuit Design and Practice                            Basic Logic Theories



The verification of Equation 3.20 is shown as below: 

 

 XY + XY’ = X (Y + Y’) .................. After find the common factors 

  = X…………. .................. After apply complementary  

                                       theorem: X+X’ = 1 

 

The verification of Equation 3.21 is as below:  

 (X + Y)(X + Y’) = XX + XY + XY’ + YY’..... after apply AND 

                                           operation, adopt 

                                           complementary theorem  

                                           (XX’ = 0) and equal theorem         

                                           (XX = X), and then find the  

                                           common factors.  

  = X + X(Y＋Y’) ...................Apply complementary  

                                           theorem: X＋X’＝1 

  = X + X .............................. Apply equal theorem: X + X  

                                           = X 

  = X 

The verification of Equation 3.22 is as below:  

 

  X + XY = X(1 + Y) ......................... After find the common factors  

        = X•1 ............................... After apply Equation 3.3  

        = X ....................................... After apply Equation 3.2  

 

The verification of Equation 3.23 is as below:  

 

 X(X + Y’) = X + XY’ ......................... After apply AND  
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                                        distributive law 

     = X•1 + XY’ ................. After apply Equation 3.2 

          = X(1 + Y) + XY’............. After apply Equation 3.3 

          = X + X(Y + Y’) ............. Apply Equation 3.2 and  

                                       AND distributive law 

  = X + X ........................... Apply complementary theorem:  

                                       X+X’ = 1 

  = X .................................. Apply equal theorem: X+X = X  

 

The verification of Equation (3.24): 

 

 (X + Y’)Y = XY + YY’ ..................... After apply AND 

                                       distributive law  

  = XY + 0 ......................... Apply complementary theorem:  

                                       XX’ = 0 

       = XY ............................... After apply Equation 3-1  

 

The verification of Equation 3.25: 

 

 (XY’) + Y = XY’ + Y(1 + X) .......... After apply Y•1 = Y; X + 1 = 1 

  = XY’ + Y + XY ............. After apply AND 

                                      distributive law  

  = X(Y + Y’) + Y ............. After apply commutative law and  

                                      multiplication distributive law  

  = X + Y ........................... After apply complementary  

                                       theorem: Y+Y’ = 1  
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7. Consensus theorem 

 XY+ YZ+ X’Z = XY +X’Z .................................................  (3.26) 

 (X+Y)(Y+Z)(X’+Z) =(X+Y)(X’+Z)......................................  (3.27) 

The verification of Equation 3.26 is shown as below:  

 

 XY + YZ + X’Z = XY + 1•YZ +X’Z..................  After apply Equation 3.2         

  = XY + (X + X’)YZ + X’Z.........  After apply  

                                               complementary theorem         

                                               Y + Y’ = 1 

  = XY + XYZ + X’YZ + X’Z ......After apply AND 

                                               distributive law  

  = XY(1 + Z) + X’Z(Y + 1) .........After apply AND 

                                               distributive law                

  = XY•1 + X’Z•1 ....................After apply Equation 3.3 

  = XY + X’Z ................................After apply Equation 3.2 

     

The term of “YZ “eliminated in Equation 3.26 is called “consensus”. Actually, 

“consensus” is a term found in both of XY and X’Z, and consequently we could 

eliminate “consensus” for less production terms, but how to find out “consensus” in 

an Equation? First, we could check if it has a variable expressed in one production 

term and its complement in other production term. If it has, we then eliminate the 

variable and its complement after multiplying both terms. For example: (XY) (X’Z) 

＝ XX’YZ ＝YZ. 

 

The following is the verification of Equation 3.27: 

 (X + Y)(Y + Z)(X’ + Z) = (Y + Z) (X + Y) (X’ + Z) 

  = (Y + Z) (X’Y + XZ) 
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  = X’Y + X’YZ +XYZ +XZ 

  = X’Y +XZ 

  = (X + Y)(X’ + Z) 

The term “Y+Z” eliminated in Equation 3.27 is called “consensus”. It actually can 

be found in both of terms “X + Y” and “X’ + Z”, causing a repeating status. 

Therefore, to reduce sum, we could eliminate “consensus” by checking if it has a 

variable expressed in one sum term and its complement in other term. If it does 

have, we could eliminate the variable and its complement after adding (OR) both 

terms. For example: 

 

 (X + Y) + (X’ + Z) = X＋X’＋Y＋Z ＝ Y＋Z 

 

8. Multiplication and factor theorem  

 (X + Y) (X’ + Z) = XZ + X’Y .............................................  (3.28) 

 XY + X’Z = (X + Z) (X’ + Y) .............................................  (3.29) 

 

The following is the verification of Equation 3.28:  

 (X + Y) (X’ + Z)  = (X + Y)X’ + (X + Y)Z .........After apply AND 

                                              distributive law  

  = X’Y + YZ + XZ .....................After apply  

                                              complementary theorem:  

                                              XX’ = 0 

  = X’Y + XZ ..........................After apply Equation 3.26  

                                              of Consensus theorem  

 Equation 3.29 will not be discussed in this book. We would like to invite readers to 

verify by themselves. 
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9. Duality theorem 

 (x + y + z + …)D = xyz ..........................................................  (3.30) 

 (xyz…)D = x + y + z +… ........................................................  (3.31) 

Duality theorem is defined as:  

If  x  + y + z = x • z  is true, 

  ↓ ↓     ↓     + →•,•→ +, 1 → 0, 0 →1 

 x  •y • z = x + z  is existing.  

 

In equal theorem, we could find out this kind of duality such as:  

 OR operation: A+A = A .................................................................  (3.5) 

   ↓ 

 AND operation: A•A = A .............................................................  (3.6) 

 

In complementary theorem, we also could find out duality. For example:  

 OR operation:  A+A’ = 1 ..............................................................  (3.7)  

   ↓ 

 AND operation: A•A’ = 0 ............................................................  (3.8) 

 

Duality exists in 0/1 operation, communicative law, associative law, distributive law, 

simplification law, multiplication and factor law, and Demorgan’s theorem. 

Therefore, knowing duality can help readers to understand other theorems and laws 

more easily.  
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3.1.3 Types of Boolean Algebraic Expression  
Boolean algebraic expression usually can be divided into two classes: SOP (Sum of 

Production) and POS (Production of Sum). The ways to express SOP are:  

 X  = ABC + AB’  

 Y  = AB + A’BC ＋ BCD’ + BC’ 

 Z  = AB’ + A’B + C’D + CD’ 

 

In another words, SOP is an algebra expression that sums up several production 

terms together.  

 

POS, another type of Boolean algebra expression, can be expressed as below: 

 

 X  = (C + A) (B’＋A’) 

 Y  = (B + A’) (C + D’ + B) 

 Z  = (B’ + A’) (B + C’) (D + C) 

 

Like SOP, POS is an algebra expression that multiplies several sum terms together. 

 

In general, SOP is more popular than POS because it is easier to get from Truth 

tables by describing questions. For example: if there is a Boolean algebra Truth 

table shown in Table 3.6, first we could write down all productions as AB’ and A’B 

in Table 3.6 when the output Y is 1. We then sum up all productions (OR operation) 

to get the SOP expression, Y = AB’ + A’B.  
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Table 3.6 SOP Truth table  

Input Output 

A B Y 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 
 
 
→ AB’  (1) 

→ A’B  (2) 

!"Minterm and Maxterm 

For algebra with n variables, minterm is the production of n variables. Each of the 

variables can only be shown out once by its original or complementary expression. 

For example: all of the following productions in the algebra expression are 

minterms.  

f = A’BC + AB’C’ + AB’C + ABC’ + ABC 

 

For algebra with n variables, maxterm is the sum of n variables. Each of the 

variables can only be shown out once by its original or complementary expression. 

For example: all of the following sums in the algebra expression are maxterms.  

 

f = (A + B + C) (A + B + C’) (A + B’ + C) 

 

For Boolean algebra expression expressed by minterms, we could use the symbol 

“m” to represent each of its minterms. For example, m1 = A’B’C and m5 =AB’C. 

Thus:  

 

f = A’BC + AB’C’ + AB’C + ABC’ + ABC 
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                              ↓ expressed by symbol “m” 

                   f (A,B,C) = m3 + m4 + m5 + m6 + m7 

                              ↓ further abbreviated  

                   f (A,B,C) =Σm (3, 4, 5, 6, 7) 

 

For Boolean algebra expression expressed by maxterms, we could use the symbol 

“M” to represent each of its maxterms. For example: M1 = A’ + B’ + C and M5 = A 

+ B’ + C. Thus: 

 

f = (a + b + c) (a + b + c’) (a + b’ + c) 

                              ↓  expressed by symbol “M” 

f (A, B, C) = M5 M6 M7 

                              ↓  further abbreviated 

f (A, B, C) = ΠM (5, 6, 7) 

 

3.2 Boolean Algebra Simplification  

f (x1, x2, x3,…, xn ) is a Boolean algebra which is combined with some Boolean 

variables x1, x2, x3,…, xn and some algebra operations of AND, OR and NOT 

operations. For example: 

 

f (x,y,z) = xy + x’z + y’z 

 

This is a three-Boolean-variable algebra. In this algebra equation, if x = 0, y = 0, 

and z = 1, f is then equal to 1. To verify the above, we use 0 to substitute x and y 

and 1 to substitute z in xy + x’z + y’z. The verification process is shown as below:   
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f (0, 0, 1) = 0•0 + 0’•1 + 0’•1 

 = 0•0 + 1•1 + 1•1 

 = 0 + 1 + 1 

 = 1 

 

For an n-Boolean-variable Boolean algebra, we could also use Truth table to 

describe it. Because each Boolean variable has the numbers of “0” (false) and “1” 

(true), there should be 2n combinations of variables. Table 3.7 is the Truth table of 

Boolean algebra equation f (x, y, z) = xy + x’z + y’z. 

 
Table 3.7 Truth table of the Boolean algebra expression 

 f (x, y, z) = xy + x’z + y’z 

X Y Z f (x, y, z) 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 

 

To here, we have to understand that there is not only one Boolean equation having 

the Truth table described as above (in this case, the equation that we talked before is 

f (x, y, z) = xy + x’z + y’z). In deed, f (x, y, z) = xy + z also has the Truth table 

shown in Table 3.7. In another words, f (x, y, z) = xy + x’z + y’z is not the simplest 

Boolean algebra equation because it has 3 productions and 6 variables, more than 
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the equation f (x, y, z) = xy + z that has 2 productions and 3 variables. Therefore, it 

is necessary to simplify Boolean algebra equation to “reduce productions and 

variables”. In the following sections, we will discuss Boolean theorem 

simplification in Section 3.2.1, Karnaugh Map simplification in Section 3.2.2, and 

Quine-McCluskey Method in Section 3.2.3. 

 

3.2.1 Boolean Theorem Simplification 
Obviously, Boolean theorem simplification is to simplify Boolean algebra 

expression by Boolean theorem. This simplification requires users understand the 

theorem very well and have great experience on it, and so we could maximize the 

theorem’s efficiency and effectiveness. In general, the simplification has some rules 

as below:  

1. Term combination: Use XY + X’Y = X to combine terms together. For 

example:  

ABCD’ + ABC’D’ = ABD’ 

and 

AB’C + ABC + A’BC = AB’C + ABC + ABC + A’BC 

 = AC + BC  

  

2. Term elimination: Use X + XY = X to eliminate redundant terms or use 

Consensus theorem to eliminate consensus. For example:  

AB’ + AB’ C = AB’   

and 

 A’BC’ + BCD + A’BD = A’BC’ + BCD  A’BD is consensus 

3. Variable eliminate: Use X + X’Y = X + Y to eliminate redundant variables. 

For example:  
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A’B + A’B’C’D’ + ABCD’ = A’(B + B’C’D’) + ABCD’ 

 =A’(B + C’D’) + ABCD’ 

 =A’C’D’ + ABCD’ + A’B 

 =A’C’D’ + B(A’ + ACD’) 

 =A’C’D’ + A’B + BCD’ 

 

4. Adding extra terms for combining or eliminating other terms: The ways to 

add terms includes: (1) add XX’; (2) multiply (X + X’); (3) multiply YZ 

with (XY + X’Z); (4) Add repeating terms, or (5) add XY to X. For 

example: if there is a 5-memenber committee going to vote an issue, in 

Boolean algebra expression, we could add many extra terms (repeating 

terms) to increase chances of combining terms.  

 

R = A’B’CDE + A’BC’DE + A’BCD’E + A’BCDE’ + A’BCDE + AB’C’DE + 

AB’CDE’ + AB’CDE + AB’CD’E + ABC’D’E + ABC’DE’ + ABC’DE + 

ABCD’E’ + ABCD’E  + ABCDE’ + ABCDE 
 = A’B’CDE + AB’CDE + A’BCDE + ABCDE + 

  ABC’DE’ + ABCDE’ +  

  ABCDE’ + ABCD’E’ + 

  A’BCDE + A’BCD’E + ABCD’E + ABCDE + 

  ABCD’E + ABCDE + AB’CDE + AB’CD’E + 

  ABC’DE + ABCDE + AB’C’DE + AB’CDE + 

  ABCDE + ABC’DE+ A’BCDE + A’BC’DE + 

  ABCDE + ABCDE’+ A’BCDE + A’BCDE’ + 

  AB’CDE + AB’CDE ’+ ABCDE + ABCDE’ + 

  ABC’D’E + ABC’DE + ABCD’E + ABCDE 

  = CDE + ABDE’ + ABCE’ + BCE + ACE + ADE + BDE + BCD + ACD + 

 ABE 
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  After some practices, we could come out some conclusions: 

1. Boolean theorem simplification is not a systematic and easy simplification. 

It requires users understand the theorem and have great experience on it to 

maximize efficiency and effectiveness.  

2. Boolean theorem simplification cannot clearly identify if a Boolean algebra 

expression has been simplified.  

3. Boolean theorem simplification can only be properly used in Boolean 

algebra simplification with a few of variables.  

3.2.2 Karnaugh Map of Simplification 
Karnaugh Map is another 2-dimension Truth table. It can be used to express 

Boolean expression. It is also a great tool to simplify Boolean algebra. Karnaugh 

Map can be classified as dual-variable, 3-variable, 4-variable, 5-variable, and even 

6-variable Karnaugh Maps based on the numbers of variables in the algebra 

expression. While variables more than six, it is too difficult to express as Karnaugh 

Map. The different kinds of Karnaugh Map simplification will be introduced in the 

following sections.  

!"Dual Variables 

If there is a Boolean equation Z = X’ + XY, we could express it by Karnaugh Map 

in Table 3.8a. X-axis represents variable X and y-axis represents variable Y. 

 

Step 1:  Draw a dual-variable Karnaugh Map and fill in input/output variables and 

variable's values shown as Table 3.8b.  The vertical columns show the 

input value of Y and the horizontal rows show the input value of X. 
Table 3.8a Application of Dual-variable Karnaugh Map 
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Z = X’ + XY 

Input Y Output 

Z 0 1 

0 1 1 Input 

X 1 0 1 

 

← The possible value 

of Y 

 
Table 3.8b Dual-variable Karnaugh Map- unfilled table 

InputY Ouput 

Z 0 1 

0   Input 

X 1   

 

Step 2:  Fill in output variable values in the fields where the output value is equal 

to 1 first and then in the fields where the output value is equal to 0. X’ 

represents X’Y’ and X’Y. Then mark “1” in the fields where input X is  

“0” and input Y is “0” (“00” field) and where input X is “0” and input Y is 

“1” (“01” field). Beside the two situations described above, output Z is 

equal to “1” while input X is “1” and input Y is “1”. Mark “1” in the “11” 

field also. For the rest of unfilled fields (or empty entries), fill with “0” 

shown as in Table 3.8e.  

 
Table 3.8c Application of Dual-variable Karnaugh Map, Z = X’ +XY 

Input Y Output 

Z 0 1 

0 1 1 Input 

X 1 0 1 
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Step 3:  Find out the ways to combine most of terms and eliminate most of 

variables. For example: in Table 3.8d, xy and x’y can combine together to 

be Y (the field bordered with double lines). In Table 3.8e, x’y’ and x’y 

can combine together to be X’ (the field bordered with double lines). To 

combine terms together, we come out two rules: 1.) From left to right or 

from up to down, select two, four, or eight of “1” which are next to each 

other combine together to be a production; 2.) Choose the biggest 

combination that can combine most of terms together.  

 
 Table 3.8d  Application of Dual-variable Karnaugh Map, Z = Y + ？ 

Input Y Output 

Z 0 1 

0 1 1 Input 

X 1  1 

 
Table 3.8e Application of dual variable Karnaugh Map, Z = X’ + ？ 

Input Y Output 

Z 0 1 

0 1 1 Input 

X 1 0 1 

 

Step 4: Sum up (OR) each independent terms and combinational term. Therefore, 

we have Z = X’＋Y as below:  

 

Z = X’ + XY  →  Z = X’ + Y 

2 terms 3 literals    2 terms 2 literals 
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!"3 Variables  

If there is a Boolean equation Z = AB + A’BC’ + BC, we could express it by 

Karnaugh Map in Table 3.9a.  

 
Table 3.9a  Application of 3-variable Karnaugh Map, z = ab + a’bc’ + bc 

Input AB Output 

Z 00 01 11 10 

0  1 1  Input 

C 1  1 1  

 

←The possible  
combinational values of 
AB 

 

Step 1:  Draw a 3-variable Karnaugh Map and fill in input/output variables and 

variable's values shown as Table 3.9b.  The vertical columns show the 

input values of AB and the horizontal rows show the input values of C. 

 
Table 3.9b 3-variable Karnaugh Map- unfilled table  

Input AB Output 

Z 00 01 11 10 

0     Input 

C 1     

 

Step 2:  Fill in output variable values in the fields where the output value is 1 first 

and then in the fields where the output value is 0. AB represents ABC and 

ABC’. Then mark “1” in the “111” and “110” fields. Beside the above two 

fields, output Z will be equal to “1” by A’BC’, and “010” field will be 

marked with “1” also. Similarly, BC represents ABC and A’BC. Mark “1” 

in the “111” and “011” fields. For the rest of unfilled fields, mark with “0” 

(or leave empty boxes) shown as in Table 3.9e.  
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Table 3.9c Application of 3-variable Karnaugh Map, Z = AB + A’BC’ + BC  

Input AB Output 

Z 00 01 11 10 

0  1 1  Input 

C 1  1 1  

 

Step 3:  Find out the ways of combining most of terms to eliminate most of 

variables. For example: in Table 3.9d, ABC, ABC’, A’BC, and A’BC’ can 

be combined together to be B (the field bordered with double lines). In 

order to combine terms together, we come out two rules: 1.) Select two, 

four, or eight of “1” next to each other from left to right or from up to 

down and combine them together to be a production; 2.) Choose the 

biggest combination that can combine most of terms together.  
 

Table 3.9d Application of 3-variable Karnaugh Map, Z = AB + A’BC’ + BC  

Input AB Output 

Z 00 01 11 10 

0  1 1  Input 

C 1  1 1  

 

Step 4：Sum up (OR) each independent terms and combinational terms. Therefore, 

we could simplify Z = B as below:  

 

Z = AB + A’BC’ + BC   →   Z = B 

           3 terms 7 literals      1 terms 1 literal  
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!"4 Variables 

If there is a Boolean algebra expression Z = A’B’ + B’C’ + CD + A’D’, we could 

express it by Karnaugh Map in Table 3.10a. 

 
Table 3.10a Application of 4-variable Karnaugh Map,  

z = A’B’ + B’C’ + CD + A’D’ 

Input AB Output 

Z 00 01 11 10 

00 1 1  1 

01 1   1 

11 1 1 1 1 

 

Input 

CD 

10 1 1   

 
←the possible value 
of AB  

 

Step 1:  Draw a 4-variable Karnaugh Map and fill in input/output variables and 

variable's values shown in Table 3.10b.  The vertical columns show the 

input values of AB and the horizontal rows show the input values of CD.  

 
Table 3.10b 4-variable Karnaugh Map- unfilled table 

Input AB Output 

Z 00 01 11 10 

00     

01     

11     

 

Input 

CD 

10     

 

Step 2:  Fill in output variable values in the fields where the output value is 1 first 

and then in the fields where the output value is 0. A’B’ represents 
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A’B’C’D’, A’B’C’D, A’B’CD’ and A’B’CD. Then mark “1” in the 

“0000”, “0001”, “0010” and “0011” fields shown in Table 3.10c. 

Similarly, BC represents A’B’C’D’, A’B’C’D, AB’C’D’ and AB’C’D. 

Mark “1” in the “0000”, “0001”, “1000” and “1001” fields shown in Table 

3.10d. CD represents A’B’CD, A’BCD, AB’CD and ABCD. Mark “1” in 

the “0011”, “0111”, “1011” and “1111” fields shown in Table 3.10e. A’D’ 

represents A’B’C’D’, A’B’CD’, A’BC’D’ and A’BCD’. Mark “1” in the  

“0000”, “0010”, “0100” and “0110” fields shown in Table 3.10f. For the 

rest of unfilled fields, fill with “0” (or leave empty boxes). 

 
Table 3.10c Application of 4-variable Karnaugh Map,  

Z = A’B’ + B’C’ + CD + A’D’ 

Input AB Output 

Z 00 01 11 10 

00 1    

01 1    

11 1    

 

Input 

CD 

10 1    

 
Table 3.10d Application of 4-variable Karnaugh Map, 

Z = A’B’ + B’C’ + CD + A’D’ 

Input AB Output 

Z 00 01 11 10 

00 1   1 

01 1   1 

11 1    

 

Input 

CD 

10 1    
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Table 3.10e Application of 4-variable Karnaugh Map, 

Z = A’B’ + B’C’ + CD + A’D’ 

Output Input AB 

 00 01 11 10 

00 1   1 

01 1   1 

11 1 1 1 1 

 

Input 

CD 

10 1    

 
Table 3.10f Application of 4-variable Karnaugh Map, 

Z = A’B’ + B’C’ + CD + A’D’ 

Input AB Output 

Z 00 01 11 10 

00 1 1  1 

01 1   1 

11 1 1 1 1 

 

Input 

CD 

10 1 1   

 

Step 3:  Find out the ways of combining most of terms to eliminate most of 

variables. For example: in Table 3.10g, A’B’C’D’, A’B’CD’, A’BC’D’ 

and A’BCD’ can be combined together to be A’D’ (the field bordered 

with double lines). Like Table 3.10g, Table 3.10h indicates that A’B’CD, 

A’BCD, AB’CD and ABCD can be combined together to be CD (the field 

bordered with double lines). In Table 3.10i, A’B’C’D’, A’BC’D, 

AB’C’D’ and AB’C’D can be combined together to be B’C’ (the field 

bordered with double lines). In order to combine terms together, we come 

out two rules: 1.) Select two, four, or eight of “1” next to each other from 
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left to right or from up to down and combine them together to be a 

production; 2.) Choose the biggest combination that can combine most of 

terms together.  

 
Table 3.10g  Application of 4-variable Karnaugh Map, 

Z = ？ + A’D’ 
Input AB Output 

Z 00 01 11 10 

00 1 1  1 
01 1   1 
11 1 1 1 1 

Input 
CD 

10 1 1   

 
Table 3.10h  Application of 4-variable Karnaugh Map, Z = ？ + cd + A’D’ 

Input AB Output 
Z 00 01 11 10 

00 1 1  1 
01 1   1 

11 1 1 1 1 

Input 
CD 

10 1 1   

 
Table 3.10i  Application of 4-variable Karnaugh Map, Z = b’c’ + cd + A’D’ 

Input AB Output 
Z 00 01 11 10 

00 1 1  1 
01 1   1 
11 1 1 1 1 

Input 
CD 

10 1 1   

 

    CPLD Logic Circuit Design and Practice                            Basic Logic Theories



Step 4:  Sum up (OR) each independent terms and combinational terms. Therefore, 

we could simplify Z = B’C’ + CD + A’D’ Z = B’C’ + CD + A’D’ as 

below:   

 

Z = A’B’ + B’C’ + CD + A’D’  →  Z = B’C’ + CD + A’D’ 

               4 terms 8 literals           3 terms 6 literals 

!"5-variable Karnaugh Map 

If there is a Boolean algebra expression for over 5 committee members voting an 

issue: 

 

 R = A’B’CDE + A’BC’DE + A’BCD’E + A’BCDE’ + A’BCDE + AB’C’DE + 

 AB’CDE’ + AB’CDE + AB’CD’E + ABC’D’E + ABC’DE’ + ABC’DE +  

 ABCD’E’ + ABCD’E  + ABCDE’ + ABCDE 

 

We could express it by Karnaugh Map as Table 3.11a. 

 
Table 3.11a Karnaugh Map of Boolean algebra expression for over 5 committee 

members voting an issue 

Input CD R 

00 01 11 10 

E = 0     00 

E = 1   1  

E = 0   1  01 

E = 1  1 1 1 

E = 0  1 1 1 

 

 

Output 

AB 
11 

E = 1 1 1 1 1 
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E = 0   1   10 

E = 1 0 1 1 1 

 

Step 1:  Draw a 5-variable Karnaugh Map and fill in input/output variables and 

variable's values shown in Table 3.11b.  The vertical columns show the 

input values of CD and the horizontal rows show the input values of AB 

and E.  
 

Table 3.11b Karnaugh Map of Boolean algebra expression for over 5 committee 
members voting an issue- unfilled table 

Input CD R 

00 01 11 10 

E=0     00 

E=1     

E=0     01 

E=1     

E=0     11 

E=1     

E=0     

 

 

 

Output 

AB 

10 

E=1     

 

Step 2:  Fill in output variable values in the fields where the output value is 1 first 

and then in the fields where the output value is 0. Because this is a vote 

passed by over half of 5 committee members, it only needs to fill in “1” at 

the fields shown in Table 3.11a. For example: ABCD’E’ has three “1” (A, 

B, and C).  
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Step 3:  Find out the ways of combining most of terms to eliminate most of 

variables such as Table 3.11c~3.11L. 
 

Table 3.11c Karnaugh Map of Boolean algebra expression for over 5 committee 
members voting an issue, R = ？ + ABE 

Input CD R 

00 01 11 10 

E=0     00 

E=1     

E=0     01 

E=1     

E=0     11 

E=1 1 1 1 1 

E=0     

 

 

 

Input 

AB 

10 

E=1     

 
Table 3.10d Karnaugh Map of Boolean algebra expression for over 5 committee 

members voting an issue, R = ？ + ACD + ABE 

Input CD R 

00 01 11 10 

E=0     00 

E=1     

E=0     01 

E=1     

E=0   1  11 

E=1   1  

 

 

 

Input 

AB 

10 E=0   1  
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  E=1   1  

 

Table 3.11e Karnaugh Map of Boolean algebra expression for over 5 

committee members voting an issue, R = ？＋BCD +ACD + ABE 

Input CD R 

00 01 11 10 

E=0     00 

E=1     

E=0   1  01 

E=1   1  

E=0   1  11 

E=1   1  

E=0     

 

 

 

Input 

AB 

10 

E=1     

 
Table 3.11f Karnaugh Map of Boolean algebra expression for over 5 committee 

members voting an issue, R = ？ + BDE + BCD +ACD + ABE  

Input CD R 

00 01 11 10 

E=0     00 

E=1     

E=0     01 

E=1  1 1  

E=0     11 

E=1  1 1  

E=0     

 

 

 

Input 

AB 

10 

E=1     
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Table 3.11g Karnaugh Map of Boolean algebra expression for over 5 committee  

members voting an issue, R + ？ + ADE + BDE + BCD + ACD + ABE  

Input CD R 

00 01 11 10 

E = 0     00 

E = 1     

E = 0     01 

E = 1     

E = 0     11 

E = 1  1 1  

E = 0     

 

 

 

Input 

AB 

10 

E = 1  1 1  

 
Table 3.11h Karnaugh Map of Boolean algebra expression for over 5 committee 
members voting an issue, R = ？ + BCE + ADE + BDE + BCD + ACD + ABE  

Input CD R 

00 01 11 10 

E = 0     00 

E = 1     

E = 0     01 

E = 1   1 1 

E = 0     11 

E = 1   1 1 

E = 0     

 

 

 

Input 

AB 

10 

E = 1     

 
Table 3.11i Karnaugh Map of Boolean algebra expression for over 5 committee 
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members voting an issue, R = ？ + ACE + BCE +ADE + BDE + BCD + ACD + 
ABE  

Input CD R 

00 01 11 10 

E = 0     00 

E = 1     

E = 0     01 

E = 1     

E = 0     11 

E = 1   1 1 

E = 0     

 

 

 

Input 

AB 

10 

E = 1   1 1 

 
Table3.11j Karnaugh Map of Boolean algebra expression for over 5 committee 

members voting an issue, R = ？ + ABDE’ + ACE + BCE + ADE + BDE + BCD 
+ ACD + ABE  

Input CD R 

00 01 11 10 

E = 0     00 

E = 1     

E = 0     01 

E = 1     

E = 0  1 1  11 

E = 1     

E = 0     

 

 

 

Input 

AB 

10 

E = 1     
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Table3.11k Karnaugh Map of Boolean algebra expression for over 5 committee 
members voting an issue, R = ？ + ABCE’ + ABDE’ + ACE + BCE + ADE + 

BDE + BCD + ACD + ABE  

Input CD R 

00 01 11 10 

E = 0     00 

E = 1     

E = 0     01 

E = 1     

E = 0   1 1 11 

E = 1     

E = 0     

 

 

 

Input 

AB 

10 

E = 1     

 

Table 3.11l Karnaugh Map of Boolean algebra expression for over 5 committee 
members voting an issue, R = CDE + ABCE’ + ABDE’ + ACE + BCE + ADE + 

BDE + BCD + ACD + ABE  

Input CD R 

00 01 11 10 

E = 0     00 

E = 1   1  

E = 0     01 

E = 1   1  

E = 0     11 

E = 1   1  

E = 0     

 

 

 

Input 

AB 

10 

E = 1   1  

    CPLD Logic Circuit Design and Practice                            Basic Logic Theories



Step 4:  Sum up (OR) each independent terms and combinational terms. Therefore, 

 

R = CDE + ABDE’ + ABCE’ + BCE + ACE + ADE + BDE + BCD + ACD + ABE 

 

The result from simplification:  

R = A’B’CDE + A’BC’DE + A’BCD’E + A’BCDE’ + A’BCDE + AB’C’DE + 

 AB’CDE’ + AB’CDE + AB’CD’E + ABC’D’E + ABC’DE’ + ABC’DE +  

 ABCD’E’ + ABCD’E + ABCDE’ + ABCDE 

    16 terms  80 literals   

↓ 

R = CDE + ABDE’ + ABCE’ + BCE + ACE + ADE + BDE + BCD + ACD + ABE 

    10 terms  32 literals  

 

!"6-variable Karnaugh Map 

For 6-variable Karnaugh Map, we only introduce the ways to draw its unfilled table 

shown as in Table 3.12a. Because there are too many variables, it is hard to find out 

any variables that really express next to each other. (In reality, it has already 

happened to 5-variable Karnaugh Map.) Therefore, except the real next-to-next 

relationship, we try to identify any possible areas that seemly have next-to-next 

relationship as in Table 3.12b and Table 3.12c. As long as the areas have the same 

numbers, they then have next-o-next relationship, and just try to express their 

relative locations. Therefore, it is very important that readers have to understand 

what is the real meaning of next-to-next relationship. Don’t misunderstand it!  
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Table 3.12a Unfilled table and next-to-next area identification of 6-variable 
Karnaugh Map  

Input AB 

00 01 11 10 

 

R 

C = 0 C = 1 C = 0 C = 1 C = 0 C = 1 C = 0 C = 1 

F = 0         00 

F = 1         

F = 0         01 

F = 1         

F = 0         11 

F = 1         

F = 0         

 

 

 

Input 

DE 

10 

F = 1         

 
Table 3.12b  Next-to-next area identification of 6-variable Karnaugh Map  

Input AB 

00 01 11 10 

 

R 

C = 0 C = 1 C = 0 C = 1 C = 0 C = 1 C = 0 C = 1 

F = 0 2 8  5 6 6  8 00 

F = 1  8 4  6 6  8 

F = 0 2   5     01 

F = 1   4    7 7 

F = 0 3 3  5     11 

F = 1   4    7 7 

F = 0 3 3  5 6 6   

 

 

 

Input 

DE 

  

  

  

10 

F = 1   4  6 6   
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 Table 3.12c Next-to-next area identification of 6-variable Karnaugh Map 
(Continuous)  

Input AB 

00 01 11 10 

 

R 

 C = 0 C = 1 C = 0 C = 1 C = 0 C = 1 C = 0 C = 1 

F = 0 14 14 12    14 14 00 

F = 1 14 14 11 11   14 14 

F = 0 9      9  01 

F = 1         

F = 0 9  13  13  9  11 

F = 1  10      10 

F = 0   12      

 

 

 

Input 

DE 

10 

F = 1  10 11 11    10 

 

To here, we could understand: 

1. Karnaugh Map can systematically and easily simplify Boolean equation 

expression. 

2. Karnaugh Map can clearly identify Boolean equation expression has been 

minimization.  

3. Karnaugh Map is better used in Boolean minimization with less than 6 

variables. If algebra expressions have more than 6 variables, Quine-

McCluskey Method is then needed, and in the next section, we will discuss 

the new minimization, “Quine-McCluskey Method”.  
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3.2.3 Quine-McCluskey Method 
Quine-McCluskey Method can simplify minterm algebra expression to the simplest 

SOP. (Note: it must be a minterm algebra expression.) The simplification can 

systematically minimize a multi-variable algebra expression, great for paper work 

and easy to write down calculator programs. This simplification can cover the 

Karnaugh Map’s drawbacks. Before introducing “Quine-McCluskey Method”, there 

are three terms need to define first: implicant, prime implicant, and essential prime 

implicant. 

1. Implicant: In Boolean expression, the production term that can be combined 

with other production term(s) are called as “Implicant of Boolean 

Expression”. 

2. Prime implicant: In Boolean expression, the production term that cannot be 

combined with other production term(s) to eliminate variables are called as 

“Prime Implicant of Boolean Expression”.  

3. Essential prime implicant: If an algebra minterm only belongs to a prime 

implicant, the implicant is then called as “Essential Prime Implicant”.  

 

 The main ideas of Quine-McCluskey Method is: 

1. Express Boolean algebra by minterm tables.  

2. Systematically apply the theorem xy + xy’ = x to eliminate variables and 

derive all prime implicants.  

3. Use prim implicant table, choose one group, which has the simplest prime 

implicants, and then sum up (OR operation) all those terms to represent 

original Boolean expression and have the smallest numbers of variables. 
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For example, use the Boolean expression f (a, b, c, d) =Σm (0, 1, 2, 5, 6, 7, 8, 9, 10, 

14) to further explaining Quine-McCluskey Method.  

 

Step 1:  Group Boolean algebra minterms as Table 3.13 minterm table. There is no 

“1” in the group 0; one “1” in the group 1; two “1” in the group 2, and so 

on and so forth. Please notify that Quine-McCluskey Method must be 

started from minterm.  

 
Table 3.13a  Minterm table of  f (a,b,c,d) =Σm (0, 1, 2, 5, 6, 7, 8, 9, 10, 14) 

Group m Implicant Non-prime Implicant 

Group 0 0 0000 ˇ 

Group 1 

1 

2 

8 

0001 

0010 

1000 

ˇ 

ˇ 

ˇ 

 
Group 2 

5 

6 

9 

10 

0101 

0110 

1001 

1010 

ˇ 

ˇ 

ˇ 

ˇ 
Group 3 7 

14 

0111 

1110 

ˇ 

ˇ 

 

Step 2: Find out prime implicant by theorem xy + xy’ = x: 

 

1. Try to simplify all implicants in the groups 0 and 1 by the theorem xy + xy’ 

= x. If the implicants can be simplified, new implicants (or prime implicants) 

will be derived and then filled in the group 0 in new table (shown as Table 

3.13). Symbol “–” means the variables have been simplified. Meanwhile, in 

    CPLD Logic Circuit Design and Practice                            Basic Logic Theories



Table 3.13a, the symbol “ˇ” in the column of non-prime implicant  

indicates that the implicant is a non-prime implicant. Then, try again to 

simplify all the implicants in the groups 1 and 2, and fill in the group 1 in 

the new Table 3.13b. For the groups 2 and 3, perform the same 

simplification process again and fill in the group 2 in the new Table 3.13b, 

and so on and so forth. 

2. In the same group of the new table, erase repeating combinational terms 

and mark with double cross-out lines. (Note: there is no repeating terms in 

Table 3.13b) 

 
Table 3.13b First simplified table  

Group 
Simplifying 

Resources 
New 

Implicants 

Non-prime  

Implicant 

0, 1 000– ˇ 

0, 2 00–0 ˇ 

 

Group 0 

0, 8 –000 ˇ 

1, 5 0–01  

1, 9 –001 ˇ 

2, 6 0–10 ˇ 

2, 10 –010 ˇ 

8, 9 100– ˇ 

Group 1 

8, 10 10–0 ˇ 

5, 7 01–1  

6, 7 011–  

6, 14 –110 ˇ 
Group 2 

10, 14 1–10 ˇ 
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3. If new tables such as Table 3.13b still could be found, repeat a and b 

processes again. Otherwise, it means the process of finding prime 

implicants has been completed.  
Table 3.13c Second simplified table 

Group Simplifying 
Resources 

New 
Implicants 

Non-prime  

Implicant 

0, 1, 8, 9 –00–  

0, 2, 8, 10 –0–0  

0, 8, 1, 9 –00–  
Group 0 

0, 8, 2, 10 –0–0  

2, 6, 10, 14 ––10  
Group 1 

2, 10, 6, 14 ––10  

 

 

Step 3:  Create a prime implicant table, and identify essential prime implicants. 

Use the prime implicants from step 2, create a prime implicant table such 

as Table 3.13d shown as below. Minterms are shown on the top of the 

vertical part of the table, prime implicants are on the left side of the 

horizontal part of the table, and the minterms covered by each prime 

implicant are in the mid part of the table. According to essential prime 

implicant definition, both (0, 1, 8, 9) and (0, 2, 8, 10) are essential prime 

implicants since m9 and m14 only belongs to (0, 1, 8, 9) and (0, 2, 8, 10), 

respectively.  
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Table 3.13d Prime implicant table  

Minterm of Boolean Expression  Type of Prime 
Implicant Simplifying 

Resources 
Prime 

Implicant 
0 1 2 5 6 7 8 9 10 14  

(0, 1, 8, 9) –00– x x     x x   
Essential Prime 

Implicant 

(0, 2, 8, 10) –0–0 x  x    x  x   

(2, 6, 10, 14) ––10   x  x    x x 
Essential Prime 

Implicant 

(1, 5) 0–01  x  x        

(5, 7) 01–1    x  x      

(6, 7) 011–     x x      

 

Step 4:  Select the solution having the fewest prime implicants and Boolean 

variables to completely cover all minterms to represent the Boolean 

expression. The details of the selecting process is: 

 

1. Choose essential prime implicants first, and eliminate the covered minterms. 

For example, in Table 3.13e, select the two essential prime implicants, (0, 1, 

8, 9) and (2, 6, 10, 14).  

2. Choose the prime implicants covering most of the minterms. For example, 

in Table 3.13f, m5 and m7 are the only two uncovered minterms, and just can 

be covered by (5, 7). 
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Table 3.13e Prime implicant table 

Minterm of Boolean Expression Type of Prime 
Implicant Simplifying 

Resources 
Prime 

Implicant 
0 1 2 5 6 7 8 9 10 14  

(0, 1, 8, 9) –00– x x     x x   
Essential Prime 

Implicant 

(0, 2, 8, 10) –0–0 x  x    x  x   

(2, 6, 10, 14) ––10   x  x    x x 
Essential Prime 

Implicant 

(1, 5) 0–01  x  x        

(5, 7) 01–1    x  x      

(6, 7) 011–     x x      

 

Step 5: Sum up (OR operation) all the selected prime implicants to find out the 

simplest Boolean expression.  

 

f (a, b, c, d) =Σm (0, 1, 2, 5, 6, 7, 8, 9, 10, 14) 

 = B’C’ + CD’ + A’BD 

 

Note:  The simplest expression might not be the only one; that is, there might be 

another simplest expressions.   
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Table 3.13f Prime implicant table 

Minterm of Boolean Expression Type of Prime 
Implicant Simplifying 

Resources 
Prime 

Implicant 
0 1 2 5 6 7 8 9 10 14  

(0, 1, 8, 9) –00– x x     x x   
Essential Prime 

Implicant 

(0, 2, 8, 10) –0–0 x  x    x  x   

(2, 6, 10, 14) ––10   x  X    x x 
Essential Prime 

Implicant 

(1, 5) 0–01  x  x        

(5, 7) 01–1    x  x      

(6, 7) 011–     X x      

 

For “don’t care” terms of Boolean expression, how could we use Quine-McCluskey 

Method to simplify the expression?  

The following equation is the example to help us understand how Quine-McCluskey 

Method can do with “don’t care” terms of Boolean expression.  

 

f (a, b, c, d) = Σm (2, 3, 7, 9, 11, 13) +Σd (1, 10, 15) 

 

Step 1:  Group minterms and “don’t care” terms of Boolean equation are shown in 

Table 3.14a. We could not find “1” in the group 0, but a “1” in the group 1 

and two “1” in the group 2, and so on and so forth.  
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Table 3.14a f (a, b, c, d) = Σm (2, 3, 7, 9, 11, 13) +Σd (1, 10, 15)  

Minterm and “Don’t Care” term table 

Group m d Implicant Non-prime Implicant 

Group 1 
 

2 

1 0001 

0010 

ˇ 

ˇ 

Group 2 

3 

9 

 

 

10 

0011 

1001 

1010 

ˇ 

ˇ 

ˇ 

Group 3 

7 

11 

13 

 

 

 

0111 

1011 

1101 

ˇ 

ˇ 

ˇ 

Group 4  15 1111 ˇ 

 

Step 2: Find prime implicants by the theorem, xy + xy’ = x . 

 

1. Try to use the theorem xy + xy’ = x to simplify all implicants in the groups 

1 and 2. If new implicants (or prime implicants) are found after 

simplification, fill them in the group 1 of new table (Table 3.14b), and 

symbolize “–” to indicate the variables are simplified already. Meanwhile, 

in Table 3.14a, mark “ˇ” in the column of non-prime implicant to indicate 

the implicant is a non-prime implicant. Then, try to simplify all the 

implicants in the groups 2 and 3, and fill them in the group 2 in the new 

table (Table 3.14b). Repeat the same process for the groups 3 and 4 shown 

in Table 3.14b, and so on and so forth. 

2. In the same group of the new table, erase the repeating combinational terms 

and mark with double cross-out lines. (Note: there are no repeating terms in 

Table 3.14b.) 
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3. If there is still a new table, repeat the processes 1 and 2 for the new table 

(Table 3.14b). Otherwise, the process of finding prime implicants is 

completed. Table 3.14c is the result from repeating the processes 1 and 2.  

 
Table 3.14b First simplified table 

Group 
Simplifying 
Resources 

New Implicant 
Non-prime 
Implicant 

(1, 3) 00–1 ˇ 

(1, 9) –001 ˇ 

(2, 3) 001– ˇ 

 
Group 1 

(2, 10) –010 ˇ 

(3, 7) 0–11 ˇ 

(3, 11) –011 ˇ 

(9, 11) 10–1 ˇ 

(9, 13) 1–01 ˇ 

 

 

Group 2 

(10, 11) 101– ˇ 

(7, 15) –111 ˇ 

(11, 15) 1–11 ˇ 

 

Group 3 
(13, 15) 11–1 ˇ 

 

Step 3:  Create a prime implicant table and inidcate the essential prime implicants. 

Use the prime implicants resulted from step 2 to establish a prime implicant 

table as Table 3.14d. Please be aware of that only minterm can be listed in 

the table, not “don’t care” terms. According to the prime implicant 

definition, (2, 3, 10, 11), (3, 7, 11, 15) and  (9, 11, 13, 15) are essential 

prime implicants since m2, m7, and m13 only belong to (2, 3, 10, 11), (3, 7, 

11, 15) and (9, 11, 13, 15), seperately. 
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Table 3.14c Second simplified table 

Group 
Simplifying 
Resources 

 
Non-prime 
Implicant 

(1, 3, 9, 11) –0–1  

(1, 9, 3, 11) –0–1  

(2, 3, 10, 11) –01–  

 
Group 1 

(2, 10, 3, 11) –01–  

(3, 7, 11, 15) ––11  

(3, 7, 11, 15) ––11  

(9, 11, 13, 15) 1––1  

 
Group 2 

(9, 11, 13, 15) 1––1  

 

Table 3.14d Prime implicant table 

Minterm of Boolean Expression Simplifying 
Resources 

Prime 
Implicant 2 3 7 9 11 13 

Type of Prime 
Implicant 

(1, 3, 9, 11) -0-1  x  x x   

(2, 3, 10, 11) -01- x x   x  
Essential Prime 

Implicant 

(3, 7, 11, 15) --11  x x  x  
Essential Prime 

Implicant 

(9, 11, 13, 15) 1--1    x x x 
Essential Prime 

Implicant 

 

Step 4: Select the solution, which comes out the fewest prime implicants and 

Boolean variables to completely cover all the minterms to represent the 
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Boolean expression. To start the selection, first choose essential prime 

implicants and delete covered minterms. For example, in Table 3.14e, 

select the three essential prime implicants: (2, 3, 10, 11), (3, 7, 11, 15), and 

(9, 11, 13, 15), and luckily they already cover all the minterms. 

 

Step 5:  Sum up (OR operation) all the selected prime implicants and the summation 

is the simplest Boolean expression. 

 

          f (a, b, c, d) =Σm (2, 3, 7, 9, 11, 13) +Σd (1, 10, 15) 

            = B’C + CD + AD  

 
Table 3.14e Prime implicant table 

Minterm of Boolean Expression Type of Prime Implicant Simplifying 
Resources 

Prime 
Implicant 

2 3 7 9 11 13  

(1,3,9,11) -0-1  x  x x   

(2,3,10,11) -01- X x   x  Essential Prime Implicant 

(3,7,11,15) --11  x x  x  Essential Prime Implicant 

(9,11,13,15) 1—1    x x x Essential Prime Implicant 

 

    CPLD Logic Circuit Design and Practice                            Basic Logic Theories



3.3 Logic Gate 
Logic gate is a digit circuit to make Boolean operation become real. Totally, there 

are three basic Boolean operations: AND, OR, and NOT operations, and therefore 

logic gates can be divided into AND gate, OR gate, and NOT gate. In another words, 

we could complete all digit logic circuits by the three basic logic gates. In the next  

sections, we will not only introduce basic logic gates but also other derivative logic 

gates such as NAND, NOR, and XOR gates.  

3.3.1 AND Gate 
AND gate is a digital logic gate performing Boolean AND operation (or also called 

as “production operation”). Compared to dual-variable production, three-variable 

production, and four-variable production, etc., AND gate also can be classified as 

dual-input AND gate, three-input AND gate, and four-input AND gate, etc. An 

AND gate output can be “1” only when all AND gate inputs are equal to “1”; 

otherwise, the output must be “0”. A and B switches in Figure 3.1, for example, 

must be “ON” at the same time to connect the circuits and lighten the bulbs. From 

previous chapter, we already know that Truth table is a great tool to describe the 

relationship between inputs and outputs of Boolean equation. Actually, it is also 

good to describe logic gates. The AND gate functions described by Truth table are 

shown as below:  
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Figure 3.1 AND gate physical definition 

!"Dual-input AND Gate  

For a dual-input AND gate, we could use Truth table (Table 3.15) to describe its 

functions. Obviously, output Y will be “1” only when A and B are equal to “1” at 

the same time; otherwise, output Y will be “0”. This kind of dual-input AND gate is 

usually represented by the circuit symbol in Figure 3.2.  

 
Table 3.15 Truth table of dual-input AND gate  

Input Output 

A B Y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

Figure 3.2 Circuit symbol of dual-input AND gate 
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!"Three-input AND Gate 

Similarly, for a three-input AND gate, we could also use Truth table to describe its 

functions as Table 3.16. Clearly, output Y will be equal to “1” only when A, B, and 

C are equal to “1”; otherwise, output Y must be equal to “0”. This kind of three-

input AND gate is usually represented by the circuit symbol shown in Figure 3.3.    

 
Table 3.16 Truth table of three-input AND gate 

Input Output 

A B C Y 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 0 

1 1 0 0 

1 1 1 1 

Figure 3.3 Circuit symbol of three-input AND gate 

!"Four-input AND Gate  

For a four-input AND gate, we could use Truth table (Table 3.17) to describe the 

gate functions. Obviously, output Y can be equal to “1” only when A, B, C, and D 

are equal to “1”; otherwise, output Y must be equal to “0”. We usually use the 
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Circuit symbol shown in Figure 3.4 to symbolize this kind of four-input AND gate.  

 
Table 3.17 Truth table of four-input AND gate 

Input Output 

A B C D Y 

0 0 0 0 0 

0 0 0 1 0 

0 0 1 0 0 

0 0 1 1 0 

0 1 0 0 0 

0 1 0 1 0 

0 1 1 0 0 

0 1 1 1 0 

1 0 0 0 0 

1 0 0 1 0 

1 0 1 0 0 

1 0 1 1 0 

1 1 0 0 0 

1 1 0 1 0 

1 1 1 0 0 

1 1 1 1 1 

Figure 3.4 Circuit symbol of four-input AND gate 
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3.3.2 OR Gate 
An OR gate is a digital logic gate performing Boolean OR operation (or called as 

“sum operation”). Like dual-variable sum, three-variable sum, and four-variable 

sum, etc., an OR gate also can be divided into dual-input, three-input, and four-

input OR gates, etc. To have output equal to “1”, one of OR gate inputs has to be 

equal to “1”. Otherwise, output will be “0”. For example, either A or B switch in 

Figure 3.5 is “ON”. The circuits are still connected and the bulbs are still lightened. 

Like AND gate functions, all OR gate functions can be described by Truth tables, 

and we will discuss further in the following sections. 

Figure 3.5 OR gate physical definition 

!"Dual-input OR Gate 

For a dual-input OR gate, we could use Truth table (Table 3.18) to describe its 

functions. Obviously, output Y is equal to “1” when there is at least one of A and B 

is equal to “1”; otherwise, output Y is equal to “0”. This kind of dual-input OR gate 

is usually symbolized by Circuit symbol shown in Figure 3.6.  

 
Table 3.18 Truth table of dual input OR gate 

Input Output 

A B Y 
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0 0 0 

0 1 1 

1 0 1 

1 1 1 

 

Figure 3.6 Circuit symbol of dual-input OR gate 

 

!"Three-input OR Gate  

Similarly, for a three-input OR gate, we could also use Truth table (Table 3.19) to 

describe the gate functions. Obviously, output Y is equal to “1” when there is at 

least one of A, B and C equal to “1”; otherwise, output Y must be equal to “0”. This 

three-input OR gate can be symbolized by the Circuit symbol in Figure 3.7.  

 
Table 3.19 Truth table of three-input OR gate 

Input Output 
A B C Y 
0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 1 
1 0 0 1 
1 0 1 1 
1 1 0 1 
1 1 1 1 
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Figure 3.7 Circuit symbol of three-input OR gate  

 

!"Four-input OR Gate  

The functions of a four-input OR gate can also be described by Truth table (Table 

3.20). Like previous gates, the output Y of a four-input OR gate can be equal to “1” 

when there is at least one of A, B, C, and D equal to “1”; otherwise, output Y must 

be equal to “0”. The Circuit symbol in Figure 3.8 can be used to symbolize the four-

input OR gate usually. 

 

 
Table 3.20 Truth table of four-input OR gate 

Input Output 
A B C D Y 
0 0 0 0 0 
0 0 0 1 1 
0 0 1 0 1 
0 0 1 1 1 
0 1 0 0 1 
0 1 0 1 1 
0 1 1 0 1 
0 1 1 1 1 
1 0 0 0 1 
1 0 0 1 1 
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1 0 1 0 1 
1 0 1 1 1 
1 1 0 0 1 
1 1 0 1 1 
1 1 1 0 1 
1 1 1 1 1 

 

Figure 3.8 Circuit symbol of four-input OR gate 

3.3.3 NOT Gate 
A NOT gate is a mono-input logic gate. It is also a digital logic gate performing 

Boolean NOT operation (or called as “complementary operation”). Like AND gate, 

we use Truth table as Table 3.21 to describe the NOT gate functions. Clearly, output 

Y is equal to “0” when A is equal to “1”; otherwise, output Y is equal to “1”. 

Usually, we use the circuit symbol in Figure 3.9 to symbolize NOT gate.  

 
Table 3.21 Truth table of NOT gate 

Input Output 

A Z 

0 1 

1 0 
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Figure 3.9 Circuit symbol of NOT gate  

 

3.3.4 XOR Gate 
A XOR (Exclusive OR) gate is a logic gate but not a basic logic gate. It is mad with 

several basic logic gates, and performs Boolean XOR operation. Table 3.22 shows 

Truth table of XOR gate. For “Exclusive OR” gate with dual inputs, output Z is 

equal to “1” only when A and B are not simultaneously equal to the same value; 

otherwise, output Z is equal to “0”. Figure 3.10a is XOR circuit symbol. From 

Table 3.22, Figure 3.10b shows XOR equal-effect circuits made with basic logic 

gates. 
 

Table 3.22 Truth table of XOR gate 

Input Output 

A B Z 

0 0 0 

1 0 1 

0 1 1 

1 1 0 

 

 

Figure 3.10a Circuit symbol of XOR gate 
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Figure 3.10b Equal-effect circuit of XOR gate 

 

3.3.5 NAND Gate 
A NAND gate is a logic gate but not a basic logic gate. It is made with AND and 

NOT basic logic gates, and performs Boolean AND and NOT operations, which are 

production operation and complementary operation. Compared to production of 

dual variables, three variables, and four variables… etc., a NAND gate can also be 

divided into dual input, three-input, and four-input NAND gates. Identically, we 

will use Truth table to describe NAND gate functions. 

 

!"Dual-input NAND Gate 

For a dual-input NAND gate, we could use Truth table in Table 3.23 to describe 

NAND gate functions. Its output Y is equal to “0” only when both A and B are 

equal to “1”; otherwise, output Y must be equal to “1”. The dual-input NAND gate 

can be usually shown by the circuit symbol in Figure 3.11a. The small circle at the 

output pin means inverse directions or complements. According to the information 

in Table 3.23, Figure 3.11b identifies the equal-effect NAND circuits made with 

basic logic gates. From the equal-effect circuits, the small circle could be defined 

more clearly at the output pin.  
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Table 3.23 Truth table of dual input NAND gate 

Input Output 

A B Y 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

 

Figure 3.11a Circuit symbol of dual-input NAND gate  

 

Figure 3.11b Equal-effect circuit of NAND gate 

!"Three-input NAND Gate 

Likewise, for a three-input NAND gate, we could use Truth table (Table 3.24) to 

describe the gate functions. Output Y will be equal to “0” only when all of A, B, 

and C are equal to “1”; otherwise, output Y must be equal to “1”. Usually we use 

the Circuit symbol in Figure 3.12a to represent a three-input NAND gate. Figure 

3.12b is based on Table 3.24 to show equal-effect NAND circuits made with basic 

logic gates.  
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Table 3.24 Truth table of three-input NAND gate  

Input Output 

A B C Y 

0 0 0 1 

0 0 1 1 

0 1 0 1 

0 1 1 1 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 0 

Figure 3.12a Circuit symbol of three-input NAND gate 

 

Figure 3.12b Equal-effect circuit of NAND gate  

 

!"Four-input NAND Gate  

For a four-input NAND gate, we could use Truth table (Table 3.25) to describe the 
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gate functions. Output Y will be equal to “0” only when all of A, B, C, and D are 

equal to “1”; otherwise, output Y must be equal to “1”. Usually we use the Circuit 

symbol in Figure 3.13a to represent a four-input NAND gate. Figure 3.13b is based 

on Table 3.25 to show equal-effect NAND circuits made with basic logic gates.   

 

 
Table 3.25 Truth table of four-input NAND gate  

Input Output 

A B C D Y 

0 0 0 0 1 

0 0 0 1 1 

0 0 1 0 1 

0 0 1 1 1 

0 1 0 0 1 

0 1 0 1 1 

0 1 1 0 1 

0 1 1 1 1 

1 0 0 0 1 

1 0 0 1 1 

1 0 1 0 1 

1 0 1 1 1 

1 1 0 0 1 

1 1 0 1 1 

1 1 1 0 1 

1 1 1 1 0 
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Figure 3.13a Circuit symbol of four-input NAND gate  

 

 

Figure 3.13b Equal-effect circuit of four-input NAND gate 

 

3.3.6 NOR Gate 
A NOR gate is another logic gate but not a basic logic gate. It is made with OR and 

NOT basic logic gates, and performs Boolean OR and NOT operations, which are 

OR operation and complementary operation. Similarly, a NAND gate has dual-input, 

three-input, and four-input NOR gates. 

!"Dual-input NOR Gate 

For a dual-input NOR gate, we could use Truth table (Table 3.26) to describe the 

gate functions. Output Y will be equal to “0” when there is at least one of A and B 

equal to “1”; otherwise, output Y must be equal to “1”. Usually we use the Circuit 

symbol in Figure 3.14a to represent the NOR gate. Figure 3.14b is based on Table 

3.26 to show equal-effect NOR circuits made with basic logic gates.  

 

    CPLD Logic Circuit Design and Practice                            Basic Logic Theories



Figure 3.14a Circuit symbol of dual-input NOR gate 

 
Table 3.26 Truth table of dual input NOR gate  

Input Output 

A B Y 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

Figure 3.14b Equal-effect circuit of dual-input NOR gate 

!"Three-input NOR Gate 

Likewise, we could use Table 3.27 for describing the function of three-input NOR 

gate functions. Output Y will be equal to “0” when there is at least one of A, B, and 

C equal to “1”; otherwise, output Y must be equal to “1”. Usually, the circuit 

symbol, in Figure 3.15a, be used to represent three-input NOR gates. Figure 3.15b, 

based on Table 3.27, shows that the equal-effect circuit of three-input NOR gates 

made with basic logic gates.  
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Figure 3.15a Circuit symbol of three-input NOR gate 

 
Table 3.27 Truth table of three-input NOR gate  

Input Output 

A B C Y 

0 0 0 1 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 0 

1 1 0 0 

1 1 1 0 

 

Figure 3.15b Equal-effect circuit of three-input NOR gate  
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!"Four-input NOR Gate 

The functions of a four-input NOR gate can also be described by Truth table (Table 

3.28). Obviously, output Y will be equal to “1” when there is at least one of A, B, C, 

and D equal to “1”; otherwise, output Y must be equal to “0”. Usually the circuit 

symbol, in Figure 3.16a, be used to represent a three-input NOR gates. Figure 3.16b 

is based on Table 3.28 to show equal-effect circuits of four-input NOR gates made 

with basic logic gates.  

 
Table 3.28 Truth table of four-input NOR gate  

Input Output 

A B C D Y 

0 0 0 0 1 

0 0 0 1 0 

0 0 1 0 0 

0 0 1 1 0 

0 1 0 0 0 

0 1 0 1 0 

0 1 1 0 0 

0 1 1 1 0 

1 0 0 0 0 

1 0 0 1 0 

1 0 1 0 0 

1 0 1 1 0 

1 1 0 0 0 

1 1 0 1 0 

1 1 1 0 0 

1 1 1 1 0 
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Figure 3.16a Circuit symbol of four-input NOR gate  

  

Figure 3.16b Equal-effect circuit of four-input NOR gate  

 

3.3.7 NXOR Gate 
A XNOR (Inclusive OR) gate is a digital logic gate but not a basic logic gate. It is 

combined with XOR and NOT basic logic gates, and performs Boolean XNOR 

operation. Its Truth table is shown as Table 3.29. For an Inclusive OR gate with 

dual inputs, its output Z will be equal to “1” only when A and B are simultaneously 

equal to the same value; otherwise, output Z will be equal to “0”. Figure 3.17a 

shows XNOR Circuit symbol. Figure 3.17b is based on Table 3.29 to show XNOR 

equal-effect circuits made with logic gates. 

 
Table 3.29 Truth table of XNOR gate 

Input Output 

A B Z 

0 0 1 
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1 0 0 

0 1 0 

1 1 1 

Figure 3.17a Circuit symbol of XNOR gate 

 

Figure 3.17b Equal-effect circuit of XNOR gate 

 

3.3.8 Demorgan’s Equal-effect Circuit 
In section 3.12, we have discussed Demorgan’s theorem. For illustration, we list the 

equations as below: 

 OR operation: (A + B)’ = A’•B’ ..........................................  (3.18) 

 AND operation: (A•B)’ = A’ + B’ .......................................  (3.19) 

According to Demorgan’s theorem, we could derive equal-effect circuits. The 

following is a dual-input example. For multi-inputs, its derivative process is the 

same as dual inputs. 
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!"Equal-effect Circuit of Demorgan’s NAND Gate (Figure 3.18) 

 

  Figure 3.18 Circuit symbol and equal-effect circuit of Demorgan’s NAND gate  

 

!"Equal-effect Circuit of Demorgan’s NOR Gate (Figure 3.19) 

Figure 3.19 Equal-effect circuit and circuit symbol of Demorgan’s NOR gate  
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3.4 Applications of Logic Gate 
In Section 3.1, we have introduced Boolean algebra, including the basic concepts of 

Boolean algebra definition, theorems, Truth tables and expressions. In Section 3.2, 

we introduce minimization methodologies usually used in Boolean algebra, 

including Boolean minimization, Karnaugh Map minimization, and Quine-

McCluskey method. Once familiar with those minimization methodologies, it is 

easy to simplify Boolean algebra to have the fewest productions and variables. In 

section 3.3, we discussed logic gates. We know that logic gates are the equal digital 

circuits performing Boolean operations. Any Boolean algebra expression can 

operate equally by logic gates. Therefore, the goal in Section 3.2 is “use the fewest 

logic gates and the fewest connections to perform Boolean algebra operations.” The 

followings are some examples of logic gate applications to complete Boolean 

algebra operations. 

!"Logic Gate Application 1  

The following is the simplified Boolean algebra expression in the Section 3.2.3: 

 

f (a, b, c, d) =Σm (2, 3, 7, 9, 11, 13) +Σd (1, 10, 15) 

 = B’C + CD + AD 

 

Use logic gates to perform the simplified Boolean algebra expression. 

 

Figure 3.20 is the logic circuit diagram performing f (a, b, c, d) = B’C + CD + AD 
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Figure 3.20 Logic circuit diagram of f (a, b, c, d) = B’C + CD + AD 

 

!"Logic Gate Application 2  

The following is the simplified Boolean algebra expression in the section 3.2.3: 

 

f (a, b, c, d) =Σm (0, 1, 2, 5, 6, 7, 8, 9, 10, 14) 

 = B’C’ +CD’ +A’BD  

 

Use logic gates to perform the simplified Boolean algebra expression. 

Figure 3.21 is the logic circuit diagram performing f (a, b, c, d) = B’C’ + CD’ + 

A’BD.  
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Figure 3.21 Logic gate circuit diagram of f (a, b, c, d) = B’C’ + CD’ + A’BD  

!"Logic Gate Application 3 

Use logic gates to perform the simplified Boolean algebra expression, R = CDE + 

ABDE’ + ABCE’ + BCE + ACE + ADE + BDE + BCD + ACD + ABE, in the 

Section 3.2.1. Figure 3.22 is the logic circuit diagram for performing R = CDE + 

ABDE’ + ABCE’ + BCE + ACE + ADE + BDE + BCD + ACD + ABE. 

Figure 3.22  Logic Gate Circuit Diagram of R = CDE + ABDE’ + ABCE’ + BCE  

                + ACE + ADE + BDE + BCD + ACD + ABE  
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3.5 Practices 

1. Please find out and delete the consensus terms of the following expressions: 

ABC’D + A’BE + BC’DE； 

 (A’ + B + C) (A + D) (B + C + D)； 

 AB’C + A’BD + BCD’ + A’BC； 

 A’B’C + BC’D’ + A’CD + AB’D’ + BCD + AC’D’。 

 

 2. Please try to verify the Equation 3-29. 

 

 3. Please multiply the following expressions and express in POS:  

 (A + B) (A + C’) (A + D) (BC’D + E)； 

 (A + B’ + C) (B’ + C + D) (A + C)； 

 (A’ + BE’) (BE’ + C + D) (E + C’)。 

 

 4. Express the next expressions in SOP:  

 AB’C + D； 

 BC’D + A’BE + BEF； 

 W + X’Y + VZ。 

 

 5. Use Truth tables to prove the next algebra expressions are true:  

 (A + CD) (A’ + B) = A’CD + AB。 

 

 6. Please use Boolean theorems to simplify the following expressions: 

 XY + X’YZ’ + YZ； 

 (XY’ + Z) (X + Y’) Z； 

 XY’ + Z + (X’ + Y) Z； 
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 A’D (B’ + C) + A’D’ (B + C’) + (B’ + C) (B + C’)； 

 W’X’ + X’Y’ + YZ + W’Z’。 

  

 7. Use Karnaugh Map to simplify Z = Y’ + X’Y’.  

 

 8. Use Karnaugh Map to minimize Z = (AB’ + C) (A + B’) C. 

 

 9. Use Karnaugh Map to minimize Z = AB’ + C + (A’ + B) C’.  

 

 10. Use Karnaugh Map to minimize the following expressions: 

 XY + X’YZ’ + YZ； 

 (XY’ + Z) (X + Y’) Z； 

 XY’ + Z + (X’ + Y) Z； 

 A’D (B’ + C) + A’D’ (B + C’) + (B’ + C) (B + C’)； 

 W’X’ + X’Y’ + YZ + W’Z’。 

 

 11. Please use Quine-McCluskey Method to minimize Boolean algebra expression 

as below:  

 f (a, b, c) =Σm (0, 1, 2, 5, 6, 7)。 
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3.6 Review 
Please answer the following questions to review this chapter.  

#" Do you know what Boolean algebra is? 

#" Could you describe and verify 10 Boolean theorems? 

#" Could you describe all Boolean algebra expressions? 

#" Could you point out three Boolean algebra minimization methods introduced in 

this chapter? 

#" Do you know the key points to adopt the simplifications of Boolean theorems? 

#" Do you know which simplification is the most systematic and good for 

minimize multi-variables? 

#" Do you know the basic logic gates? 

#" Could you plot a Demorgan’s equal-effect circuit of an NAND gate? 
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CHAPTER 4 
 

 

A New Design 
Methodology —   
PC Aided Digital 

 Logic Design Using 
MAX+PLUS II  

Baseline(Version 9.23) 

LEAP



In this chapter, we will focus on MAX+PLUS II Baseline version 9.23. Graphic-

edited circuit entry technology will be introduced in Section 4.3, circuit functional 

simulation in Section 4.4, floorplan and design compilation in Section 4.5, and 

device programming and circuit verification in Section 4.6. To further understand 

LP-2900 CPLD logic design experimental platform, we will give examples with 

graphic edit technologies in Section 4.7 and review the following topic:  

 

1. Design (circuit) entry 

2. Compilation and error location  

3. Functional simulation 

4. Floorplan  

5. Design compilation, which is the generation and conversion of 

“Configuration Data”, and then  

6. Download to FLEX10K experimental platform to complete circuit 

verification 

4.1 MAX+PLUS II Baseline Setup and 
Start  

Before we set up the program, please make sure your PC has at least 64 MB DRAM 

and 200 MB hard disk space after installing Windows 95/98 or Windows NT. For 

sure, the faster CPU speed the better. A MAX+PLUS II Baseline version 9.23 CD 

can download from http://www.altera.com/. The following is the short description 

of Baseline setup process (version 9.23):  

 

1. First, please check your PC has at least 200 MB HD space and 64 MB 

DRAM after install Windows 95/98. 
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2. Create a sub-directory in C drive as C:\baseline.  

3. Download “baseline923.exe” from http://www.altera.com/ and save in 

C:\baseline. 

4. Select “Start”, click “Run”, and type “C:\BaseLine\baseline923.exe” to run 

the command as Figure 4.1a and Figure 4.1b. 

5. Please enter your name and your company name (or school name) as Figure 

4.1c.  

6. To set up directory path, type “C:\BaseLine\MAXPLUS2” and 

“C:\BaseLine\MAX2WORK” in dialog and then follow the directions 

shown from Figure 4.1d to Figure 4.1f. 

7. After start running MAX+PLUS II Baseline, read the license agreement as 

Figure 4.2a and 4.2b. Copy protection information will be shown out as in 

Figure 4.2c since we haven’t had authority and software guard key yet. 

Click “Yes” and find the message as Figure 4.2d. You will know the 

Baseline restrictions and ways of getting the license. 

 

                  Figure 4.1a Baseline 9.23 setup 
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Figure 4.1b Baseline 9.23 setup (continue) 

 

Figure 4.1c Baseline 9.23 setup (continue) 
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Figure 4.1d Baseline 9.23 setup (continue) 

 

Figure 4.1e Baseline 9.23 setup (continue) 
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Figure 4.1f Baseline 9.23 setup (continue) 

 

Figure 4.2a Baseline 9.23 license obtainment and setup 
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Figure 4.2b Baseline 9.23 license obtainment and setup (continue) 

 

Figure 4.2c Baseline 9.23 license obtainment and setup (continue) 
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Figure 4.2d Baseline 9.23 license obtainment and setup (continue) 

 

8. To have Baseline 9.23 license, please choose “Option” and then “License 

Setup” as in Figure 4.2e. Click “System Info…” later as in Figure 4.2f. You 

could find your hard drive serial number and write it down as in Figure 4.2g. 

We need the number to apply the license on ALTERA website.   

9. Go to the http://www.altera.com/  website as Figure 4.2h. Select  

“MAX+PLUS II Licenses & Authorization Codes” on the web site 

indicated as in Figure 4.2h. Click the first item “Free MAX+PLUS II 

Baseline software” on MAX+PLUS II Licensing web page as in Figure 4.2i. 

Carefully enter your hard drive serial number in the blank area circled as in 
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Figure 4.2j, and fill out your information as in Figure 4.2k. Make sure you 

give correct email account before send your application. You will get 

confirmation from ALTERA soon after ALTERA receives your application. 

 

Figure 4.2e Baseline 9.23 license obtainment and setup (continue) 

 

        Figure 4.2f Baseline 9.23 license obtainment and setup (continue) 
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Figure 4.2g Hard drive serial number obtainment 

 

Figure 4.2h Baseline 9.23 license obtainment and setup (continue) 
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Figure 4.2i Baseline 9.23 license obtainment and setup (continue) 

 

Figure 4.2j Baseline 9.23 license obtainment and setup (continue) 
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Figure 4.2k Baseline 9.23 license obtainment and setup (continue) 

 

10. When you receive the mail from ALTERA, save “license.dat” in C:\baseline.  

11. Please re-start MAX+PLUS 9.23 BaseLine, click the buttons “Option” and 

“License Setup”. You will see Figure 4.2f appearing on your screen. Enter 

“C:\baseline\license.dat”. It will show as Figure 4.2L, and click OK. 
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Figure 4.2L Baseline 9.23 installation procedures and licensing acquisition      

(continue) 

 

Congratulation, you are now already download MAX+PLUS 9.23 BaseLine, and 

are authorized to use this program. 
 

4.2 How to Use Mouse 
Mouse is widely used in the PC world. The advantage of using mouse as one kind 

of computer appliance is it is able to create mutual communication for both users 

and computer. Nowadays, mouse is acknowledged as most efficient way to scan 

desktop and to deliver messages. Mouse is especially more effective in graphic 

design environment. In this case, a regular two-button mouse could be adopted in 

MAX+PLUS II environment.  
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!"Mouse Operations  

  Cursor: Indicate the place where mouse located on the 

screen; in different context mouse has shown on 

different shapes and different meanings. 

  Click: Fast press once and release button. 

  Double click: Fast press twice and release the left button. 

 Drag: Hold down the bottom and move.  

  Drag-drop: Position the mouse pointer over an object on your         

screen then press and hold down the button, move 

the mouse to where you want to place the object 

then release the button.  

!"Shapes of Cursor and Useful Functions  

       Arrow:  This is an arrow in NNW direction. The main function of arrow 

is to click selection, the objects, or items. 

    Hourglass:  When hourglass appears on the screen, you might have to wait a        

while, because it shows MAX+PLUS II is currently processing. 

Insertion-Point:  This is an I-shape arrow shows you where the next characters you         

type will appear on the screen. 

       Finger:   This is appears in standard toolbar to provide assistant options. 

Question mark:  Press F1 to show the mouse. 

       Square-icon: In Graphic Editor, press this button and draw a square        

shape. 

    Cross-icon:  This shows the connection point. 
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4.3 Graphic Entry  

Graphic entry is easy to learn and apprehend, the standard application procedure as 

follows: 
 

1. Identify project name 

2. Create new file name 

3. Set up and display guideline  

4. Enter primitives and macro functions  

5. Remove, delete, recover and duplicate on circuit symbol  

 6. Connect pins  

 7. Identify the names of I/O pin and netlist 

 8. Save and check basic errors  

 9. Create a default symbol 

10. Compile for functional simulation (“Functional compilation” will be used in 

the following discussion.)  

11. Close the design file  
 
  We take the following case as an example of preventing keypad bouncing.  

 

 1. Identify project name 

First of all, click the file button, press the project button, you will see Figure 

4.3a. At this point, select the “name” icon once again, and Figure 4.3b will 

be shown. You can type “disbounce” under the project name or select 

“disbounce” if the project name has existed. Then click OK. You are now 

complete the process of selecting the project name. We always take “File > 

Project > Name” to represent the above procedures, and always remember to 

click “File” first; then click “Project”, and finally hit the “Name” button. 
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 2. Create new file name (two methods)  

(1)Method one: 

a.) In the function bar, select “File” and click “New” as shown in Figure 

4.4;  

b.) In “File Type” dialog, click “Graphic Editor file” and “OK”, as 

shown in Figure 4.4b; 

c.) Under “File”, click “Save As...” button as this procedure shows in 

Figure 4.4c;  

d.) Type “disbounce.gdf” into the file name column, as it shown in 

Figure 4.4d.  

(2) Method two:  

a) MAX+PLUS II > Graphic Editor to start graphic editor as Figure 

4.4e; 

b) File > SaveAs...;  

c) Type “disbounce.gdf” into File Name field.  

 

 

Figure 4.3a Identify project name 
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Figure 4.3b  Identify project name (continue) 
 

Figure 4.4a Create a new file (1)—select “New” under File function  
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Figure 4.4b Create new file (2)—select “Graphic Editor file” and click OK in File 

Type dialog 

 

 

 

 

Figure 4.4c Create new file (3)—select “Save As...” in file function  
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Figure 4.4d Create new file (4)—type “disbounce.gdf” in File Name dialog  

 

Figure 4.4e Create new file (5)—select “Graphic Editor” in MAX+PLUS II 
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   Figure 4.5  Graphic Editor environment illustration  

 

3. Set up and display guideline  

As Figure 4.5 shown, middle section is the main working area, where we 

construct circuit diagram. Over the top of working area, menu bar will 

appear and standard toolbar will be on left edge of the screen. They both 

provide various functions to assist constructing circuit diagram. You will see 

toolbar on the left side of the window, which displays a list of functional 

buttons to assist you drawing circuit diagram. When you point one of the 

buttons on the toolbar, it will describe functions of this particular icon on the 

left bottom of the window. You might click help on-line icon and select 

objects you want to have more information. Figure 4.6 shows how to use on-

line help. Another way for help is to press F1 on your keyboard shown as in 

Figure 4.7. 
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Figure 4.6 On-line help  

 

On the “Options” bar, click “Show Guidelines” button, to display grid and 

guide lines. Spacing between XY-axis in grid and guidelines is able to set up 

by selecting “Guideline Spacing” under the “Options”. As Figures 4.8a and 

4.8b, click “Color Palette” under Options, and you will see the information 

as in Figure 4.9 to select the colors of grid and guidelines. Under “Options”, 

you will see different functional options like Font、Text Size、Line Style 

and Rubber band 

 

   CPLD Logic Circuit Design and Practice      PC Aided Digital Logic Design MAX+PLUS II 



Figure 4.7 F1 function in Graphic Editor  

 

 

Figure 4.8a Set up spacing between XY-axis in grid and guide lines 
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Figure 4.8b  Set up spacing between XY-axis in grid and guide lines (continue)  

 

Figure 4.9 Set up the color of grid and guide lines 

 

 4. Enter primitives and macro functions 

When you are in blank spaces in Graphic Editor window, click the left 

button of the mouse twice. You will see the window shown exactly the same 

as Figure 4.10, and you can type primitive names. Figure 4.11 shows that the 

DFF primitives have been entered. Please redo the same procedure for 

INPUT, VCC, NOT, and OUTPUT primitive entries. Those primitives are 

shown as Figure 4.12.  
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Figure 4.10  Primitive entry 

 

 

Figure 4.11 Primitive entry—DFF primitive 
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Figure 4.12 Completion of primitive entry 

 

 5. Delete, Remove, Retrieve, Copy Primitives and Macro Functions  

(1) Remove: If you wish to remove the primitive, use mouse to select an 

object, (the object will be framed by red lines) and drag the object to 

where you want to place.  

(2) Delete & recover: In order to delete a primitive, click the primitive first 

and press Del, (or select scissors icon) then you can delete this primitive. 

If you want to recover the object, press Ctrl + Z on your keyboard to get 

back. 

(3) Copy: Copying circuits are also frequently used in MAX+PLUS II 

environment. First, select the primitive, press Alt and Ctrl, then point at 

the object and drag it to where you want to place then release the button. 
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You could also pick the object first, and press Ctrl + C to copy the object, 

and move mouse to the place where you want and press Ctrl + V to paste 

the copied object.  

 

 6.Pin connection 

In order to construct circuit connection, select “Line Style” under the 

“Options”, as shown in Figure 4.13. A thin line stands for singular 

connection, a bolder line represents for Bus connection. (Please be 

caution to click the bar appearing after selecting Line Style). Move the 

mouse to connection point (a cross cursor will show up). Click the left 

side button of the mouse and drag the mouse to where you want to route 

and connect. As the same method, draw the lines until a circuit is 

constructed. Figure 4.14 shows the connecting process and Figure 4.15 

shows the final result of the connection.  

Figure 4.13  Selection of line style 
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7.Name I/O pin and netlist  

As shown in Figure 4.5, to change or name the connection, click the left 

button on the mouse, click “PIN_NAME” to change the names of I/O pins. 

For naming netlist, move the cursor to the netlist and click it. The netlist 

will become red and a small square will show up. Start to enter a new name. 

Once naming is finished, if any changes are needed, double click the name 

again (the area will inverse). Then, you can now enter the new name. 

Figure 4.14  Pin connection 

 

8.Save and check basic errors 

Once you completed all the editing processes, select File > Project > Save & Check 

(or press Ctrl + K) to save the document and check all the basic errors. Figure 4.16a 

indicates this operation. After MAX+PLUS II checks all of the circuit, there might be 
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signals showing error messages in the diagram. You might follow the instruction to 

make correction. Then save and check again until no more errors exist (Figure 4.16b) 

before next steps. Please be aware of that File > Save (or Ctrl + S) can only save your 

document, but not check any basic errors. 

Figure 4.15 Final result of the connection 
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Figure 4.16a  Save and check basic errors 

 

Figure 4.16b  Completion of save and check 

 

 9.Create a default symbol  

When you complete a new circuit or there are any changes on the names or 

counts of I/O pins, click File > Create Default Symbol to create a new 

symbol representing the newest circuit diagram for the upper circuit layer 

calling. Figure 4.16c shows the operation of creating a new symbol of the 
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circuit. Figure 4.16d shows the symbol for disbounce.gdf. Click File ＞ 

Edit Symbol to make necessary steps of editing symbols. 

 

Figure 4.16c Creating a new circuit symbol after completing save and check         

basic errors 

 

  Figure 4.16d Disbounce.gdf symbol and symbol edit window 
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 10.Functional Compilation 

Congratulations! You have successfully reached to this step. The following 

are prepare steps for functional simulation:  

(1) Open compiler window by selecting MAX+PLUS II > Compiler as  

(2) Select Processing > Functional SNF Extractor to choose the compiler 

needed as Figure 4.18.  

(3) Click the start button to run compilation as Figure 4.19.  

 

Make any error correction as needed. If there are no errors, congratulation, 

you have successfully completed the circuit diagram entry. Now, you can 

start the next functional simulation directly, or you might have a break from 

your desktop!   

 

Figure 4.17 Compiler calling 
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Figure 4.18  Select functions of compiler 

Figure 4.19 Start the functional compilation for functional simulation 

  

 11. Close the file  

Click “File > Close “ to close the document, or click the close icon on the 

window.  
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4.4 Functional Simulation  
 

As we introduced the utilities of compilation in Section 4.3, the functional 

module of Functional SNF Extractor have prepared data for the functional 

simulation of the circuit. However, it required further definition and 

identification of input signals and which output or internal nodes should be 

put extra notification. In general, it can be illustrated as textual files or 

waveform files. ALTERA provides both of these illustrations and it is easier to 

learn and understand by waveform illustration.  Therefore, the functional 

simulation procedures using waveform illustration are as follows: 

Open new file; 

1. Select inputs, internal nodes, and outputs; 

2. Define the waveforms of inputs; 

3. Activate functional simulator to implement functional simulation; 

4. Manage the errors and inspect simulation results; 

5. Close file. 

 

The following is an example of simulating a disbounce circuit. The whole 

procedures are illustrated by figures. 

 1. Open new file 

Please open a new file by File > New, and click Waveform Editor File 

(Please note the extension file name is .SCF), as shown in Figure 4.20, to 

open a Waveform Editor file. Graphic 4.21 is an untitled waveform editor 

file. Please save this file and use the name of the project by “File > Save 

As...” as shown in Figure 4.22. Figure 4.23 illustrates another way to open 

an untitled waveform editor file by MAX+PLUS II > Waveform Editor.  
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 Figure 4.20 Open a new waveform editor file 

 

Figure 4.21 An untitled waveform editor file 

 

Figure 4.22 Use File > Save As...to name a waveform editor file 
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Figure 4.23 Another way to open an untitled waveform editor file 

 

 

2. Select inputs, internal nodes, and outputs 

The most convenient way to select the inputs, nodes, and outputs is to select 

these nodes from a SNF file, which is generated from the above section.  

Figure 4.24 shows the demonstration. From the menu of “Node” to select 

Enter Nodes from SNF...the windows of Figure 4.25a, Figure 4.25b would 

appear. Please note that the order of Node > Enter Nodes from SNF can 

work only after implementing the order of File > Save As.  

 

In Figure 4.25a, click “(1)”, List, the SNF file would show proper node type 

(Type) and name (“*” demonstrate all the file names) and would list the 

available nodes and groups for you to choose. In this example, please press 

the left button on the mouse at “(2)” in the block of “Available Nodes and 

Groups” and drag to “(3)”. This action means you are ready to select the 

nodes of KEYIN [I], CLKIN [I] and KEYOUT [O]. At this time, please 

click “=>”, the result would come up, as shown in Figure 4.25b. Click OK to 

complete the selection process. Figure 4.26 is the result of the selected 

inputs, nodes, and outputs. Figures 4.27a and 4.27b are for setting up grid 

size by “Options > Grid Size…”. 
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Figure 4.24 Select input, internal, and output nodes 

Figure 4.25a Nodes selection window 
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Figure 4.25b Node selection window 

 

 

Figure 4.26  The result of the selected inputs, nodes, and outputs and the names 

of the columns 
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Figure 4.27a Options > Grid Size...Command to set grid size 

 

Figure 4.27b Setting End Time 
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Figure 4.27c Set grid size by using Option> Grid Size… command. 

 

 

Figure 4.27d Set Grid Size equal to 15 ns 

 

 3. Input waveform definition 

After completing the above steps, some original waveform data would be 

saved in the waveform file. Therefore, we have to utilize the following tools 

to define he waveform input for the later functional simulation.  Please 

double click “Edit” in the Menu for the following operations, as shown in 

Figure 4.28.  

(1) Undo: Undo the last action. Can be done by Edit > Undo or Ctrl+Z. 

(2) Cut: Cut the selected waveform data block to clip board. Can be done 

by Edit > Cut or Ctrl+X. 
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Figure 4.28 Waveform “Edit” menu 

 

(3) Copy: Copy the selected waveform data block. Can be done by Edit > 

Copy or Ctrl+C. 

(4) Paste: Paste the copied data once. Can be done by Edit > Paste or 

Ctrl+V. 

(5) Delete: Delete the selected data. Can be done by Edit > Delete or Del.  

(6) Overwrite: Overwrite the waveform data onto the selected waveform 

data block. Can be done by Edit > Overwrite. There are nine overwrite 

functions: Logic “1” signal, Logic “0” signal, unknown signal (x), 

High impedance signal (Z), invert signal, clock signal, counter value, 

group and state name overwrite. Please refer to Figure 4.28 and Figure 

4.29a.  

(7) Insert: Insert the waveform data to the selected block. Can be done by 

Edit > Insert. 

(8) Align to Grid: Align the selected data to the grid. Can be done by Edit 

> Align to Grid or Ctrl+Y. 

(9) Repeat: Repeat the selected waveform block. Can be done by Edit > 

Repeat…. 
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(10)Grow or Shrink: Horizontally grow or shrink the selected waveform 

data. It can be done by Edit > Grow or Shrink. 

 

To the selected waveform data, there are three types also: 

(1)A block: As shown in Figure 4.29a. Press the left button of the mouse 

at the start point “(3)” and drag to “(2)”. 

(2)A Node: As shown in Figure 4.29b. Press the left button of the mouse 

at the start point “(1)” and the selected area will be blocked. 

(3)Nodes: As shown in Figure 4.29b. Press the left button of the mouse at 

“(1)” and drag to “(2)”.  

 

 

   Figure 4.29a Select a waveform data block 
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  Figure 4.29b Select a node or several nodes data block  

 

In Figure 4.29a, in order to overwrite the signal data, please click the left 

button of the mouse at “(1)” and drag to “(2)” to block the area. Then click 

the left button of the mouse at the left banner of the window to choose the 

overwritten signal type. This function can also apply to the data block in 

Figure 4.29b. Figure 4.29c and 4.29d illustrate the fast generation of clock 

waves. Another waveform editor is waveform edit cursor. Figure 4.30a and 

4.30b demonstrate the situation of edit KEYIN signal. Please form the 

KEYIN waveform and save it by “File > Save As…”. 
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  Figure 4.29c Clock waveform generation 

 

Figure 4.29d Clock waveform generation(continue) 
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Figure 4.30a Edit KEYIN wave by waveform cursor 

Figure 4.30b  Edit KEYIN wave by waveform cursor (continue) 

 

4. Activate functional simulator to implement functional simulation 

After completing the definition of simulation waveform, we can activate the 

simulator by MAX+PLUS II > Simulator, as shown in Figure 4.31. At this 

time, click Start button to activate ALTERA functional simulation. Please note 

the file name of simulation input. 

5. Manage the errors and inspect simulation results 

If there are errors of the simulation results, please read the error signals, and 

modify the errors. If there are no errors, click the waveform window to 

inspect the output waveform of simulation result, as shown in Figure 4.33.  
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If the simulation result does not meet the functions, please choose the file 

and go back to Section 4.3 to modify and compile the circuit. Then, 

implement the functional simulation instructed in this section until the result 

meets the functions. In Figure 4.33, the disbounce signal has been 

eliminated.  

6. Close file: Please close current file by File > Close. 

 

   Figure 4.31 Activate functional simulation of MAX+PLUS II 
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  Figure 4.32 Functional simulation window 

 

Figure 4.33 Functional simulation result 
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4.5 Floorplan and Design Compilation 
Floorplan is the arrangement of circuit into FPGA chip, which includes chip 

assignment, the arrangement of input and output pins, and the arrangement of LAB 

(Logic Array Block) of the circuits…etc. However, not until implementing 

functional simulation of the circuits can these functions work. For a beginner, the 

priority is to familiarize with chip assignment, the arrangement of input and output 

pins. The critical issue is that all the floorplans are managed by Floorplan Editor 

which can be done by MAX+PLUS II > Floorplan Editor. The procedures are as 

follows: 

 

Figure 4.34a mod16.gdf 

 

 1. Setting up the processing of the compiler  

 2. Selecting FPGA chip 

 3. Floorplan 

 4. Design compilation after floorplan. 
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Let’s take the file of mod16.gdf, Figure 4.34a and 4.34b, as an example to illustrate 

the whole procedure. 

 

Figure 4.34b  div1000.gdf sub-circuit in mod16.gdf  

 

First of all, please edit the circuit of div1000.gdf, Figure 4.34b, by the graphic editor, 

and complete the functional simulation, Figure 4.34c and Figure 4.34d, by the 

functional simulator. At the mean time, generate an internal circuit symbol for using 

in mod16.gdf. Figure 4.34e is the relevant passive circuit. We can directly download 

the configuration data. 

 

 1. Setting up compiler process 

If the window of Figure 4.35 shows up when you are using the compiler, 

please click Function SNF Extractor of “Process” to make it turns to Figure 
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4.35, which has more compilation functional modules. From left to right are 

Compiler Netlist Extractor, Database Builder, Logic Synthesizer, Partitioner, 

Fitter, Timing SNF Extractor and Assembler. From here, we can understand 

that the Processes of ALTERA compiler can be set to meet any kind of 

requirement. The Compiler’s Processes will be described in detail in the 

following chapter. 

 

   Figure 4.34c Simulation result of div1000.gdf sub-circuit 

 

 

   Figure 4.34d Simulation result of div1000.gdf sub-circuit  

(Magnify the circle in Figure 4.34c) 
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   Figure 4.34e Peripheral passive circuit of mod16.gdf  

Figure 4.35 Simple compiler window of functional simulation 
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Figure 4.36 Compiler window 

 

 2. Selecting FPGA device 

Please follow the instructions of Figure 4.37a and Figure 4.37b to choose 

EPF10K10TC144-4 of FLEX 10K family, which is a SRAM 144-pin chip.  

 

 Figure 4.37a Assigning FPGA device 
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Figure 4.37b Assigning FPGA device 

 

 3. Floorplan 

Figure 4.38 is the last compilation, the below half figure is the device 

overview. Another way to view the chip is through a LAR view, which 

allows checking the arrangement in the selected chip and the arrangement of 

the pins. It would spontaneously offer the relevant information as long as the 

cursor moves to the circuit block that you intend to check. On the other hand, 

the device view can only offer the information of pin arrangement. Both of 

these views can switch the functions of each view as long as double click the 

left bottom of the mouse at the location of the cursor, as shown in Figure 

4.38 
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Figure 4.38 Device view of the last compilation 

 

If you are not really satisfied with your pin arrangement or even would like 

to make any changes, you could re-plan the pin assignment by Layout > 

Current Assignments as Figure 4.39. Once the window is there, you could 

use the left bottom of your mouse, select the pin from the block at the upper-

right corner, and drag it to the desired pin in the lower part of the window.  

Release the button to reassign I/O pin. We also could select any pin from 

lower of the window and drag it to another desired pin and release it to 

change pin assignment. As Figure 4.34b, please move CLKIN to Pin 55, 

KEYIN to the Pin 47, Q1 to Pin 7, Q2 to Pin 8, Q3 to Pin 9, Q4 to Pin 10, 

and LED_COM output to Pin 141, which is Common anode. The 

EPF10K10TC144-4 pin assignments are listed as Table 4.1. 
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Table 4.1 EPF10K10TC144-4 pin assignments 

Name of Signal Line Pins of EPF10K10TC144-4 

CLKIN Pin 55 

KEYIN Pin 47 

Q1 Pin 7 

Q2 Pin 8 

Q3 Pin 9 

Q4 Pin 10 

LED_COM Pin 141 

 

 4. Design Compilation After Floorplanning 

By floorplanning, please open Compiler window as Figure 4.36 after 

complete the latest pin assignment.  Select “Processing > Total Recompile” 

to start Compiler. If there is no error message displayed, you will get a file 

named “mod16.sof”, which we will use in the next section to program 

EPF10K10TC144-4 chip. However, if an error message is shown out, please 

back to the step 3 and modify the pin assignment as well as the compilation 

until all correct.  
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Figure 4.39 Compiler —current assignments 

4.6 Device Programming and Circuit 
Testing  

For ALTERA device programming, it requires users check what type of the 

reconfigurable element is used in the selected device. The type of the reconfigurable 

element could be EPROM, EEPROM, FLASH, or SRAM. Different types will use 

different programming approaches. Since we already talked about EPF10K-

10TC144-4 CPLD in the last section, we will use it as our programming example. 

EPF10K-10TC144-4 CPLD is an ALTERA SRAM device. All of the configuration 

data has to be installed into the circuit completely after the system powers on. In 

another words, FLEX10K family offers users a great flexibility to reconfigure 

different circuits with different re-configuration data. To complete the 
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reconfiguration when the system powers on, ALTERA offers ALTERA’s serial 

configuration EPROM which can save configuration data for FLEX10K family and 

install configuration data to complete circuit configuration when the system is 

starting process. In Table 4.2a, we list the types and specifications of the typical 

examples applying ALTERA‘s serial configuration EPROM.  

 
Table 4.2a Typical application examples of ALTERA’s serial configuration EPROM 

FLEX10K Device Serial Configuration EPROM 

EPF10K10, EPF10K10A EPC1 or EPC1441 

EPF10K20 EPC1 or EPC1441 

EPF10K30, EPF10K30A, EPF10K30B EPC1 or EPC1441 

EPF10K40 EPC1 

EPF10K50, EPF10K50V, EPF10K50B EPC1 

EFP10K70 EPC1 

EPF10K100, EPF10K100A, EPF10K100B EPC1 ×2 

EPF10K130V, EPF10K130B EPC1 ×2 

EPF10K180B EPC1 ×3 

EPF10K250A, EPF10K250B EPC1 ×4 

EPF8282A EPFC1, EPC1441, EPC1213 or EPC1064 

EPF8282AV EPFC1, EPC1441 or EPC1064V 

EPF8452A EPFC1, EPC1441, EPC1213 or EPC1064 

EPF8636A EPFC1, EPC1441 or EPC1213 

EPF8820A EPFC1, EPC1441 or EPC1213 

EPF81188A EPFC1, EPC1441 or EPC1213 

EPF81500A EPFC1, EPC1441 or EPC1213 ×2 

EPF6016, EPF6016A EPFC1 or EPC1441 

EPF6024A EPFC1 or EPC1441 
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Table 4.2b Types and characteristics of ALTERA‘s serial configuration EPROM 

Serial Configuration Description 

EPFC1 1,046,496 bits, Voltage: 5.0V or 3.3V 

EPC1441 440,800 bits, Voltage: 5.0V or 3.3V 

EPC1213 212,942 bits, Voltage: 5.0V 

EPC1064 65,536 bits, Voltage: 5.0V 

EPC1064V 65,536 bits, Voltage: 3.3V 

 

To make it easy to use ALTERA MAX+PLUS II and help new users adopt FLEX10K 

devices, Leap Company gives a great LP-2900 CPLD logic design experimental 

platform, which has two major hardware components as below:  

!"CPLD Device Board 

This module has the circuits including: 

 1. Programming circuit: The circuit made by a target chip EPF10K10TC144. 

Its function is to receive the configuration data from programmer or 

EPROM, to program EPF10K10TC144, and to drive the outside circuit. 

2. Download circuit: Its function is to send the “configuration data” to a 

“programming circuit” to easily program EPF10K10TC144. Totally there 

are many various programming technologies, and here we only introduce 

three as below:   

(1)It can be done via PC printer parallel port to receive “configuration data”, 

and forward to a “programming circuit”. Definitely, it requires users to 

run MAX+PLUS II Programmer by PC to send “configuration data”. 

(2) It can be done by EPROM, which has an EPROM 2764 socket on the 

board, to receive “configuration data” and forward the data to a 

“programming circuit”.  
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(3) Without “download circuits”, it can also be done by ByteBlaster 

connection bus to download the configuration data. ByteBlaster 

connection bus can connect between PC printer parallel ports and 

ByteBlaster plugs on the CPLD-EPF10K10 device board. It also requires 

MAX+PLUS II Programmer on PC to send “configuration data”. 

!"I/O Element Experimental Platform 

The module has some input buttons or selection switches and some output display 

circuits such as LED, Dot Matrix, and LCD. The experimental platform also has 

A/D converter, D/A converter, and an 8051 microprocessor. For the details of the 

information, please refer to the explanation in Chapter 9. 

 

By Leap Company’s LP-2900 CPLD logic design experimental platform, new users 

can use the following technologies to program FLEX10K10 devices:  

 

 1. Download via printer parallel port:  

(1) Use connection bus to connect between PC printer parallel port and LP-

2900 experimental platforms. 

(2) After power on the experimental platform, LED D1 at the upper-left 

corner is lightened up, and then press RESET button. 

(3)In MAX+PLUS II, start programmer window by selecting MAX+PLUS 

II ＞  Programmer as Figure 4.40. Because we haven’t finished the 

“programming hardware setting”, “Programming hardware is not 

installed.” will be shown up, and please click “Yes”. 

(4) Double click for Hardware Setup window by selecting Option > 

Hardware Setup as Figure 4.41. After starting Hardware Setup window, 

please find “Hardware Type” and drag down to select “ByteBlaster” as 
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Figure 4.42a and Figure 4.42b. Once complete the hardware setting, it is 

unnecessary to redo the setting process except we make some changes to 

the downloading technologies.  

 

Figure 4.40 Starting Programmer window at first time by MAX+PLUS II 

＞ Programmer 

   CPLD Logic Circuit Design and Practice      PC Aided Digital Logic Design MAX+PLUS II 



Figure 4.41 Starting Hardware Setup window 

 

Figure 4.42a Hardware Setup window  
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Figure 4.42b Hardware Setup window (continue)  

 

 

Figure 4.42c Hardware Setup (continue) 

 

(5) Start Multi-device JTAG Chain Setup by selecting JTAG > Multi-Device 

JTAG Chain Setup as Figure 4.43. In Multi-device JTAG Chain Setup 

window, please drop down the “Device Name” column and select 

“EPF10K10” as Figure 4.44a. Then click “Select Programming File”, 

choose the “mod16.sof” file as Figure 4.44b, and then click “Add” and 
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“Ok” as Figure 4.44c to close Multi-device JTAG Chain Setup window. If 

the message as Figure 4.44d is found, Multi-device JTAG Chain Setup 

mode is then closed completely, and so please click “Yes”.  

Figure 4.43 Starting Multi-device JTAG Chain Setup window 

 

Figure 4.44a  Multi-device JTAG Chain Setup   
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Figure 4.44b  Multi-device JTAG Chain Setup (continue) 
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 Figure 4.44c Multi-device JTAG Chain Setup (continue) 

 

Figure 4.44d Multi-device JTAG Chain Setup (continue) 
 

(6) Back to Programmer window, click “Configure” as Figure 4.45 to 

download circuit.  

 

  Once the programming is completed, the OK light on the CPLD device 

board will be on; otherwise ERROR light will be. Click PS1 at lower-

bottom corner in LP-2900 CPLD logic circuit experimental platform as 

Figure 4.46. Meanwhile, check L1 to L4 LED at the upper-right corner on 
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the experimental platform to know if it has changes from binary 0, 1, 2, 

3, …, 15 to 0, 1, 2, 3, …….  

 

Figure 4.45 Download circuit to LP-2900 

 

Figure 4.46 PS1 location in LP-2900 

 

Congratulation! First Time is Always Unforgettable… 
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2. Download by parallel EPROM  

  After the design file is totally compiled, please select File > Convert 

SRAM Object Files as Figure 4.47 to convert programming files into 

Single-Device.HEX format. In another words, in Convert SRAM Object 

Files window, click “Add” in Input File column as Figure 4.48, and then 

click “Ok” after select “.hex (Single-Device)” in Output File column. The 

data will be programmed into EPROM (in this case, it is 2764.) and then 

insert it onto LP-2900 experimental platform.  

 

  At that point, it is not necessary to connect between the experimental 

platform and a PC printer parallel port. It only requires to power on the 

experimental platform, and LED D1 will be on. Click “Reset” button. 

The OK light on the successfully downloaded CPLD-EPF10K10 will be 

on; otherwise, ERROR light will be on and we have to repeat the steps 1 

and 2.  

 

Figure 4.47 Starting Convert SRAM Object Files window by using 
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File > Convert SRAM Object Files  

 

Figure 4.48 Converting programming file into Single-Device format 

 

 

4.7 Use Graphic Entry to Complete 
LEDTEST Example  

In this section, we will give you an example to review (1) graphic-entry circuit 

design; (2) functional simulation; (3) floorplan and design compilation; (4) the 

practice of device programming and circuit verification via LP-2900 CPLD logic 

circuit experimental platform. Because the clock used in LP-2900 CPLD logic 

experimental platform is 10 MHz, we need one or two Frequency Division circuits 

and 12-bit Ripple Counters. First, use graphic-entry circuit design to complete the 

three sub-circuit designs, LEDTEST.GDF design, and some required simulations. 
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To start the practice, please complete the following direction and refer to previous 

sections when needed.  

 

Step 1:  As Figure 4.49a, please make graphic entry for the sub-circuit DIV10.GDF. 

Create a default symbol as Figure 4.49b. For the related operational 

process, please see Section 4.3. 

 

Step 2:  Please complete the functional simulation of the sub-circuit DIV10.GDF 

as Figure 4.49c. For the related operational process, please see Section 

4.4. 

 

Step 3:  Please use the two elements of div1000 and div10, enter the sub-circuit 

CLKGEN.GDF as Figure 4.50a, and create a default symbol as Figure 

4.50b. For the related operational information, please see Section 4.3. 
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Figure 4.49a  Sub-circuit DIV10.GDF (File: DIV10.GDF) 

 

Figure 4.49b Default symbol of sub-circuit DIV10.GDF (File: DIV10.SYM) 
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Figure 4.49c Functional simulation results of sub-circuit DIV10.GDF (File: 

DIV10.SCF) 

 

Step 4:  Please enter the sub-circuit RING12.GDF as Figure 4.51a, and create a 

default symbol as Figure 4.51b. For the related operation information, 

please see Section 4.3. 

Figure 4.50a Sub-circuit CLKGEN.GDF (File: CLKGEN.GDF) 

 

Figure 4.50b Default symbol of sub-circuit CLKGEN.GDF (File: CLKGEN.SYM) 
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Figure 4.51a Sub-circuit RING12.GDF (File: RING12.GDF) 

 

Figure 4.51b Default symbol of RING12.GDF sub-circuit (File: RING12.SYM) 

 

Step 5:  Please complete the functional simulation of the sub-circuit RING12.GDF 
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as Figure 4.51c. For the related operational information, please see 

Section 4.4.  

 

Figure 4.51c Functional simulation results of sub-circuit Ring12.GDF (File: 

ring12.SCF) 

 

Step 6:  Please use the two elements, CLKGEN and RING12 to complete 

LEDTEST design entry. For the related operational information, please 

see Section 4.3. 
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Figure 4.52 Main circuit LEDTEST.GDF (File: LEDTEST.GDF) 

 

Step 7: Please refer to Section 4.5. 

 

1. Call out the compiler by MAX+PLUS II > Compiler. 

2. Ensure the design compilation by Processing > Timing SNF Extractor.  

3. Select the device family (FLEX10K) and the device (EPF 10K10TC144-4) 

by Assign > Device. 

4. Start compiler for free compilation.  

5. Start floorplan by MAX+PLUS II > Floorplan, and then go to pin current 

assignment window by Layout > Current Assignment. Use Table 4.3 to do 

pin assignment. 

6. After pins are planned already, redo the compilation. Select Layout > Last 

Compilation for Floorplan Editor to ensure the last compilation is what we 

expected.  

 

Step 8: Please refer to Section 4.6. 

1. Assemble LP-2900 CPLD logic design platform, and connect well with a 

printer bus.  

2. Power on, and click “Reset” bottom. LED D1 will be lightened up.  
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Table 4.3  Pin assignment of EPF10K10TC144-4  

Name of Signal 
EPF10K10TC144-4 

Pin Count 
Name of Signal 

EPF10K10TC144-4 

Pin Count 

CLKIN Pin 55 Q6 Pin 13 

CLRN Pin 47 Q7 Pin 14 

Q0 Pin 7 Q8 Pin 17 

Q1 Pin 8 Q9 Pin 18 

Q2 Pin 9 Q10 Pin 19 

Q3 Pin 10 Q11 Pin 20 

Q4 Pin 11   

Q5 Pin 12 LED_COM Pin 141 

 

3. In MAX+PLUS II, start Programmer window by MAX+PLUS II ＞ 

Programmer as Figure 4.40. Because the “hardware setting” is totally 

completed, the information “Programming hardware is not installed.” will 

not be found. However, if the information is still there, please refer to 

“programming hardware setting” in Section 4.6. 

4. Start Multi-Device JTAG Chain Setup window by JTAG > Multi-Device 

JTAG Chain Setup as Figure 4.43. After go into the window, if there are still 

some old programming files (in this case, it should be MOD16.SOF), please 

delete them as Figure 4.53. Select the device “EPF10K10” from “Device 

Name” as Figure 4.44a. Click “Select Programming File” and choose the 

file “LEDTEST.sof” as Figure 4.44b. Click “Add” and then “Ok” to exit the 

Multi-device JTAG Chain Setup window as Figure 4.44c. If the Figure 

4.44d is found, it tells us that Multi-device JTAG Chain Setup mode is 

closed, and, therefore, click “Yes” please.   
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Figure 4.53 Delete old programming file “MOD16.SOF” 

 

5. Use your mouse to click “Configure” in Programmer window, and start to 

download programming. If the download is not successful, please repeat the 

steps 1 to 4.  

6. If the download is successfully completed, please click SW1 (CLRN) and 

check if LED is running well. If not, (1) please check if the pin assignment 

is correct; (2) please download LEDTEST.SOF from CD to check if the 

clock is correct.  

 

〜〜〜〜 Congratulation! You have Completed Another Practice!〜〜〜〜 
 

Similarly, we would like to suggest you repeat the steps from 1 to 8. For sure, you 

will improve a lot next time.  
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4.8 Review 
Please answer the following questions to review this chapter. 

#" Do you know the name of EDA software introduced in this chapter? Do you 

know how to set it up? 

#" Do you know what functional simulation is? 

#" Do you know what floorplan is? 

#" Do you know what device programming is? Which programmable device is 

discussed in this chapter?  

#" Do you know any other design entries except graphic entry?  
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CHAPTER 5 
 

 

 Combinational 

  Logic Circuit 
 

LEAP



Combinational logic circuit is main category of logic circuit. This circuit main 

character is that output relates to now input and no relate to past input. If output 

relates to now input and past input circuit, it is called sequential logic. We main 

topic is combinational logic circuit in this chapter. 

5.1 The Design, Simulation and Test of 
       General Combinational Logic Circuit 
The design of combinational logic circuit main goal is constructing circuit of 
conformable circuit behave specification by using the less logic gate and the less 
input. The design step is as follows, 
 

1. Establish Truth table, Karnaugh map or Boolean expression by circuit 
specification 

2. From Truth table or Karnaugh map drives Boolean expression of sum-of-
product or product-of-sum 

3. Minimize Boolean expression possibly 
4. According to Boolean expression, in EDA tool (this book main use 

MAX+PLUS II) use appropriate logic gate to complete design entry by 
graphic editor (design entries also includes text and waveform, but this 
book main uses Figure editor) 

5. Then simulation this circuit and check whether the functions meet the 
specification 

After floorplan, downloads this circuit into selected device and performs the circuit 
test 

Now, we use reality example to explain all process.  If we have following circuit 
“the circuit includes four inputs and one output and when input is two or beyond 
two “1”, the output is “1”, or output is “0”. ” 
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Step 1：Establish Truth table, like Table 5.1 (hypothetically, four input variable 

are A.B.C.D, and output variable is Z) or Karnaugh map of Table5.2. 

 
Table 5.1 Truth table of circuit 

Input  Output 

A B C D Z 

0 0 0 0 0 

0 0 0 1 0 

0 0 1 0 0 

0 0 1 1 1 

0 1 0 0 0 

0 1 0 1 1 

0 1 1 0 1 

0 1 1 1 1 

1 0 0 0 0 

1 0 0 1 1 

1 0 1 0 1 

1 0 1 1 1 

1 1 0 0 1 

1 1 0 1 1 

1 1 1 0 1 

1 1 1 1 1 
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Table 5.2 Karnaugh map of circuit 

CD Z 

00 01 11 10 

 00 0 0 1 0 

AB 01 0 1 1 1 

 11 1 1 1 1 

 10 0 1 1 1 

 

Step 2：To drive Boolean expression of sum-of-product or product-of-sum from 

Truth table, Table 5.2 

 

  Z = A’B’CD + A’BC’D + A’BCD’ + A’BCD + AB’CD’ + AB’C’D + AB’CD + 

 ABCD’ + ABC’D’ + ABCD + ABC’D …………………….…………….(5-1) 

 

Step 3: Minimize Boolean expression possibly (or getting minimum Boolean 

expression by Karnaugh map). For minimum, we will lead some repeat 

terms into expression (5-1)  (the terms of underline), and rewrite 

expression (5-3). 
 

Z = A’B’CD + A’BCD + AB’CD + ABCD + ABC’D’ + ABC’D + ABCD + 

 ABCD’ + A’BC’D + ABC’D + A’BCD + ABCD + AB’C’D + AB’CD +  

 ABC’D + ABCD + A’BCD’ + A’BCD + ABCD’ + ABCD + AB’CD’  

 + AB’CD+ ABCD’+ ABCD ................................................................. (5-2) 

Z = (A’B’ + A’B + AB’ + AB) CD + AB (C’D’ + C’D + CD + CD’) + BD 

  (A’C’ + AC’ + A’C + AC) + AD (B’C’ + B’C + BC’ + BC) + BC (A’D’  

  + A’D + AD’ + AD) + AC (B’D’ + B’D + BD’ + BD) 

 = AB + AC + AD + BC + BD + CD ....................................................... (5-3) 
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   or like Karnaugh map minimization of Table 5.3a〜Table 5.3f  (note: 

please choice in same table when drawing figure)： 

 
Table 5.3a Z = AB + ？ 

CD 
Z 

00 01 11 10 

00 0 0 1 0 

01 0 1 1 1 

11 1 1 1 1 

 

AB 

10 0 1 1 1 

 

Table 5.3b Z = AB + CD + ？ 

CD 
Z 

00 01 11 10 

00 0 0 1 0 

01 0 1 1 1 

11 1 1 1 1 

 

AB 

10 0 1 1 1 

 
Table 5.3c Z = AB + CD + AD + ？ 

CD 
Z 

00 01 11 10 

00 0 0 1 0 

01 0 1 1 1 

11 1 1 1 1 

 

AB 

10 0 1 1 1 
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Table 5.3d Z = AB + CD + AD + BD + ？ 
CD 

Z 
00 01 11 10 

00 0 0 1 0 

01 0 1 1 1 

11 1 1 1 1 

 

AB 

10 0 1 1 1 

 

Table 5.3e Z = AB + CD + AD + BD + BC + ？ 

CD 
Z 00 01 11 10 

00 0 0 1 0 

01 0 1 1 1 

11 1 1 1 1 

 

AB 

10 0 1 1 1 

 

Table 5.3f Z = AB + CD + AD + BD + BC + AC 
CD 

Z 00 01 11 10 

00 0 0 1 0 

01 0 1 1 1 

11 1 1 1 1 

 

AB 

10 0 1 1 1 
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Step 4：According to Boolean expression, in MAX+PLUS II, uses appropriate 

logic gate to complete circuit entries of Figure 5.1 by graphic editor.  

 

Figure 5.1 Circuit diagrams of ex1.gdf by using graphic entries in MAX+PLUS II 

(document：ex1.gdf) 

 

Step 5：Then simulation this circuit and check whether the functions meet the 

specification. The Table 5.2 is simulation result of Table 5.1 circuit, we 

can know requirement of circuit specifications from result of simulation 

“ the output is ”1” when inputs have two or more two “1”, otherwise 

output is “0”.” 

  

Figure 5.2   Simulation result of ex1.gdf circuit  (document：ex1.scf) 
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Step 6：After floorplan, download the circuit into selected device and performance 

the circuit test are needs. For downloading test, we use LEDs on panel of 

LP-2900 are grouped into common anode then connect to pin 141 of 

EPF10K10TC144. Therefore, the pin 141 must be connected to Vcc for 

LED common anode. In other words, the circuit of Figure 5.1 need to be 

modified to become Figure 5.3 then compiles it again. (in the future, if 

needs to use LED downloading test, this modified is necessary, the reader 

must note it ) After modified, we can use floorplan technique described in 

Section 4.6, then select chip EPF10K10TC144-4 and use Table 5.4 pin 

assignment reference。 

 

After assemble platform LP-2900, we download this circuit to chip 

EPF10K10TC144-4, then try to press SW1, SW2, SW3 and SW4 (left-

bottom of LP-2900) and note changes of L1 (Z). 

 
    Table 5.4 Pin assignment of EPF10K10TC144-4 on LP-2900 

Name of Signal   Pin of EPF10K10TC144-4 

A Pin 47 

B Pin 48 

C Pin 49 

D Pin 51 

Z Pin 7 

LED_COM Pin 141 
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Figure 5.3 The ex1.gdf circuit of after modified  

 

5.2 The Design, Simulation and Test of Adder 
Generally, the adder divides into Half Adder and Full Adder. Half Adder includes 

two inputs (add and addend), the output sum and carry. The Full Adder also 

includes carry as input, the output sum and carry. We proceed to the design, 

simulation and test of adder. 

5.2.1 The Design, Simulation and Test of Half Adder 
The circuit specification of Half Adder is “ circuit includes two inputs A and B, and 

one Sum output and Cout carry output. The Sum outputs “0” and the Cout  outputs 

“0” when input is “00”；the Sum outputs “1” and the Cout outputs “0” when input 

is “01”；the Sum outputs “1” and the Cout outputs “0” when input is “10”；the 

Sum outputs “0” and Cout outputs “1” when input is “11” .”. According to the 

procedure illustrated in above section, we design as follows： 
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Step 1：Establish Truth table, like Table 5.5 (hypothetically, two inputs are A and 

B, and outputs are Sum and Cout). 

 
Table 5.5 Truth table of Half Adder  

Input  Output  

A B Sum Cout 

0 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 0 1 

 

Step 2：To drive Boolean expression of sum-of-product or product-of-sum from 

Truth table, Table 5.5 

 

 Sum = AB’ + A’B = A ⊕ B ........................................................ (5-4) 

 Cout = AB ................................................................................... (5-5) 

 

Step 3：Minimize Boolean expression possibly. Because the expression (5-4) and 

expression (5-5) had been minimized, they will not be minimized. 

 

Step 4：According to Boolean expression, in MAX+PLUS II, uses appropriate 

logic gate to complete circuit entries of Figure 5.4 by graphic editor. 

 

Step 5：Then simulation this circuit and check whether the functions meet the 

specification. The Table 5.5 is simulation results of Half Adder, and makes 

sure function specification of conformable. 
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Figure 5.4 Circuit diagrams and symbol by using graphic entries in  

 MAX+PLUS II (document：halfadd.gdf) 

 

  

Figure 5.5 Simulation result of halfadd.gdf circuit (document：halfadd.scf) 

 

Step 6：After floorplan, download the circuit into selected device and performance 

the circuit test are needs. For downloading test, we use LEDs on panel of 

LP-2900 to group into common anode then connect to pin 141 of 

EPF10K10TC144. Therefore, the pin 141 must be connected to Vcc for 

LED common a node. In other words, the circuit of Figure 5.5 need to be 

modified to become Figure 5.6 then compiles it again. After modified, we 
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can use floorplan technique of Section 4.6, then select chip 

EPF10K10TC144-4 and use Table 5.6 pin assignment reference. After 

assemble platform LP-2900, we download Half Adder to chip 

EPF10K10TC144-4. Please try to push SW1 and SW2 on left-bottom of 

LP-2900, and please note the changes of L1 (Sum) and L2 (Cout). 

 

Figure 5.6 The halfadd.gdf circuit of after modified 

 

 
Table 5.6  Pin assignment of chip EPF10K10TC144-4 

Name of Signal  Pin of EPF10K10TC144-4 

A Pin 47 

B Pin 48 

Sum Pin 7 

Cout Pin 8 

LED_COM Pin 141 

 

5.2.2 The Design, Simulation and Test of Full Adder 
Now, we proceed to the design, simulation and test of Full Adder. The circuit 
specification of Full adder is “ circuit includes three inputs (A, B, and Cin), one 
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Sum output and Cout output. The Sum outputs “0” and the Cout outputs “0” when 
input is “000”；the Sum outputs “1” and the Cout outputs “0” when input is 
“010”；the Sum outputs “1” and the Cout outputs “0” when input is “100”；the 
Sum outputs “0” and Cout outputs “1” when input is “101” ；the Sum outputs “0” 
and the Cout outputs “1” when input is “110” ；the Sum outputs “1” and the Cout 
outputs “1” when input is “111””. As the Half Adder, we design Full Adder as 
follows： 
 

Step 1：Establish Truth table like Table 5.7 (hypothetically, three inputs are A, B 

and Cin, and outputs are Sum and Cout).  

 
Table 5.7 Truth table of Full Adder 

Input  Output  

A B Cin Sum Cout 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

 

Step 2： To drive Boolean expression of sum-of-product or product-of-sum from 

Truth table, Table 5.7 

 
 Sum = A’B’Cin + A’BCin’ + AB’ Cin’ + ABCin ..................... (5-6) 
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 Cout = A’Bcin + AB’Cin + ABCin’ + ABCin ........................... (5-7) 

Step 3： Minimize Boolean expression possibly.  

 

 Sum = A’B’Cin + A’BCin’ + AB’Cin’ + ABCin 

  = (A’B’ + AB ) Cin + (A’B + AB’) Cin’ 

  = (A ⊕ B)’ Cin + (A ⊕ B) Cin’ 

  = A ⊕B ⊕ Cin .................................................................... (5-8) 

 

 Cout = A’Bcin + AB’Cin + ABCin’ + ABCin     

  = ( A ⊕ B) Cin + (Cin + Cin’) AB          

  = ( A ⊕ B) Cin + AB ......................................................... (5-9) 

 

Step 4：According to Boolean expression, in MAX+PLUS II, uses appropriate 

logic gate to complete circuit entries of Figure 5.7 by graphic editor. 

 

Figure 5.7 Circuit diagrams and symbol by using graphic entries in  

 MAX+PLUS II (document：fulladd.gdf) 
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Step 5：Then simulation the circuit and check whether the functions meet the 

specification. Figure 5.8 is simulation result of Full adder.  

Figure 5.8  Simulation result of fulladd.gdf circuit (document：fulladd.scf) 

 

Step 6：After floorplan, download Full Adder and perform the circuit test are needs. 

As circuit modified that showed in Figure 5.6 of Section 5.2.1, please 

modify Full adder circuit of Figure 5.8. Please re-compile it after 

modifying, and adapt the floorplan techniques in Section 4.6, select chip 

EPF10K10TC144-4 and use Table 5.8 pin assignment reference. After 

assemble Lab platform LP-2900, download Full Adder to chip 

EPF10K10TC144-4. Please try to push SW1 (A), SW2 (B) and SW3 (Cin) 

on left-bottom of LP-2900, and please note the changes of L1 (Sum) and 

L2 (Cout) 

 
Table 5.8  Pin assignment of EPF10K10TC144-4  

Name of Signal  Pin of EPF10K10TC144-4 

A Pin 47 

B Pin 48 

Cin Pin 49 

Sum Pin 7 

Cout Pin 8 

LED_COM Pin 141 
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5.2.3 The Design, Simulation and Test of Ripple Carry 
Adder 

In primary two sections, the adder only deals with add of one-bit, but actual circuit 

usual completes addition of four-bit and beyond four-bit. In multiple bits addition, 

if carry bit of each addition state uses carry out of previous addition stage. This is 

called Ripple Carry Adder as Figure 5.9.  The simulation result is as Figure  

5.10 。 

 

 

Figure 5.9 Circuit diagrams of Ripple Carry Adder by using graphic entries in 

MAX+PLUS II (document：rip_add.gdf) 

 

Figure 5.10 Simulation result of circuit rip_add.gdf (document：rip_add.scf) 

 

Step 1: Establish Boolean expression. According to expression (5-8) and 

expression (5-9),  we can drives  Boolean expression of S0〜S3 and C1〜

C4 . 
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 S0 = A0 ⊕ B0 ⊕ C0 ..................................................................  (5-10) 

 C1 = (A0 ⊕ B0 ) C0 + A0B0 ......................................................  (5-11) 

 S1 = A1⊕ B1⊕ C1 ....................................................................  (5-12) 

 C2 = (A1⊕ B1) C1+ A1B1 ........................................................  (5-13) 

 S2 = A2 ⊕ B2 ⊕ C2 ..................................................................  (5-14) 

 C3 = (A2 ⊕ B2) C2 + A2B2 .......................................................  (5-15) 

 S3 = A3 ⊕ B3 ⊕ C3 ...................................................................  (5-16) 

 C4 = (A3 ⊕ B3) C3 + A3B3 .......................................................  (5-17) 

 

Step 2：Minimize Boolean expression possibly. The expression (5-10) and (5-17) 

had been minimized, it will not be minimized. 

 

Step 3：According to Boolean expression, in MAX+PLUSII, uses appropriate logic 

gate to complete circuit entries by graphic editor. We use one Full adder to 

complete expression 5-10 and expression 5-11; use another Full adder  to 

complete expression 5-12 and expression 5-13；use the other Full adder  

to complete expression 5-14 and expression 5-15；use last Full adder  to 

complete expression 5-16 and expression 5-17；The circuit be illustrated 

as Figure 5.9.  

 

Step 4：Then simulation the circuit and check whether the functions meet the 

specification. Figure 5.10 is simulation result of Ripple Carry Adder. 

 

Step 5：After floorplan, download this circuit into selected device and performance 

the circuit test are needs. As circuit modified that showed in Figure 5.6 of 

Section 5.2.1, please modify Full Adder circuit of Figure 5.9. Please re-
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compile it after modifying, and adapt the floorplan techniques in Section 

4.6, select chip EPF10K10TC144-4 and use Table 5.9 pin assignment 

reference. After assemble Lab platform LP-2900, download Ripple Carry 

Adder to chip EPF10K10TC144-4. Please try to push SW12~SW9 (MSB) 

and SW20~SW17 (LSB) on left-bottom of LP-2900, and please note the 

changes of L5~L1, for example, you push 5+2 and see if it becomes 

“00111”  

 

 
Table 5.9  Pin assignment of EPF10K10TC144-4  

Name of Signal  
Pin of 

EPF10K10TC144-4 Name of Signal 
Pin of 

EPF10K10TC144-4 

A0 Pin 68 S0 Pin 11 

A1 Pin 67 S1 Pin 10 

A2 Pin 65 S2 Pin 9 

A3 Pin 64 S3 Pin 8 

B0 Pin 81 C4 Pin7 

B1 Pin 80 B3 Pin78  

B2 Pin 79 LED_COM Pin 141 

Note： There are no pin assignment for C1, C2 and C3.  

 

Discussion ：If the propagation delay of AND gate, XOR gate (exclusion) and 

OR gate are tpd , then we can get accurate time required of S0〜S3 and C1〜C4 as 

Table 5.10, 
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Table 5.10 Table of time required getting accurate S0〜S3 and C1〜C4 
Output Signal Time Required Description 

S0 2 tpd Propagation delay of two XOR gates 

C1 3 tpd Propagation delay of one XOR, one AND and one OR  

S1 4 tpd Propagation delay of add one XOR after showed C1 

C2 5 tpd Propagation delay of add one AND and one OR after 

h d CS2 6 tpd Propagation delay of add one XOR after showed C2 

C3 7 tpd Propagation delay of add one AND and one OR after 

S3 8 tpd Propagation delay of add one XOR after showed C3 

C4 9 tpd Propagation delay of add one AND and one OR after 

For a N-bit adder, we can drive propagation delay of Cn  

 

 2n + 1, n = 1~N ......................................................................  (5-18) 

 

And propagation delay of Sm 

 

 (m + 1)*2, m = 0~(N–1) .........................................................  (5-19) 

 

We get truth from expression (5-18) and expression (5-19), it is when N is 

large and propagation delay of Sm and Cn is more. In other words, the Ripple 

Carry Adder needs more time to finish addition, because serial connected cause 

this result. 

5.2.4 The Design, Simulation and Test of Carry Look- 
ahead Adder  

In Section 5.2.3, we understand that Ripple Carry Adder has the more serial bit 

connection the more finish time required. For reduced time of add operation, the 
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parallel connected is good way, which carry input can’t use previous stage carry 

output and causes propagation wait.  In other word, we need use special design to 

get carry input, this approach is called Look-ahead Carry. 

 

Step 1：Establish  Boolean expression, if we define two functions as follows, 

 

 generation function：Gi = AiBi ..............................................  (5-20) 

 propagation function：Pi = Ai ⊕ Bi ........................................  (5-21) 

 

      and take expression (5-20) and (5-21) into (5-11), we can drive  

Boolean algebra expression C1 as follows： 

 C1 = P0C0 + G0 .........................................................................  (5-22) 

 

   Taking expression (5-22) into expression (5-13), we can drive  Boolean 

algebra expression C2 as follows： 

 

 C2 = P1P0C0 + P1G0 + G1 ........................................................  (5-23) 

 

   Taking expression (5-23) into expression (5-15), we can drive  Boolean 

algebra expression C3 as follows： 

 C3 = P2P1P0C0 + P2P1G0 + P1G1 + G2 ......................................  (5-24) 

 

   Taking expression (5-24) into expression (5-17), we can drive  Boolean 

algebra expression C4 as follows： 

 C4 = P3P2 P1 P0C0 + P3 P2P1G0 + P3P2G1 + P3G2 +G3 .............  (5-25) 
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   then we can get accurate time required of S0〜S3 and C1〜C4 as Table 5.11  

Table 5.11 Time required for getting accurate S0〜S3 and C1〜C4 in 

Carry Look-ahead 
Output Signal Time Required Description 

S0 2 tpd Propagation delay of two XOR gates 

C1 3 tpd Propagation delay of one XOR, one AND and one OR  

S1 4 tpd Propagation delay of add one XOR after showed C1 

C2 3 tpd Propagation delay of add one XOR, one AND and one OR 

S2 4 tpd Propagation delay of add one XOR after showed C2 

C3 3 tpd Propagation delay of add one XOR, one AND and one OR 

S3 4 tpd Propagation delay of add one XOR after showed C3 

C4 3 tpd Propagation delay of add one XOR, one AND and one OR 

 

From Table 5.11, we can understand that the finish time required for 

addition is fix-value, not relative to bit length of Carry Look-ahead Adder. 

The time required of Carry Look-ahead Adder is less then Ripple Carry 

Adder. 

 

Step 2：Minimize  Boolean expression possibly. The expression (5-22) and (5-25) 

had been minimized, they will not be minimized. 

 

Step 3 ：According to Boolean expression, in MAX+PLUS II , uses appropriate 

logic gate to complete circuit entries by graphic editor. For achievement 

Carry Look-ahead Adder, we design new adder of Figure 5.11. It includes 

Sum, Count output, propagation function output and generation function 

output. Design circuit of Figure 5.12 Carry Look-ahead Adder by using 

this new Full Adder and basic of expression of (5-22)〜(5-25) 
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Step 4：Then simulation this circuit and check whether the functions meet the 

specification. Figure 5.13 is simulation result of Carry Look-ahead Adder. 

 

Figure 5.11 New Full Adder and symbol(document：fadd_gp.gdf) 
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Figure 5.12 Carry of Carry Look-ahead Adder by using graphic entries in 

MAX+PLUS II (document：lah_add.gdf) 

 

 

Figure 5. 13 Simulation result of circuit lah_add.gdf (document：lah_add.scf) 
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Step 5：After floorplan, download this circuit into selected device and perform the 

circuit test are needs. As circuit modified that showed in Figure 5.6 of 

Section 5.2.1, please modify circuit of Figure 5.12. Please re-compile it 

after modifying, and adapt the floorplan techniques in Section 4.6, select 

chip EPF10K10TC144-4 and use Table 5.12 pin assignment reference. 

After assemble Lab platform LP-2900, download Carry Look-ahead Adder 

to chip EPF10K10TC144-4. Please try to push SW12~SW9 (MSB) and 

SW20~SW17 (LSB) on left-bottom of LP-2900, and please note the 

changes of L5~L1, for example, you push 5+4 and see if it becomes 

“00111” 

 

 
Table 5.12 Pin assignment of EPF10K10TC144-4  

Name of Signal 
Pin of 

EPF10K10TC144-4 Name of Signal 
Pin of 

EPF10K10TC144-4  

A0 Pin 68 S0 Pin 11 

A1 Pin 67 S1 Pin 10 

A2 Pin 65 S2 Pin 9 

A3 Pin 64 S3 Pin 8 

B0 Pin 81 C4 Pin7 

B1 Pin 80 B3 Pin78  

B2 Pin 79 LED_COM Pin 141 

Note: There are no pin assignments for C1, C2 and C3. 
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5.3 The Design, Simulation and Test of 
   Subtractor  

5.3.1 The Design, Simulation and Test of Half 
Subtractor 

The circuit specification of Half Subtractor is ”the circuit includes two inputs (X, 

Y), one different output and borrow output.  When input is “00” , the different 

output is “0”, the borrow output is “0”；when input is “01” , the different is “1”, 

the borrow is “1”；when input is “10” , the different is “1”, the borrow is “0”；

when input is “11” , the different is “0”, the borrow output is “0”.” According to the 

procedure described Section 5.1, we design as follows, 

 

Step 1：Establish Truth table as Table 5.13 (hypothetically, the two inputs are X 

and Y, and output is different and borrow) 

 
Table 5.13 Truth table of Half Subtractor circuit 

Input  Output 

X Y Dif Bo 

0 0 0 0 

0 1 1 1 

1 0 1 0 

1 1 0 0 

 

Step 2：To drive Boolean expression of sum-of-product or product-of-sum from 

Truth table. 
 
 Dif = XY’ + X’Y = X ⊕ Y .....................................................  (5-26) 
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 Bo = X’Y ................................................................................  (5-27) 
 
Step 3： Minimize Boolean expression possibly. Since the expression (5-26) and 

expression (5-27) had been minimized, they will not be minimized. 

 

Step 4：According to Boolean expression, in MAX+PLUS II, uses appropriate 

logic gate to complete circuit entries of Figure 5.14 by graphic editor. 

 

Step 5：Then simulation this circuit and check whether the functions meet the 

specification. Figure 5.15 is simulation result of Half Subtractor 

Figure 5.14 Circuit of Half Subtractor by using graphic entries in MAX + PLUS II  

(document：halfsub.gdf) 

 

Figure 5.15 Simulation result of halfsub.gdf circuit (document：halfsub.scf) 

 

Step 6：After floorplan, download this circuit into selected device and perform the 

circuit test are needs. As circuit modified that showed in Figure 5.6 of 

Section 5.2.1, please modify Half Subtractor circuit of Figure 5.14. Please 

re-compile it after modifying, and adapt the floorplan techniques in 
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Section 4.6, select chip EPF10K10TC144-4 and use Table 5.14 pin 

assignment reference. After assemble Lab platform LP-2900, download 

Half Subtractor to chip EPF10K10TC144-4. Please try to push SW1 and 

SW2 on left-bottom of LP-2900, and please note the changes of L1 (Dif) 

and L2 (Bo). 

 
Table5.14 Pin assignment of EPF10K10TC144-4  

Name of Signal  Pin of EPF10K10TC144-4 

X Pin 47 

Y Pin 48 

Dif Pin 7 

Bo Pin 8 

LED_COM Pin 141 

 

5.3.2 The Design, Simulation and Test of Full 
Subtractor 

Now, we progress the design, simulation and test of Full Subtractor. The circuit 

specification of Full Subtractor is ”the circuit includes three inputs (X, Y and Bin), 

one different output and borrow output. When input is “000” , the different output is 

“0”, the borrow output is “0”；when input is “001” , the different output is “1”, the 

borrow output is “1”；when input is “010” , the different output is “1”, the borrow 

output is“1”；when input is “011” , the different output is“0”, the borrow output is 

“1”；when input is “100” , the different output is “1” ,the borrow output is “0”；

when input is“101” , the different output is “0”, the borrow output is  “0” ;when 

input is “110” , the different output is “0”,the borrow output is “0” ；when input is 
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“111” , the different output is “1”,the borrow output is “1”.” Like Half Subtractor, 

we design of Full Subtractor as follows: 

 

Step 1：Establish Truth table as Table 5.15 (hypothetically, the three inputs are X a 

Y and Bin and output is Dif and Bo) 

 
Table 5.15 Truth table of circuit 

Input  Output  

X Y Bin Dif Bo 

0 0 0 0 0 

0 0 1 1 1 

0 1 0 1 1 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 0 

1 1 0 0 0 

1 1 1 1 1 

 

Step 2： To drive Boolean expression of sum-of-product or product-of-sum from 

Truth table. 

 

 Dif = X’Y’Bin + X’YBin’ + XY’Bin’ + XYBin ....................  (5-28) 

 Bo = X’Y’Bin + X’YBin’ + X’Ybin + XYBin ......................  (5-29) 
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Step 3： Minimize Boolean expression possibly. 

 

 Dif = X’Y’Bin + X’YBin’ + XY’Bin’ + XYBin     

  = (X’Y’ + XY ) Bin + (X’Y + XY’) Bin’ 

  = ( X ⊕ Y)’Bin + ( X ⊕ Y) Bin’ 

  = X ⊕ Y ⊕ Bin ...............................................................  (5-30) 

 

 Bo = X’Y’Bin + X’YBin’ + X’Ybin + XYBin  

  = X’ (Y’Bin + YBin’) + YBin  

  = X ’ (Y ⊕ Bin) + YBin ...................................................  (5-31) 

 

Step 4：According to Boolean expression, in MAX+PLUS II, uses appropriate 

logic gate to complete circuit entry of Figure 5.16 by graphic editor. 

 

Figure 5.16 Circuit of Full Subtractor by using graphic entries in MAX+PLUS II 

(document：fullsub.gdf) 

 

Step 5：Then simulation this circuit and check whether the functions meet the 

specification. The Figure 5.17 is simulation result of Full Subtractor. 
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Figure 5.17 Simulation result of circuit fullsub.gdf (document：fullsub.scf) 

 

Step 6：After floorplan, download this circuit into selected device and perform the 

circuit test are needs. As circuit modified that showed in Figure 5.6 of 

Section 5.2.1, please modify Full Subtractor circuit of Figure 5.16. Please 

re-compile it after modifying, and adapt the floorplan techniques in 

Section 4.6, select chip EPF10K10TC144-4 and use Table 5.16 pin 

assignment reference. After assemble Lab platform LP-2900, download 

Full Subtractor to chip EPF10K10TC144-4. Please try to push SW1 (X), 

SW2 (Y) and SW3 (Bin) on left-bottom of LP-2900, and please note the 

changes of L1(Dif) and L2(Bo). 

 
Table 5.16  Pin assignment of EPF10K10TC144-4  

Name of Signal  Pin of EPF10K10TC144-4 

X Pin 47 

Y Pin 48 

Bin Pin 49 

Dif Pin 7 

Bo Pin 8 

LED_COM Pin 141 
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5.3.3 The Design, Simulation and Test of 2’s 
Complement Subtractor 

In Chapter two, we understand it all new digital system use 2’s complement system.  

In other words, we can use 2’s complement addition to complete subtraction. In 

Chapter two, the 2’s complement can been completed by 1’s complement plus one 

as Figure 5.18(a). So 2’s complement of B can be completed by taking NOT from 

B0〜B3  and setting C0 to 1. Figure 5.18(b) is circuit of 2’s Complement Subtractor, 

and Figure 5.19 is simulation result. 

 

Figure 5.18 Circuit of 2’s Complement Subtractor (document：compsub.gdf) 

 

Figure 5.19 Simulation result of circuit 2’s Complement Substracter (document：

compsub.scf) 
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5.4. The Design, Simulation and Test of 
Comparator 

The comparator decides the relationship between input A and input B. It compares 
input of two n-bit binary number and produces three possible relation outputs (G, E 
and L). The specification of comparator is ”when 2 bits X value is greater than 2 
bits Y value, the G output is “1” otherwise G output is “0”；when 2 bits X value is 
equal to 2 bits Y value, the E output “1”, otherwise E output is “0”；when 2 bits X 
value is less 2 bits Y value , the L output is “1”, otherwise L output is “0”.”. After 
having those specifications, we can start to design the circuit. 
 
Step 1：Establish Karnaugh map, as Table 5.17a〜5.17c。 

 
Table 5.17a Karnaugh map of output G 

Y1Y0 
G 00 01 11 10 

00 0 0 0 0 

01 1 0 0 0 

11 1 1 0 1 

 

X1X0 

10 1 1 0 0 

  
Table 5.17b Karnaugh map of output E 

Y1Y0 
E 00 01 11 10 

00 1 0 0 0 

01 0 1 0 0 

11 0 0 1 0 

 

X1X0 

10 0 0 0 1 
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Table 5.17c Karnaugh map of output L 

Y1Y0 
L 

00 01 11 10 

00 0 1 1 1 

01 0 0 1 1 

11 0 0 0 0 

 

X1X0 

10 0 0 1 0 

 

Step 2： To drive minimum Boolean expression from Truth table 

 

 G = X1Y1’ + X0Y1’ Y0’ + X1X0Y0’ ................................................  (5-32) 

 

 E = X1’X0’Y1’Y0’ + X1’X0Y1’Y0 + X1X0Y1Y0 + X1’X0Y1’Y0 .......  (5-33) 

 

 L = X1’Y1 + X1’X0’Y0 + X0’Y1Y0 ..................................................  (5-34) 

 

Step 3： Minimize Boolean expression possibly. Because the expression (5-32) 

and (5-32) and expression (5-33) had been minimized, they will not be 

minimized. 

 

Step 4：According to Boolean expression, in MAX+PLUS II, uses appropriate 

logic gate to complete circuit entries of Figure 5.20 by graphic editor.  

 

Step 5：Then simulation this circuit and check whether the functions meet the 

specification. Figure 5.21 is simulation result of Comparator. 

 

     CPLD Logic Circuit Design and Practice                           Combinational Logic



Figure 5.20 Circuit of Comparator by using graphic entries in MAX+PLUS II 

(document：compr.gdf) 
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Figure 5.21 Simulation result of circuit compr.gdf (document：compr.scf) 

 

Step 5：After floorplan, download this circuit into selected device and performance 

the circuit test are needs. As circuit modified that showed in Figure 5.6 of 

Section 5.2.1, please modify Comparator circuit of Figure 5.20. Please re-

compile it after modifying, and adapt the floorplan techniques in Section 

4.6, select chip EPF10K10TC144-4 and use Table 5.18 pin assignment 

reference. After assemble Lab platform LP-2900, download Comparator 

circuit to chip EPF10K10TC144-4. Please try to push SW1 (X1), SW2 

(X2), SW7 (Y1) and SW8 (Y0) on left-bottom of LP-2900, and please note 

the changes of L1 (G), L2 (E) and L3 (L). 

 

Table5.18 Pin assignment of EPF10K10TC144-4  

Name of Signal  Pin of EPF10K10TC144-4  

X0 Pin 48 

X1 Pin 47 

Y0 Pin 63 

Y0 Pin 62 

G Pin 7 

E Pin 8 

L Pin 9 

LED_COM Pin 141 

     CPLD Logic Circuit Design and Practice                           Combinational Logic



5.5 The Design, Simulation and Test of 
Encoder 

Because the memory cell of calculator is 2-state memory way, the calculator 

external character set (alphabet, numeric and symbol) need to encode by binary, 

then save in memory. This encoding movement usual needs encoding circuit to 

finish. On the other hand, the encoded code which get from memory need to be 

decoded for output in its original form. Figure 5.22 illustrates the procedure from 

input, save in binary, process and output data. Generally, the character set not only 

express in binary, but also binary encoding. The reason is reduced binary bit length. 

We see this situation from Table 5.19, the binary of alphabetic character set“0”〜

“9” need ten-bit and binary encoding only need four-bit.  

Figure 5.23 shows that key encoded in binary after expressed in binary. After 

understanding Encoder, we will complete the design, simulation and test of Encoder 

as Figure 5.23. 

 

Figure5.22  Input, save in binary, process and output data process flows. 
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Table 5.19 Compare binary expression of alphabet character set “0”〜“9” with 
binary encoding of alphabet character set “0”〜“9”   

Character Binary Expression Binary 

0 0000000001 0000 

1 0000000010 0001 

2 0000000100 0010 

3 0000001000 0011 

4 0000010000 0100 

5 0000100000 0101 

6 0001000000 0110 

7 0010000000 0111 

8 0100000000 1000 

9 1000000000 1001 

 

Figure 5.23 The application of key binary encoding after binary expression  

Step 1：Establish Truth table as Table 5.20。 
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Table 5.20 Truth table of Encoder 

Input  Output 

  

D9~D0 O3~O0 

0000000001 0000 

0000000010 0001 

0000000100 0010 

0000001000 0011 

0000010000 0100 

0000100000 0101 

0001000000 0110 

0010000000 0111 

0100000000 1000 

1000000000 1001 

Step 2： To drive minimum Boolean expression from Truth table 

 

O0 = D9’D8’D7’D6’D5’D4’D3’D2’D1D0’ + D9’D8’D7’D6’D5’D4’D3D2’D1’D0’ + 

 D9’D8’D7’D6’D5D4’D3’D2’D1’D0’ + D9’D8’D7D6’D5’D4’D3’D2’D1’D0’ +  

 D9D8’D7’D6’D5’D4’D3’D2’D1’D0’ ...................................................  (5-35) 

 

O1 = D9’D8’D7’D6’D5’D4’D3’D2D1’D0’ + D9’D8’D7’D6’D5’D4’D3D2’D1’D0’ + 

 D9’D8’D7’D6D5’D4’D3’D2’D1’D0’ + D9’D8’D7D6’D5’D4’D3’D2’D1’D0’ 

 ..........................................................................................................  (5-36) 

 

O2 = D9’D8’D7’D6’D5’D4D3’D2’D1’D0’+ D9’D8’D7’D6’D5D4’D3’D2’D1’D0’ + 

 D9’D8’D7’D6D5’D4’D3’D2’D1’D0’ + D9’D8’D7D6’D5’D4’D3’D2’D1’D0’   

 ..........................................................................................................  (5-37) 
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O3 = D9’D8D7’D6’D5’D4’D3’D2’D1’D0’+ D9D8’D7’D6’D5’D4’D3’D2’D1’D0’ 

 .........................................................................................................  (5-38) 

 

Step 3： Minimize Boolean expression possibly. 

 

 O0 = (D9’D7’D5’D3’ D1 + D9’D7’D5’D3D1’ + D9’D7’D5D3’D1’ + D9’D7D5’D3’D1’ + 

 D9 D7’ D5’ D3’ D1’) D8’ D6’ D4’ D2’D0’ .............................................  (5-39) 

 

 O1 = (D7’D6’D3’D2 + D7’D6’D3D2’ + D7’D6D3’D2’ + D7D6’D3’D2’)  

 D9’D8’ D5’D4’D1’D0’ .....................................................................  (5-40) 

 

 O2 = (D7’D6’D5’D4 + D7’D6’D5D4’ + D7’D6D5’D4’ + D7D6’D5’D4’ )  

 D9’D8’D3’ D2’D1’D0’ .....................................................................  (5-41) 

 O3 = (D9’D8 + D9D8’) D7’D6’D5’D4’D3’D2’D1’D0’ .....................................  (5-42) 

 

Step 4：According to Boolean expression, in MAX + PLUS II, uses appropriate 

logic gate to complete circuit entries of Figure 5.24 by graphic editor. 

 

Step 5：Then simulation this circuit and check whether the functions meet the 

specification. Figure5.25 is simulation result of Encoder. 
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Figure5.24 Circuit of Encoder by using graphic entries in MAX + PLUS II 

(document：encod10.gdf) 

 

Figure5.25 Simulation result of circuit encod10.gdf (document：encod10.scf) 

 

Step 6：After floorplan, download this circuit into selected device and performance 

the circuit test are needs. As circuit modified that showed in Figure 5.6 of 
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Section 5.2.1, please modify Encoder circuit of Figure 5.24. Please re-

compile it after modifying, and adapt the floorplan techniques in Section 

4.6, select chip EPF10K10TC144-4 and use Table 5.21 pin assignment 

reference. After assemble Lab platform LP-2900, download Encoder to 

chip EPF10K10TC144-4. Please try to push SW1 (D0), SW2 (D1)〜SW10 

(D9) on left-bottom of LP-2900, and please note the changes of L1 (O3) , 

L2 (O2), L3 (O1) and L4 (O0). 

 
Table 5.21 Pin assignment of EPF10K10TC144-4  

Name of Signal  
Pin of 

EPF10K10TC144-4 Name of Signal  
Pin of 

EPF10K10TC144-4 

D0 Pin 47 D8 Pin 64  

D1 Pin 48 D9 Pin 5 

D2 Pin 49 O0 Pin 10 

D3 Pin 51 O1 Pin 9 

D4 Pin 59 O2 Pin 8 

D5 Pin 60 O3 Pin 7 

D6 Pin 62 LED_COM Pin 141 

D7 Pin 63   

 

 

5.6   The Design, Simulation and Test of 
Decoder 

An n bit to 2n Decoder can decode n bits to 2n data. Figure 5.26 is an application 

decoder drives 16 LEDs. We see each LED connecting current-limit resistor and 
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showing common anode connected in Figure 5.26. So the Decoder output “0” can 

cause LED on and bright. Because it is input “0101”, the sixth LED is bright.  

5.6.1 The Design, Simulation and Test of 4 to 16 
Decoder 

Figure 5.26 is a 4 to 16 Decoder. Please complete the design, simulation and test of 

this Decoder. 

Figure 5.26 Four-bit encoder drives 16 LEDs  

 

Step 1: Establish Truth table as Table 5.22  

 

Step 2：From Truth table of Table 5.22To drives Karnaugh map of Table 5.23a〜

5.23p.  
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Table 5.22 Truth table of Decoder 

Input  Output  

D3~D0 O15~O0 

0000 1111111111111110 

0001 1111111111111101 

0010 1111111111111011 

0011 1111111111110111 

0100 1111111111101111 

0101 1111111111011111 

0110 1111111110111111 

0111 1111111101111111 

1000 1111111011111111 

1001 1111110111111111 

1010 1111101111111111 

1011 1111011111111111 

1100 1110111111111111 

1101 1101111111111111 

1110 1011111111111111 

1111 0111111111111111 

 

Table 5.23a Karnaugh map of output O0  

D1D0 
O0 00 01 11 10 

00 0 1 1 1 

01 1 1 1 1 

11 1 1 1 1 

 

D3D2 

10 1 1 1 1 
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Table 5.23b Karnaugh map of output O1  

D1D0 
O1 00 01 11 10 

00 1 0 1 1 

01 1 1 1 1 

11 1 1 1 1 

 

D3D2 

10 1 1 1 1 

 

 
Table 5.23c Karnaugh map of output O2  

D1D0 
O2 00 01 11 10 

00 1 1 1 0 

01 1 1 1 1 

11 1 1 1 1 

 

D3D2 

10 1 1 1 1 

 
Table 5.23d Karnaugh map of output O3  

D1D0 
O3 00 01 11 10 

00 1 1 0 1 

01 1 1 1 1 

11 1 1 1 1 

 

D3D2 

10 1 1 1 1 
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Table 5.23e Karnaugh map of O4 

D1D0 
O4 00 01 11 10 

00 1 1 1 1 

01 0 1 1 1 

11 1 1 1 1 

 

D3D2 

10 1 1 1 1 

 

 
Table 5.23f Karnaugh map of output O5  

D1D0 
O5 00 01 11 10 

00 1 1 1 1 

01 1 0 1 1 

11 1 1 1 1 

 

D3D2 

10 1 1 1 1 

 

 
Table 5.23g Karnaugh map of output O6  

D1D0 
O6 00 01 11 10 

00 1 1 1 1 

01 1 1 1 0 

11 1 1 1 1 

 

D3D2 

10 1 1 1 1 

     CPLD Logic Circuit Design and Practice                           Combinational Logic



 
Table 5.23h Karnaugh map of output O7  

D1D0 
O7 00 01 11 10 

00 1 1 1 1 

01 1 1 0 1 

11 1 1 1 1 

 

D3D2 

10 1 1 1 1 

 

 
Table 5.23i Karnaugh map of output O8  

D1D0 
O8 00 01 11 10 

00 1 1 1 1 

01 1 1 1 1 

11 1 1 1 1 

 

D3D2 

10 0 1 1 1 

 
 

Table 5.23j Karnaugh map of output O9  

D1D0 
O9 00 01 11 10 

00 1 1 1 1 

01 1 1 1 1 

11 1 1 1 1 

 

D3D2 

10 1 0 1 1 
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Table 5.23k Karnaugh map of output O10  

D1D0 
O10 00 01 11 10 

00 1 1 1 1 

01 1 1 1 1 

11 1 1 1 1 

 

D3D2 

10 1 1 1 0 

 

 
Table 5.23L Karnaugh map of output O11  

D1D0 
O11 00 01 11 10 

00 1 1 1 1 

01 1 1 1 1 

11 1 1 1 1 

 

D3D2 

10 1 1 0 1 

 

 

Table 5.23m Karnaugh map of output O12  
D1D0 

O12 00 01 11 10 

00 1 1 1 1 

01 1 1 1 1 

11 0 1 1 1 

 

D3D2 

10 1 1 1 1 
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Table 5.23n Karnaugh map of output O13  

O13 D1D0 

 00 01 11 10 

00 1 1 1 1 

01 1 1 1 1 

11 1 0 1 1 

 

D3D2 

10 1 1 1 1 

 

 
Table 5.23o Karnaugh map of output O14  

O14 D1D0 

 00 01 11 10 

00 1 1 1 1 

01 1 1 1 1 

11 1 1 1 0 

 

D3D2 

10 1 1 1 1 

 

Table 5.23p Karnaugh map of output O15  

D1D0 
O15 00 01 11 10 

00 1 1 1 1 

01 1 1 1 1 

11 1 1 0 1 

 

D3D2 

10 1 1 1 1 
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 O0 = D1 + D0 + D3 + D2 ...........................................................  (5-43) 

 O1 = D1 + D0’ + D3 + D2 .........................................................  (5-44) 

 O2 = D1’ + D0 + D3 + D2 .........................................................  (5-45) 

 O3 = D1’ + D0’ + D3 + D2 ........................................................  (5-46) 

 O4 = D1 + D0 + D3 + D2’ .........................................................  (5-47) 

 O5 = D1 + D0’ + D3 + D2’ ........................................................  (5-48) 

 O6 = D1’ + D0 + D3 + D2’ ........................................................  (5-49) 

 O7 = D1’ + D0’ + D3 + D2’ ......................................................  (5-50) 

 O8 = D0 + D1 + D2+ D3’ ..........................................................  (5-51) 

 O9 = D0’ + D1+ D2 + D3’ ........................................................  (5-52) 

 O10 = D0’ + D1’ + D2 + D3’ .....................................................  (5-53) 

 O11 = D0’ + D1’ + D2+ D3’ ......................................................  (5-54) 

 O12 = D0 + D1 + D2’+ D3’ .......................................................  (5-55) 

 O13 = D0’ + D1+ D2’ + D3’ ......................................................  (5-56) 

 O14 = D0’ + D1’ + D2’+ D3’ .....................................................  (5-57) 

 O15 = D0’ + D1’ + D2’+ D3’ ....................................................  (5-58) 

 

Step 3： Minimize Boolean expression possibly. Because expression (5-43) and 

(5-58) had been minimized, they will not be minimized. 

 

Step 4：According to Boolean expression, in MAX+PLUS II, uses appropriate 

logic gate to complete circuit entries of Figure 5.27 by graphic editor. 
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Figure 5.27 Circuit of Decoder by using graphic entries in MAX+PLUS II 

(document：dec4x16.gdf) 
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Step 5：Then simulation this circuit and check whether the functions meet the 

specification. Figure 5.28 is simulation result of Decoder. 

 

Figure 5.28 Simulation result of circuit dec4x16.gdf (document：dec4x16.scf) 

 

Step 6：After floorplan, download this circuit into selected device and performance 

the circuit test are needs. As circuit modified that showed in Figure 5.6 of 

Section 5.2.1, please modify Decoder circuit of Figure 5.27. Please re-

compile it after modifying, and adapt the floorplan techniques in Section 

4.6, select chip EPF10K10TC144-4 and use Table 5.24 pin assignment 

reference. After assemble Lab platform LP-2900, download this 4 to 16 

Decoder to chip EPF10K10TC144-4. Please try to push SW1 (D0), SW2 

(D1), SW3 (D2) and SW4 (D3) on left-bottom of LP-2900, and please note 

the change of L1 (O11)、L2 (O10)、L3 (O9)、…L16 (O0). For example, 

you can input “0110” at D3〜D0   and see if O6 is bright. 
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Table5.24 Pin assignment of EPF10K10TC144-4 

Name of Signal 
Pin of  

EPF10K10TC144-4 
Name of Signal 

Pin of  

EPF10K10TC144-4 

D0 Pin 47 O7 Pin 11 

D1 Pin 48 O8 Pin 10 

D2 Pin 49 O9 Pin 9 

D3 Pin 51 O10 Pin 8 

O0 Pin 20  O11 Pin 7 

O1 Pin 19   

O2 Pin 18 LED_COM Pin 141 

O3 Pin 17   

O4 Pin 14   

O5 Pin 13   

O6 Pin 12   

Note: In O15〜O12 , there are no output pin assignment 

     

5.6.2 The Design, Simulation and Test of BCD to 7 
Segment Display 

!"The Principle of 7-segment Display 

7-segment display constitutes by seven rectangle LED as Figure 5.29(a), but some 

right-bottom of 7-segment displays have one circle LED. In digital circuit, 7-

segment display is passive component and use frequently. 7-segment display can be 

divided into common anode structure (Figure 5.29(b)) and common cathode 

structure (Figure 5.29(c)). If we use common anode 7-segment display, we to 
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connect common anode to VCC and need input “0”, then corresponding rectangle 

LED will on and bright. The bright electric current is supplied by Vcc. Contrary, If 

we use common cathode 7-segment display, we need to connect common cathode to 

ground and input “1”, then corresponding rectangle LED will be on and bright. The 

bright electric current is supplied by input signal. Base on this bright principle, in 

common anode 7-segment display, it will show “0” character if inputs 

“11000000B”； it will show “1” character if inputs “11111001B”； it will show 

“2” character if inputs “10100100B” … so on and so forth.  

Figure 5.29 Exterior and category of 7-segment display 

 

Similarly, in common cathode 7-segment display, it will show “0” character if 

inputs “00111111B”； it will show “1” character if inputs “00000110B”； it will 

show “2” character if inputs “01011011”… so on and so forth.  

After understanding bright principle of 7-segment display, we want to design the 

Decoder circuit of common anode 7-segment display with value 0 to 9. 

 

Step 1: Establish Truth table of 7-segment display Decoder with value 0 to 9 as 

Table 5.25  

     CPLD Logic Circuit Design and Practice                           Combinational Logic



Figure 5.30  Decoder codes of  “0~9” for 7-segment display  
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Table 5.25  Truth table of 7-segment display Decoder with value 0 to 9 

Input  Output 

D3~D0 hgfedcba 

0000 11000000 

0001 11111001 

0010 10100100 

0011 10110000 

0100 10011001 

0101 10010010 

0110 10000010 

0111 11111000 

1000 10000000 

1001 10010000 

 

 

Step 2：From Truth table of Table 5.25 drives Karnaugh map of Table5.26a〜

5.26h. 

 
Table 5.26a Karnaugh map of output a  

D1D0 
a 

00 01 11 10 

00 0 1 0 0 

01 1 0 0 0 

11 0 0 0 0 

 

D3D2 

10 0 0 0 0 
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Table 5.26b Karnaugh map of output b  

D1D0 
b 

00 01 11 10 

 00 0 0 0 0 

01 0 1 0 1 
D3D2 11 0 0 0 0 

 10 0 0 0 0 

 

 
Table 5.26c Karnaugh map of output c 

D1D0 
c 

00 01 11 10 

 00 0 0 0 1 

01 0 0 0 0 
D3D2 11 0 0 0 0 

 10 0 0 0 0 

 

 
Table 5.26d Karnaugh map of output d 

D1D0 
d 

00 01 11 10 

 00 0 1 0 0 

01 1 0 1 0 
D3D2 11 0 0 0 0 

 10 0 0 0 0 
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Table 5.26e Karnaugh map of output e 

D1D0 
e 

00 01 11 10 

 00 0 1 1 0 

01 1 1 1 0 
D3D2 11 0 0 0 0 

 10 0 1 0 0 

 

 

Table 5.26f Karanugh map of output f 
D1D0 

f 
00 01 11 10 

 00 0 1 1 1 

01 0 0 1 0 
D3D2 11 0 0 0 0 

 10 0 0 0 0 

 

 
Table 5.26g Karnaugh map of output g 

D1D0 
g 

00 01 11 10 

 00 1 0 0 0 

01 0 0 0 0 
D3D2 11 0 0 0 0 

 10 0 0 0 0 
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Table 5.26h Karnaugh map of output h 

D1D0 
h 

00 01 11 10 

 00 1 1 1 1 

01 1 1 1 1 
D3D2 11 1 1 1 1 

 10 1 1 1 1 

 

 a = D3’D2D1’D0’ + D3’D2’D1’D0 ------------------------------------------(5-59) 

 b = D3’D2D1’D0 + D3’D2D1 D0’ ------------------------------------------ (5-60) 

 c = D3’D2’D1D0’  ----------------------------------------------------------(5-61) 

 d = D3’D2’D1’D0 + D3’D2D1’D0’ + D3’D2D1D0  ----------------------(5-62) 

 e = D3’D0 + D2’D1’D0 + D3’D2D1’  -------------------------------------(5-63) 

 f = D3’D2’D0 + D3’D2’D1+ D3’D1D0  ------------------------------------(5-64) 

 g = D3’D2’D1’ + D3’D2D1D0  --------------------------------------------(5-65) 

 h = Vcc   ----------------------------------------------------------------(5-66) 

 

Step 3：Minimize Boolean expression possibly. Because the expression (5-59) and 

(5-66) had been minimized, they will not be minimized. 

 

Step 4：According to Boolean expression, in MAX+PLUS II, uses appropriate 

logic gate to complete circuit entries of Figure 5.31 by graphic editor. 
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Step 5：Then simulation this circuit and check whether the functions meet the 

specification. Figure 5.32 is simulation result of BCD to 7-segment display. 

 

Figure 5.31 Circuit of Decoder by using graphic entries in MAX + PLUS II 

(document：seg7dec.gdf) 

 

Figure 5.32 Simulation result of circuit seg7dec.gdf (document：seg7dec.scf) 
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Step 6: After floorplan, download this circuit into selected device and performance 

the circuit test are needs. Because 7-segment display on LP-2900 is 

common cathode (but the decoder is designed for common anode 7-segment 

display), we need to modify this circuit as Figure 5.33. Besides, in figure be 

showed excess three output signal lines 74138_DE1, 74138_DE2 and 

74138_DE3, they are signal of driving 74138(3 to 8 Decoder), and select 

one Y of eight output “0”. Y0〜Y5 connect to common cathode of six 7-

segment display(C1〜C6). Therefore, if Y1 outputs “0” (74138_DE [1..3] 

output is “001” ), the data of a, b, c, …and dp will be lead to second 7-

segment display. If Y3 outputs “0” (74138_DE [1..3] output is “0011”), the 

data of a, b, c, …and dp will be lead to fourth 7-segment display…so on 

and so forth. Please re-compile it after modifying, and adapt the floorplan 

techniques in Section 4.6, select chip EPF10K10TC144-4 and use Table 

5.27 pin assignment reference. After assemble Lab platform LP-2900, 

download 7-segment display decoder to chip EPF10K10TC144-4. Please try 

to push SW1 (D0), SW2 (D1), SW3 (D2) and SW4 (D3) on left-bottom of 

LP-2900, and please note the changes of 7-segment display and note its 

showing location. Like, when D3〜D0 input is “0110” and if “6” is bright. 
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Table 5.27 Pin assignment of EPF10K10TC144-4        

Name of Signal 
Pin of  

EPF10K10TC144-4 
Name of Signal 

Pin of  

EPF10K10TC144-4 

D0 Pin 47 A Pin 23 

D1 Pin 48 B Pin 26 

D2 Pin 49 C Pin 27 

D3 Pin 51 D Pin 28 

  E Pin 29 

  F Pin 30 

  G Pin 31 

  H Pin 32 

  74138_DE1 Pin 33 

  74138_DE2 Pin 36 

  74138_DE3 Pin 37 

 

5.7   The Design, Simulation and Test of 
MUX 

The multiplexer is called data selector, following left of Figure 5.34. The figure 

illustrated that select one of 2n lines to Y output by n lines. The data lines which not 

be selected is not be output. Usually, MUX is defined by 2n to 1.  

!"The design, simulation and test of 8 to 1 MUX 

  In this section, we perform the design of 8 to 1 MUX. The selection line 

includes three due to 8 equal to 23. The specification of 8 to 1 MUX is: “we choose 

D0  output to Y when S2S1S0 = “000”；we choose D1 output to Y when S2S1S0 = 
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“001”；we choose D2 output to Y when S2S1S0 = “010”; we choose D3 output to Y 

when S2S1S0 = “011” ; we choose D4 output to Y when S2S1S0 = “100”; we choose 

D5 output to Y when S2S1S0 = “101”; we choose D6 output to Y when S2S1S0 = 

“110”; we choose D7 output to Y when S2S1S0 = “111”.” 

 

Figure 5.34 Functional diagrams of MUX and DMUX 

 

Step 1: Establish Truth table of MUX as Table 5.28. 

 

Step 2：From Truth table of Table 5.28 drives Boolean expression of Y. 

  

Y = S2’S1’S0’ D0 + S2’S1’S0 D1 + S2’S1S0’ D2 + S2’S1S0 D3 + S2S1’S0’ D4 + 

 S2S1’S0 D5 + S2S1S0’ D6 + S2S1S0 D7 ..............................................  (5-67) 

 

Step 3：Minimize Boolean expression possibly. Because the expression (5-67) had 

been minimized, they will not be minimized. 

 

Step 4：According to Boolean expression, in MAX+PLUS II, uses appropriate 

logic gate to complete circuit entries of Figure 5.35 by graphic editor. 

 

     CPLD Logic Circuit Design and Practice                           Combinational Logic



Step 5：Then simulation this circuit and check whether the functions meet the 

specification. Figure5.36 is simulation result of 8 to 1 MUX. 

 
Table 5.28 Truth table of MUX 

Input  Output  

S2S1S0 Y 

000 D0 

001 D1 

010 D2 

011 D3 

100 D4 

101 D5 

110 D6 

111 D7 

 

Step 6：After floorplan, download this circuit into selected device and performance 

the circuit test are needs. As circuit modified that showed in Figure 5.6 of 

Section 5.2.1, please modify MUX circuit of Figure 5.35. Please re-compile 

it after modifying, and adapt the floorplan techniques in Section 4.6, select 

chip EPF10K10TC144-4 and use Table 5.29 pin assignment reference. 

After assemble Lab platform LP-2900, download 8 to 1 MUX to chip 

EPF10K10TC144-4. Please try to push SW1 (D0), SW2 (D1), SW3 (D2),…

and SW8 (D7) on left-bottom of LP-2900, and push switch SW9〜SW11 

then observe how L1 (Y) react D0〜D7. 
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Figure 5.35 Circuit of MUX by using graphic entries in MAX+PLUS II 

(document：mux81.gdf) 

     CPLD Logic Circuit Design and Practice                           Combinational Logic



     

    Figure 5.36 Simulation result of circuit mux81.gdf (document：

mux81.scf) 

 
    Table 5.29 Pin assignment of EPF10K10TC144-4  

Name of Signal 
Pin of 

EPF10K10TC144-4 Name of Signal 
Pin of 

EPF10K10TC144-4 

S0 Pin 67 D0 Pin 47 

S1 Pin 65 D1 Pin 48 

S2 Pin 64 D2 Pin 49 

  D3 Pin 51 

  D4 Pin 59  

  D5 Pin 60 

  D6 Pin 62 

  D7 Pin 63 

  Y Pin 7 

  LED_COM Pin 141 
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5.8   The Design, Simulation and Test of 
DMUX  

The demultiplexer is called data distributor, right of Figure 5.34. The figure 

illustrated that Y will be distributed to one of 2n line by n lines. The data lines 

which not be selected is not be output. Usually, DMUX defined by 1 to 2n. 

# The design, simulation and test of 1 to 8 DMUX 

In this section, we perform the design of 1 to 8 DMUX. The choice line includes 

three due to 8 equals to 23. The specification of 1 to 8 DMUX is: “ D  output to Y0 

when S2S1S0 = “000”；we choose D output to Y1 when S2S1S0 = “001”；we choose 

D output to Y2when S2S1S0 = “010”; we choose D output to Y3 when S2S1S0 = “011”; 

we choose D output to Y4 when S2S1S0 = “100”; we choose D output to Y5 when 

S2S1S0 = “101”; we choose D output to Y6 when S2S1S0 = “110”;  we choose D 

output to Y7 when S2S1S0 = ”111”.”  

 

Step 1: Establish Truth table of DMUX as Table 5.30. 

 

Step 2：From Truth table of Table 5.34 drives Boolean expression. 

 

 Y0 = DS2’S1’S0’ ......................................................................  (5-68) 

 Y1 = DS2’S1’S0 .......................................................................  (5-69) 

 Y2 = DS2’S1S0’ .......................................................................  (5-70) 

 Y3 = DS2’S1S0 ........................................................................  (5-71) 

 Y4 = DS2S1’S0’ .......................................................................  (5-72) 

 Y6 = DS2S1’S0 ........................................................................  (5-73) 

 Y6 = DS2S1S0’ ........................................................................  (5-74) 

 Y7 = DS2S1S0 ..........................................................................  (5-75) 
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Table 5.30  Truth table of DMUX (D is data of input end) 

Input  Output 
S2S1S0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 

000 0000000D 
001 000000D0 
010 00000D00 
011 0000D000 
100 000D0000 
101 00D00000 
110 0D000000 
111 D0000000 

 

Step 3： Minimize Boolean expression possibly. Because the expression (5-68) 

and (5-75) had been minimized, they will not be minimized. 

 

Step 4：According to Boolean expression, in MAX+PLUS II, uses appropriate 

logic gate to complete circuit entries of Figure 5.37 by graphic editor. 

 

Step 5：Then simulation this circuit and check whether the functions meet the 

specification. Figure5.38 is simulation result of DMUX (please note each 

cycle) 

 

Step 6：After floorplan, download this circuit into selected device and performance 

the circuit test are needs. As circuit modified that showed in Figure 5.6 of 

Section 5.2.1, please modify DMUX circuit of Figure 5.37. Please re-

compile it after modifying, and adapt the floorplan techniques in Section 

4.6, select chip EPF10K10TC144-4 and use Table 5.31 pin assignment 

reference. After assemble Lab platform LP-2900, download 1 to 8 DMUX 

     CPLD Logic Circuit Design and Practice                           Combinational Logic



to chip EPF10K10TC144-4. Please try to push SW1 (D0) on left-bottom of 

LP-2900, and push switch SW9〜SW11 then observe change of L1 (Y0), 

L2 (Y1), L3 (Y2)…and L8 (Y7) 

 

Figure 5.37 Circuit of DMUX by using graphic entries in MAX+PLUS II 

(document：dmux18.gdf) 
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Figure 5.38 Simulation result of circuit dmux18.gdf (document：dmux18.scf) 
 

Table 5.31 Pin assignment of EPF10K10TC144-4  

Name of Signal 
Pin of 

EPF10K10TC144-4 Name of Signal 
Pin of 

EPF10K10TC144-4 

S0 Pin 67 D Pin 47 

S1 Pin 65 Y0 Pin 7 

S2 Pin 64 Y1 Pin 8 

  Y2 Pin 9 

  Y3 Pin 10  

  Y4 Pin 11 

  Y5 Pin 12 

  Y6 Pin 13 

  Y7 Pin 14 

  LED_COM Pin 141 

5.9 The Question of Hazards 
The logic signal elapses one circuit that depends on the propagation delay, and there 

is high unascertained in propagation delay. The gate delay is different following 
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different logic system. Even there is different logic and different propagation delay 

in same logic system. It is possible that gate delay along different propagation path 

and there is different delay when signal changing.  Because of different path delay 

possible causes temporary（or quick）pulsation in logic circuit. This temporary 

pulsation is called hazards, like in Figure 5.39(a). In Figure 5.39(a), for example, 

one input signal of OR gate becomes low from high and the other one input signal 

becomes high from low. Since the propagation delay is not equal, it will possible 

hide Hazards occurrence（gray area）. In Figure 5.39(b), if above OR gate input 

signal is early below input signal, the Hazards will not show under this situation. 

On the other hand, in the Figure 5.39(c), if above OR gate input signal is late below 

input signal, the Hazards will be showed under this situation. The output should 

keep static 1, but shows fast low hazards which we call static 1-hazards. On the 

other hand, for an AND gate, it possible will show static 0-hazards.  

 

Figure 5.39 Static1-hazards 

 

The hazards include static hazards and dynamic hazards. Figure 5.40 is illustrated 

the means and form reason of dynamic. The X2(t) changes from high to low and 

pass different path (causing different propagation delay), than the G5 output forms 

static1-hazards. The G5 inputs which one pass two gates delay and another pass one 
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gate delay. Basically, the signal of two gates delay pass more belatedly than signal 

of one gate delay. For G7 inputs which one pass three gates delay and another pass 

two gates delay. It is obviously that the G7 below input signal is early than above 

signal, than it will cause dynamic hazards showing on G7 output. Why it be called 

dynamic hazards? That’s when G7 output is becoming low to high, happens the 

hazards. Similarly, when it is becoming high to low, happens the hazards. It also is 

called dynamic hazards. 

Hazards, main form reason is by different signal propagation delay path, so there is 

high unascertained. If the width of Hazards is smaller than inertial delay of logic 

gate, it is not occurrence. But it is not good way to obstruct hazard by inertial delay. 

Controlled and prevention of hazards is an important concern. We will not 

introduce in this book, please reader consult reference. 

 

Figure 5.40 Dynamic hazards 
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5.10 Evaluations 
Please do the following evaluation according to the questions listed below 

   

$" Do you know what does combinational logic circuit define?  

$" Do you know step of design, simulation and test of general combination logic 

circuit?  

$" Do you know design principle of Look-ahead Carry Adder? 

$" Do you know we can design addition and substractor together by using principle 

of 2’complement?  

$" Can you design, simulate and test a 3 to 8 Decoder?  

$" Can you design, simulate and test 1 to 4 DMUX? 

$" Can you explain meaning of Dynamic Hazard and form cause? 
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CHAPTER 6 
 

 

Sequential 
Logic Circuit 

LEAP



In this chapter, we will introduce sequential logic circuit. Except basic 

concept of sequential logic, we also introduce the design, simulation and 

test of synchronous counter, synchronous shift-register, synchronous 

shift count register, and asynchronous counter. 

6.1 Basic Concept of Sequential Logic Circuit  

In previous chapter, we already mentioned that combinational logic circuit output 

only related to input signal. Once the input signal changes, the combinational logic 

circuit output changes at once. It will react the output of previous item input, and 

disappears at once. In other words, there is not memory ability of combinational 

logic. Therefore, if circuit output not only relate with immediately input but also 

previous output, which we call sequential logic circuit. The Figure 6.1 is the model 

of general sequential logic circuit. Basically, the combinational logic circuit and 

memory cell constructs the sequential logic circuit. The circuit combinational logic 

receives two input signals, which come from input of periphery circuit and memory 

cell. “The input from memory cell” recodes present state. The combinational logic 

circuit includes two output signals, which outputs to periphery circuit and memory 

cell. “Output to memory cell” is next state.  

   

6.1.1 The Synchronous and Asynchronous Operation  

The sequential logic can divide into category of synchronous sequential logic and 

category of asynchronous sequential logic. In synchronous sequential logic, the 

change of internal state is controlled by synchronous clock. This clock usual is 

pulse (as Figure 6.2). The On-time stands for logic ”1”, and Off-time stands for 

logic “0”.  The On-time and Off-time are just clock period. The clock duty can be 

defined as follows 
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Duty cyclic= on time/clock period 

In the clock, we call positive edge or rising edge when signal changes from ”0” to 

“1”. Relatively, we call negative edge or falling edge when signal changes from “1” 

to “0”.  

Figure 6.1 Model of general sequential logic 

 

In the synchronous model, the logic circuit must coordinate trigger of clock signal. 

Only changes output state when clock trigger, then this state will keep until next 

trigger coming. In the asynchronous model, logic circuit can change output signal 

anytime. According to category of synchronous and category of asynchronous, we 

can mention asynchronous sequential logic circuit model of Figure 6.3 and 

synchronous sequential logic circuit model of Figure 6.4. In the Figure, thick lines 

stand for most signal lines. 
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Figure 6.2 Terminologies of clock 

 

Figure 6.3 Model of asynchronous sequential logic  
Figure 6.4  Model of synchronous sequential logic 
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Because asynchronous sequential circuit is not common synchronous timing signal, 

it will happen some problems (like, racing and hazards) in design and dependence. 

Those problems will lead to asynchronous sequential circuit limits in use of a few 

special circuits (as counter). So sequential circuit almost are synchronous sequential 

circuit. In this book, the introduced circuit in Section 6.2, 6.3 and 6.4 are 

synchronous, but circuit in section 6.5 is asynchronous circuit.  

 

6.1.2 The Latch and Flip-flops 

The sequential circuit, usual takes Flip-flops as memory cell. SR Latch is basic of 

other Flip-flops. Flip-flops can be divided into category of edge trigger Flip-flops 

and category of gate controlled Flip-flops. Relative to edge trigger model, gate 

controlled Flip-flops uses level trigger. The edge trigger Flip-flops includes D type 

Flip-flops, JK Flip-flops and T type Flip-flops. The gate controlled Flip-flops 

includes D type Flip-flops, SR Flip-flops, JK Flip-flops and T type Flip-flops. We 

will introduce their functions following. 

1. SR Latch 

Generally, SR Latch can be made by two NOR gates or two NAND gates. In the 

Figure 6.5, left is logic circuit of SR Latch making up by two NOR gates, the 

middle is logic circuit of SR Latch making up by two NAND gates and right is the 

circuit symbol. S is input end of setting signal, R is input end of resetting signal, Q 

is output and Q’ is complement output of Q. 
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Figure 6.5 Logic circuit diagrams and circuit signal of SR Latch 

 

! The operation principle of SR Latch 

If time is t, Q=R=S=O, and S becomes 1 from 0 

Q’ (t + tpd) = (S(t) + Q(t))’ = (1 + 0)’ = 0 

 Q (t + 2tpd) = (R(t) + Q’(t + tpd))’ = (0 + 0)’ = 1 

 Q’(t + 3 tpd) = (S(t) + Q(t + 2 tpd))’ = (1 + 1)’ = 0 

 Q(t + 4tpd) = (R(t) + Q’(t + 3 tpd))’ = (0 + 0)’ = 1 

… 

So SR Latch changes state and new state firm to (S, R) = (1, 0). If S again becomes 

0 from 1 at time ta, the outputs are as follows 

 

 Q’(ta + tpd) = (S(ta) + Q(ta))’ = (0 + 1)’= 0 

 Q(ta + 2 tpd) = (R(ta) + Q’(ta + tpd))’ = (0 + 0)’= 1 

 Q’(ta + 3 tpd) = (S(ta) + Q(ta + 2 tpd))’ = (0 + 1)’= 0 

 Q(ta + 4 tpd) = (R(ta) + Q’(ta + 3 tpd) )’ = (0 + 0)’= 1 

… 

We can see SR Latch not changing state and old state still firm to (S, R) = (0, 0). 

Similarly, if time is t, Q = R = S = 0 and R become 1 from 0.  

  

 Q(t + tpd) = (R(t) + Q’(t))’ = (1 + 1)’ = 0 

 Q’(t + 2 tpd) = (S(t) + Q(t + tpd))’ = (0 + 0)’ = 1 
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So SR Latch changes state and new state firm to (S, R) = (0, 1). If R again becomes 

0 from 1 at time ta, the outputs are as follows: 

 

 Q(ta + tpd) = (R(ta) + Q’(ta))’ = (0 + 1)’= 0 

 Q’(ta + 2 tpd) = (S(ta) + Q(ta + tpd))’ = (0 + 0)’= 1 

 

We can see SR Latch not changing state and old state still firm to (S, R) = (0, 0) 

Similarly, if time is t, Q = R = S = 0 and R become 1 from 0.  

 

 Q’(t + tpd) = (S (t) + Q (t))’ = (1 + 0)’ = 0 

 Q(t + tpd) = (R(t) + Q’(t))’ = (1+1)’ = 0 

 Q’(t + 2 tpd) = (S(t) + Q(t + tpd))’ = (1 + 0)’ = 0 

 Q(t + 2 tpd)= (R(t) + Q’(t + tpd))’ = (1 + 0)’= 0 

 

So SR Latch changes state and new state firm to (Q, Q’) = (0, 0). If S and R again 

become 0 from 1 at time ta, the outputs are as follows 

  

 Q’(ta + tpd) = (S(ta) + Q(ta))’ = (0 + 0)’ = 1 

 Q(ta + tpd) = (R(ta) + Q’(ta))’ = (0 + 0)’ = 1 

 Q’(ta + 2 tpd) = (S(ta) + Q(ta + tpd))’ = (0 + 1)’ = 0 

 Q (ta + 2 tpd) = (R(ta) + Q’(ta + tpd))’ = (0 + 1)’ = 0 

 Q’(ta + 3 tpd) = (S(ta) + Q(ta + 2 tpd))’ = (0 + 0)’ = 1 

 Q(ta + 3 tpd) = (R(ta) + Q’(ta + 2 tpd))’ = (0 + 0)’ = 1 

… 

It is happed to uncertain situation of 1 and 0(if logic gate delay of Q and Q’ path 

and line delay is same). In other words, the SR simultaneously rises to 1 and falls 

down 0, it will lead to SR Latch showing uncertain situation. So this situation 
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should be forbidden. Actually, logic gate delay of Q and Q’ pad and line delay is 

not same. So two paths decide next situation by racing, the result also is different.     

 

! Truth table of SR Latch 

Comprehensive above analysis, SR Latch be illustrated as Truth table of Table 6.1. 

Among of Q+ stands for new Q value after new SR Latch input.     
 

Table 6.1  Truth table of RS Latch 

S R Q+ 

0 0 Q 

1 0 1 

0 1 0 

1 1 Result of after race 

2. Gate controlled Flip-flops 

!!!! Gate controlled D type Flip-flops (D type Latch) 

Figure 6.6(a) is logic circuit of trigger D type Flip-flops and Figure 6.6(b) is its’ 

circuit signal. D is input end of signal, ena is input end of enable signal (gate 

controlled signal), Q is output and Q’ is complement output of Q. In Figure 6.6(b) is 

another way to establish logic circuit of D Latch by using SR Latch (this is reason 

why SR Latch is basic of Flip-flops) 
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Figure 6.6 D type Latch 
 

! The operation principle of D type Latch  

(1) For logic circuit of Figure 6.6(a), because ena=1, D input reacts to Q output 

(please see thick lines in Figure 6.7(a)). When ena=0, D signal of Q feed 

back and let Q still keeping original D input (please see thick lines of Figure 

6.7(b)) 

(2) For logic circuit of Figure 6.6(b), the (S*, R*) is equal input (0,0) if ena=0, it 

will let Q and Q’ keeping original. The (S*, R*) is equal input  (1,0) if 

ena=1 and D=1, it will let Q=1 and Q’ =0 output, the (S*, R*) is  (0,1) if 

ena=1 and D=0, it will let Q=0 and Q’=1 output. 

!!!! Truth table of D type Flip-flops 

Comprehensive above analysis, D type Flip-flops be illustrated as Truth table 

of Table 6.2. 
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Figure 6.7 Principle of D type Latch 

 
Table 6.2 Truth table of D type Latch 

D ena Q+ 

X 0 Q 

1 1 1 

0 1 0 

 

! Gate controlled SR Flip-flops 

In Figure 6.8, the left, establishes logic circuit of SR Flip-flops by using SR Latch, 

the right is its’ circuit symbol, S and R are input end of signal, ena is input end of 

enable signal (gate controlled signal), Q is output and Q’ is complement output of Q 

Comprehensive above SR Latch analysis, gate controlled SR Flip-flops be 

illustrated as Truth table of Table 6.3. Among of Q+ stands for new Q value after 

new SR input. Because SR Latch exists useless input situation, this Flip-flop almost 

is useless. 
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Figure 6.8 Gate controlled SR Flip-flop  
 

Table 6.3 Truth table of gate controlled SR Flip-flops 

S R ena Q+ Description 

X X 0 Q Memory 

0 0 1 Q Memory 

0 1 1 0 Clear 

1 0 1 1 Setting 

1 1 1 X Vain 

 

! Gate controlled JK Flip-flops 

In Figure 6.9, the left, establish logic circuit of JK Flip-flops by using SR Latch, the 

right is its’ circuit symbol, J and K are input end of signal, ena is input end of 

enable signal (gate controlled signal), Q is output and Q’ is mutual output of Q. 

For improving useless input of SR Flip-flops (S=1,R=1), the JK Flip-flops is 

designed. In Figure 6.10a and 6.10b, we see (J=1,K=1) becoming switching 

functions. JK Flip-flops be illustrated as Truth table of Table 6.4 
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Figure 6.9 Gate controlled JK Flip-flops 
 
 

Figure 6.10a Switch function of gate controlled JK Flip-flops when J = 1, K = 1 
and Q = 1  

    CPLD Logic Circuit Design and Practice                       Sequential Logic Circuit



Figure 6.10a Switch function of gate controlled JK Flip-flops when J = 1, K = 1 
and Q = 0  

 
Table 6.4 Truth table of gate controlled JK Flip-flops 

J K ENA Q+ Description 

X X 0 Q Memory 

0 0 1 Q Memory 

0 1 1 0 Clean 

1 0 1 1 Setting 

1 1 1 Q’ Switched 

 

! Gate controlled T type Flip-flops 

In Figure 6.11, the left, establishes logic circuit of T type Flip-flops by using SR 

Latch, the right is its’ circuit symbol, T is input end of signal, ena is input end of 

enable signal (gate controlled signal), Q is output and Q’ is mutual output of Q. JK 

Flip-flops be illustrated as Truth table of Table 6.5. 
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Figure 6.11 Gate controlled T type Flip-flop  
 

Table 6.5 Truth table of gate controlled T type Flip-flop 

T Ena Q+ Description 

X 0 Q Memory 

0 1 Q Memory 

1 1 Q’ Switched 

 

! Positive edge detector and negative edge detector 

At present we had introduced gate controlled D type Flip-flops, gate controlled SR 

type Flip-flops, gate controlled JK type Flip-flops and gate controlled T type Flip-

flops, which all be controlled by level trigger. Next we will introduce edge trigger 

Flip-flops. Before gate controlled input signal of gate controlled Flip-flops plus 

positive (or negative) edge detector, it will become edge trigger Flip-flops. This 

positive (or negative) edge detector is a clock to pulse detector that detects clock 

positive edge (or negative) and outputs a pulse. Figure 6.12(a) is block illustration 

of positive edge detector circuit. After understanding edge detector circuit, we start 

introducing edge trigger Flip-flops. 
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Figure 6.12(a) Positive edge detector circuit and illustration 

Figure 6.12(b) Negative edge detector circuit and illustration 
 

3. Edge trigger Flip-flops 

!!!! Edge trigger D type Flip-flops 

Figure 6.13 is a circuit diagram of D type Flip-flops with edge trigger and its circuit 

symbol. If compare Figure 6.13 with Figure 6.6, we will know only more positive 

edge (negative) detector. Compared with above circuit symbol of Figure 6.13, 

negative edge trigger is more one little circle than positive. From the Truth table 

(Table 6.6) of edge trigger D type Flip-flops, we can see change of output 

happening after positive edge or negative edge happened.  
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Table 6.6 Truth table of edge trigger D type Flip-flop  

D CLK Q Q+ 

X Not ↓ (↑) x Q 

0 ↓ (↑) 0 0 

0 ↓ (↑) 1 0 

1 ↓ (↑) 0 1 

1 ↓ (↑) 1 1 

Figure 6.13 Circuit and symbol of edge trigger D Flip-flop 
 

! Edge trigger JK Flip-flop  

The Figure 6.14 is circuit and symbol of edge trigger JK Flip-flop. If compare 

Figure 6.14 with Figure 6.9, we will know only more positive edge (negative) 

detector. From the Truth table (Table 6.7) of edge trigger JK Flip-flops, we can see 

change of output happening after positive edge or negative edge happened. 
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Table 6.7 Truth table of edge trigger JK Flip-flops 

J K CLK Q+ Description 

X X Not ↓ (↑) Q Memory 

0 0 ↓ (↑) Q Memory 

0 1 ↓ (↑) 0 Clean 

1 0 ↓ (↑) 1 Setting 

1 1 ↓(↑) Q’ Switched 

 

Figure 6.14  Circuit and symbol of edge trigger JK 

 

! Edge trigger T type Flip-flop 

The Figure 6.15 is circuit and symbol of edge trigger T type Flip-flop. If compare 

Figure 6.15 with Figure 6.11, we will know only more positive (negative) edge 

detector. From the Truth table (Table 6.8) of edge trigger JK type Flip-flop, we can 

see change of output happening after positive edge or negative edge happened.  
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Table 6.8  Truth table of edge trigger T type Flip-flops 

T CLK Q+ Description 

X Not ↓ (↑) Q Memory 

0 ↓ (↑) Q Memory 

1 ↓ (↑) Q’ Switched 

 

Figure 6.15  Circuit and symbol of edge trigger T Flip-flop  

!!!! The asynchronous preset and clear function of Flip-flops 

Some Flip-flops includes two important inputs, which are asynchronous preset 

function and asynchronous clear function. T type Flip-flops is possessed of preset 

input and clear input as Figure 6.16. To clear T Flip-flops let Q outputting 0 (Q’ 

outputting 1) when CLRN’ = 0 and PRN’ = 0 (1) input.  To preset T type Flip-

flops let Q outputting 1 (Q’ outputting 0) when CLRN’ = 1，and PRN’ = 0 input. 
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Truth table of gate controlled T type Flip-flop and edge trigger T type Flip-flops be 

listed in Table 6.9(a) and Table 6.9(b).  

Similarly, Jk Flip-flops is possessed of asynchronous clear and preset function, as 

Figure 6.17, Truth table of JK Flip-flops and edge trigger JK Flip-flops be listed in 

Table 6.10(a) and Table 6.10(b). 

Figure 6.16 T type Flip-flops with asynchronous clear and preset function 

 
Table 6.9a Truth table of gate controlled T type Flip-flops 

CLRN’ PRN’ T ENA Q+ Description 

0 0 X X 0 Clear 

0 1 X X 0 Clear 

1 0 X X 1 Preset 

1 1 X 0 Q Memory 

1 1 0 1 Q Memory 

1 1 1 1 Q’ Switched 
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Table 6.9b Truth table of edge trigger T type Flip-flops 

CLRN’ PRN’ T CLK Q+ Description 

0 0 X X 0 Clear  

0 1 X X 0 Clear 

1 0 X X 1 Preset 

1 1 X Not ↓ (↑) Q Memory 

1 1 0 ↓ (↑) Q Memory 

1 1 1 ↓ (↑) Q’ Switched 

 

Figure 6.17  JK Flip-flops is possessed of asynchronous clear and present 

function 
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Table 6.10a Truth table of gate controlled JK Flip-flops 

CLRN’ PRN’ J K ENA Q+ Description 

0 0 X X X 0 Clear 

0 1 X X X 0 Clear 

1 0 X X X 1 Setting 

1 1 X X 0 Q Memory 

1 1 0 0 1 Q Memory 

1 1 0 1 1 0 Clear 

1 1 1 0 1 1 Setting 

1 1 1 1 1 Q’ Switched 

 

Figure 6.10b Truth table of edge trigger JK Flip-flops  

CLRN’ PRN’ J K CLK Q+ Description 

0 0 X X X 0 Clear 

0 1 X X X 0 Clear 

1 0 X X X 1 Setting 

1 1 X X Not ↓ (↑) Q Memory 

1 1 0 0 ↓ (↑) Q Memory 

1 1 0 1 ↓ (↑) 0 Clear 

1 1 1 0 ↓ (↑) 1 Setting 

1 1 1 1 ↓ (↑) Q’ Switched 
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6.1.3 The State Tables and State Diagrams  

We already mentioned model of sequential logic circuit in Figure 6.1. The all 

outputs result of previous input will be illustrated as state of circuit in this model. 

So anytime circuit output relates to present state and input. Next state of circuit is 

decided in same time. This relation of output, present state, next state and output, 

which can be illustrated by state tables and state diagrams. 

Figure 6.11a is the state of sequential circuit that illustrated by state table. It 

includes three columns, first column stands for present state, second column stands 

for input x = 0, last column stands for input x = 1. For sequential circuit, present 

state includes four states, so be illustrated by two bits. This table illustrate that “if 

input is x = 0, output is 11 and 0 (next state is 11, output is “0”), if input is x=1, 

output is 01 and 0 (next state is 01, output is “0”) when present state is “00”; if 

input is x=0, output is 11 and 0 (next state is 11, output is ”0”), if input is x=1, 

output is 00 and 0 (next state is 00, output is “0”), when present state is “01”, the 

other situation is so on and so forth. The state of sequential circuit been illustrated 

by another state tables as Figure 6.11b.  

 
Table 6.11a  Sequential circuit state be illustrated by state tables 

Present state Input 
y1y2 x = 0 x = 1 

00 11, 0 01, 0 

01 11, 0 00, 0 

11 10, 0 10, 1 

10 10, 0 11, 1 

Note：next state , output 
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Table 6.11b Sequential circuit state be illustrated by another form 

Present state Input 
y1y2 x = 0 x = 1 

A C, 0 B, 0 

B C, 0 A, 0 

C D, 0 D, 1 

D D, 0 C, 1 

The Karnaugh map of next state (Y1Y2) and output z separately can be established 

by state tables and state diagrams, (like, Figure 6.12a, 6.12b and 6.12c), than getting 

the functions is:   

 

  z = xy1 

 Y1 = x’ + y1 

 Y2 = xy2’ + x’y1’ 

 

After getting z, Y1 and Y2 functions, we can easy draw this sequential logic circuit 

by logic gate and Flip-flops as Figure 6.18. 

 
Table 6.12a Karnaugh map of Y2 , Y2 = xy2’ + x’y1’ 

y1y2 Y2 

00 01 11 10 

0 1 1 0 0 X 

1 1 0 0 1 
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Table 6.12b Karnaugh map of Y1 , Y1 = x’ + y1 

y1y2 Y1 

00 01 11 10 

0 1 1 1 1 X 

1 0 0 1 1 

 
Table 6.12c Karnaugh map of z , z = xy1 

y1y2 Z 

00 01 11 10 

0 0 0 0 0 X 

1 0 0 1 1 

 

Figure 6.18 Sequential logic circuit of Table 6.11a  
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Another way to illustrate sequential logic circuit is state diagrams. Figure 6.17 is 

state diagrams of sequential logic circuit of Table 6.11b. The circles stand for state, 

arrows stands for state changing direction. The numbers on arrows stand for input 

condition of transformation and output of after transformation, like, 1/0 on A to B   

line stands for that transforms state to B and output “0” when state A and “1” input.  
Figure 6.19 State diagrams of Table 6.11b 

 
 

6.1.4 Mealy State Machine and Moore State Machine 

  In previous section, we had mentioned sequential circuit, which output and 

next state relates with present state and input. This sequential circuit is called Mealy 

state machine. Another model is Moore state machine, this model output only 

relates to present state, and next state relates to present state and input. Figure 6.20 

is model of Moore state machine, and state tables of Moore state machine be 

illustrated as Table 6.13. Please reader compares it with Table 6.11b.  
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Table 6.13  Sepresentation of state tables of Moore state machine  

Input Output Present state  

X = 0 X = 1 Z 

A B D 1 

B C A 0 

C C D 0 

D B D 0 

 

Figure 6.20 Model of Moore state machine  
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Figure 6.21 is state diagrams of Moore state machine. From Figure 6.21, we can see 

the different to Figure 6.19. In Figure 6.21, A/1 in circle stands for state A and 

output is “1”, it also stands for output only relation with present state. The “0” on 

A/1 to B/0 are line stands for that transform condition is “0”. 

Figure 6.21 Representation of state diagrams of Moore state machine 

6.1.5 The Design Progress of Synchronous Sequential 
Logic   

Generally, the design progress of synchronous sequential logic circuit is as follows, 

 

1. Complete the state assignment of the circuit specification and illustrate by 

state diagrams or state tables; 

2. Find each Karnaugh map of Flip-flops inputs and output functions; 

3. Find any minimum expression of input and output functions; 

4. Complete above circuit entry by using graphic editor in MAX+PLUS II; 
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5. Complete the circuit functional simulation by using MAX+PLUS II and 

check weather the functions meet the specification. Go on the next step if 

meet the specification; otherwise go back to step 1 to check the cause of 

error sequentially; 

6. If the circuit allowed to test by downloading (programming), select 

download (programming) chip and then floorplan; 

7.  Download (programming) the circuit to chip and test the circuit, if can’t 

meet specification, go back to step 1 to check the cause of error sequentially. 

 

Now, illustrate all procedures following example. 

Example: Please design sequential circuit to fit with state tables of Table 6.14a by 

using JK Flip-flops. 

 
Table 6.14a  State tables of one sequential circuit 

Input  x1x2 Present 
State 00 01 11 10 

A C, 0 D, 0 D, 0 A, 1 

B C, 0 D, 0 D, 1 A, 1 

D A, 0 B, 0 B, 1 A, 1 

C A, 0 B, 0 B, 0 A, 1 

 

We design as follows: 

Step 1：Complete the state assignment of the circuit specification and illustrated by 

state diagrams or state tables. 

 

Due to only four states, it can cover those states only by two bits. The state 

assignment is as follows: 
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A = 00, B = 01, C = 10, D = 11 

The new state table is like Table 6.14b. 

 
Table 6.14b New state tables 

Input  x1x2 Present 
State 00 01 11 10 

00 10, 0 11, 0 11, 0 00, 1 

01 10, 0 11, 0 11, 1 00, 1 

11 00, 0 01, 0 01, 1 00, 1 

10 00, 0 01, 0 01, 0 00, 1 

 

Step 2：To establish Karnaugh map of J1 (Table 6.14d), K1 (Table 6.14e), J2 (Table 

6.14f), K2 (Table 6.14g) and Z (Table 6.14h) by using excitation table 

(Table 6.14c). 

 
Table 6.14c Excitation table of Flip-flops 

Present Next State DFF JK FF TFF 

Q Q+ D J K T 

0 0 0 0 – 0 

0 1 1 1 – 1 

1 0 0 – 1 1 

1 1 1 – 0 0 

Note：“–” (don’t care), it can be set 0 or 1. 
 

Analysis of Table 6.14c is as follows:  

 1. For D type Flip-flop 

(1) If present state Q is 0, and next state Q wants to be 0, D input must be 0. 
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(2) If present state Q is 0, and next state Q wants to be 1, D input must be 1. 

(3) If present state Q is 1and next state Q wants to be 0, D input must be 0. 

(4) If present state Q is 1 and next state Q wants to be 1, D input must be 1. 

 2. For JK Flip-flops 

(1) If present state Q is 0, and next state Q wants to be 0, J input must be 0 

and K input must be –.  

(2) If present state Q is 0, and next state Q wants to be 1, J input must be 1 

and K input must be –.  

(3) If present state Q is 1, and next state Q wants to be 0, J input must be – 

and K input must be 1.  

(4) If present state Q is 1, and next state Q wants to be 1, J input must be – 

and K input must be 0.  

 3. For T type Flip-flops 

(1) If present state Q is 0, and next state Q wants to be 0, T input must be 0. 

(2) If present state Q is 0, and next state Q wants to be 1, T input must be 1. 

(3) If present state Q is 1, and next state Q wants to be 0, T input must be 1. 

(4) If present state Q is 1, and next state Q wants to be 1, T input must be 0. 

 
 

     Table 6.14d Karnaugh map of J1, J1 = x1’+ x2 

Input   x1x2J1 
00 01 11 10 

00 1 1 1 0 
01 1 1 1 0 
11 – – – – 

y1y2 

Present State 
Input 

10 – – – – 
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The procedure of Table 6.14d is as follows: 

 1. When Present State Input is y1y2 = 00 and input is x1x2 = 00, next state is 

y1y2 = 10. The y1 becomes 1 from 0, so needs J1 = 1；  

 2. When Present State Input is y1y2 = 00 and input is x1x2 = 01, next state is 

y1y2 = 11. The y1 becomes 1 from 0, so needs J1 = 1；  

 3. When Present State Input is y1y2 = 00 and input is x1x2 = 11, next state is 

y1y2 = 11. The y1 becomes 1 from 0, so needs J1 = 1；  

 4. When Present State Input is y1y2 = 00 and input is x1x2 = 10, next state is 

y1y2 = 00. The y1 becomes 0 from 0, so needs J1 = 0； 

 5. When Present State Input is y1y2 = 01 and input is x1x2 = 00, next state is 

y1y2 = 10. The y1 becomes 1 from 0, so needs J1 = 1；  

 6. When Present State Input is y1y2 = 01 and input is x1x2 = 01, next state is 

y1y2 = 11. The y1 becomes 1 from 0, so needs J1 = 1；  

 7. When Present State Input is y1y2 = 01 and input is x1x2 = 11, next state is 

y1y2 = 11. The y1 becomes 1 from 0, so needs J1 = 1；  

 8. When Present State Input is y1y2 = 01 and input is x1x2 = 10, next state is 

y1y2 = 00. The y1 becomes 0 from 0, so needs J1 = 0；  

 9. When Present State Input is y1y2 = 11 and input is x1x2 = 00, next state is 

y1y2 = 00. The y1 becomes 0 from 1, so needs J1 =–； 

 10. When Present State Input is y1y2 = 11 and input is x1x2 = 01, next state is 

y1y2 = 01. The y1 becomes 0 from 1 , so needs J1 =–； 

 11. When Present State Input is y1y2 = 11 and input is x1x2 = 11, next state is 

y1y2 = 01. The y1 becomes 0 from 1 , so needs J1 =–； 

 12. When Present State Input is y1y2 = 11 and input is x1x2 = 10, next state is 

y1y2 = 00. The y1 becomes 0 from 1 , so needs J1 =–； 

 13. When Present State Input is y1y2 = 10 and input is x1x2 = 00, next state is 

y1y2 = 00. The y1 becomes 0 from 1 , so needs J1 =–； 
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 14. When Present State Input is y1y2 = 10 and input is x1x2 = 01, next state is 

y1y2 = 01. The y1 becomes 0 from 1 , so needs J1 =–； 

 15. When Present State Input is y1y2 = 10 and input is x1x2 = 11, next state is 

y1y2 = 01. The y1 becomes 0 from 1 , so needs J1 =–； 

 16. When Present State Input is y1y2 = 10 and input is x1x2 = 10, next state is 

y1y2 = 00. The y1 becomes 0 from 1 , so needs J1 =–； 

 

After Karnaugh map minimization, we get J1 = x1’ + x2。 

 
Table 6.14e Karnaugh map of K1 , K1 = 1 

Input  x1x2 K1 

00 01 11 10 

00 – – – – 

01 – – – – 

11 1 1 1 1 

 

y1y2 

Present State 
Input  10 1 1 1 1 

 

The procedure of Table 6.14e is as follows: 

 1. When Present State Input is y1y2 = 00 and input is x1x2 = 00, next state is 

y1y2 = 10. The y1 becomes 1 from 0, so needs K1 = –； 

 2. When Present State Input is y1y2 = 00 and input is x1x2 = 01, next state is 

y1y2 = 10. The y1 becomes 1 from 0, so needs K1 = –； 

 3. When Present State Input is y1y2 = 00 and input is x1x2 = 11, next state is 

y1y2 = 11. The y1 becomes 1 from 0, so needs K1 = –； 

 4. When Present State Input is y1y2 = 00 and input is x1x2 = 10, next state is 

y1y2 = 00. The y1 becomes 0 from 0, so needs K1 = –； 

 5. When Present State Input is y1y2 = 01 and input is x1x2 = 00, next state is 
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y1y2 = 10. The y1 becomes 1 from 0, so needs K1 = –； 

 6. When Present State Input is y1y2 = 01 and input is x1x2 = 01, next state is 

y1y2 = 11. The y1 becomes 1 from 0, so needs K1 = –； 

 7. When Present State Input is y1y2 = 01 and input is x1x2 =11, next state is y1y2 

= 11. The y1 becomes 1 from 0, so needs K1 = –； 

 8. When Present State Input is y1y2 = 01 and input is x1x2 = 10, next state is 

y1y2 = 00. The y1 becomes 0 from 0, so needs K1 = –； 

 9. When Present State Input is y1y2 = 11 and input is x1x2 = 00, next state is 

y1y2 = 00. The y1 becomes 0 from 1, so needs K1 = 1；  

 10. When Present State Input is y1y2 = 11 and input is x1x2 = 01, next state is 

y1y2 = 01. The y1 becomes 0 from 1, so needs K1 = 1；  

 11. When Present State Input is y1y2 = 11 and input is x1x2 = 11, next state is 

y1y2 = 01. The y1 becomes 0 from 1, so needs K1 = 1；  

 12. When Present State Input is y1y2 = 11 and input is x1x2 = 10, next state is 

y1y2 = 00. The y1 becomes 0 from 1, so needs K1 = 1；  

 13. When Present State Input is y1y2 = 10 and input is x1x2 = 00, next state is 

y1y2 = 00. The y1 becomes 0 from 1, so needs K1 = 1；  

 14. When Present State Input is y1y2 = 10 and input is x1x2 = 01, next state is 

y1y2 = 01. The y1 becomes 0 from 1, so needs K1 = 1；  

 15. When Present State Input is y1y2 = 10 and input is x1x2 = 11, next state is 

y1y2 = 01. The y1 becomes 0 from 1, so needs K1 = 1；  

 16. When Present State Input is y1y2 = 10 and input is x1x2 = 10, next state is 

y1y2 = 00. The y1 becomes 0 from 1, so needs K1 = 1；  

 

After Karnaugh map minimization, we get K1 = 1。 

According to established of above J1 and K1 Karnaugh map, we continue 

establishing Karnaugh map J2 , K2 and Z as Table 6.14f〜Table 6.14h. 
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Table 6.14f Karnaugh map of J2 , J2 = x2 

Input  x1x2 J2 

00 01 11 10 

00 0 1 1 0 

01 – – – – 

11 – – – – 

 

y1y2 

Present State 
Input 10 0 1 1 0 

 
Table 6.14g Karnaugh map of K2 , K2 = x2’ 

Input  x1x2 K2 

00 01 11 10 

00 – – – – 

01 1 0 0 1 

11 1 0 0 1 

 

y1y2 

Present State 
Input 10 – – – – 

 
Table 6.14h Karnaugh map of Z , Z = x1x2’ + y2x1  

Input  x1x2 Z 

00 01 11 10 

00 0 0 0 1 

01 0 0 1 1 

11 0 0 1 1 

 

y1y2 

Present State 
Input  10 0 0 0 1 
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Step 3：Find any minimum expression of input and output functions 
 
 J1 = x1’ + x2 

 K1 = 1 

 J2 = x2 

 K2 = x2’  

 Z = x1x2’ + y2x1 

Step 4： Complete circuit entry, Figure 6.22, by using graphic editor in 

MAX+PLUS II  

Figure 6.22 Complete the circuit entry of Table 6.14a by using MAX+PLUS II 

(document：T614A.GDF) 

 

Figure 6.23 The functional simulation result of Table6.14a by using 

MAX+PLUS II simulator (document：T614A.SCF) 
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Step 5: Complete the circuit functional simulation by using MAX+PLUS II, Figure 

6.23 shown the simulation result, and check weather the functions meet the 

specification. Go on the next step if meet the specification; otherwise go 

back to step 1 to check the cause of error sequentially 

 

Step 6：If the circuit allow to test by downloading (programming), select download 

(programming) chip and then floorplan.  

 

As circuit modified that showed in Figure 5.6 of Section 5.2.1, please modify Figure 

6.22. Please re-compile it after modifying, and adapt the ploorplan techniques in 

Section 4.6, select chip EPF10K10TC144-4 and use Table 6.15 pin assignment 

reference.  

 
Table 6.15 Pin assignment of EPF10K10TC144-4  

Name of Signal Pin of 
EPF10K10TC144-4 

Name of Signal Pin of 
EPF10K10TC144-4 

CLKIN Pin 54 (PS1) Y1 Pin 8 

X1 Pin 48 Y2 Pin 7 

X2 Pin 47 LED_COM Pin 141 

 

After assemble logic circuit design Lab platform LP-2900, download T614A to chip 

EPF10K10TC144-4. Please regulate input X1 and X2, try to push PS1 on left-

bottom of LP-2900, and please note the changes of L1 (Y2) and L2 (Y1). 

 

Exercise 1：Please design sequential circuit of state tables (Table 6.14a) by T type 

Flip-flops.  
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Exercise 2：Please design sequential circuit of state tables (Table 6.14a) by D type 

Flip-flops.  

6.2   The Design, Simulation and Test of 
Synchronous Counter 

In this section, we will design four bits binary counter and BCD counter by using 

JK Flip-flops. 

6.2.1 Four-bit Binary Counter 

There is a counter, which the initial value is 0000 (0), and arithmetic value of 

counter becomes 0001 (1) when clock positive edge enters. If arithmetic clock 

keeps flowing in , the counter will sequentially turn to 0010 (2) → 0011 (3) →

0100 (4) →0101 (5) →…1110 (14) → 1111 (15) → 0000 (0) →…and keeps 

cycling like this. 

From above circuit specification, we know it is a four-bit binary up counter. The 

progress of the design is as follows: 

 

Step 1：Complete the state assignment of the circuit specification and illustrated by 

state diagrams or state tables. Circuit specification of four-bit binary 

counter been illustrated as state tables of Table 6.16a.   
 

Table 6.16a  State tables of four-bit binary counter sequential circuit 
Present State Next State Output 

0000 0001 0000 
0001 0010 0001 
0010 0011 0010 
0011 0100 0011 
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0100 0101 0100 
0101 0110 0101 
0110 0111 0110 
0111 1000 0111 
1000 1001 1000 
1001 1010 1001 
1010 1011 1010 
1011 1100 1011 
1100 1101 1100 
1101 1110 1101 
1110 1111 1110 
1111 0000 1111 

 

Step 2：Find each Karnaugh map of Flip-flops inputs and output function by using 

excitation table. We have found find each Karnaugh map of Flip-flops 

inputs and output function as Table 6.16b~Table 6.16i by using excitation 

table of Table 6.14c. 

 
Table 6.16b Karnaugh map of J0 , J0 = Vcc 

Present State Input Y1Y0 J0 

00 01 11 10 

00 1 – – 1 

01 1 – – 1 

11 1 – – 1 

 

Y3Y2 

Present State 
Input 10 1 – – 1 
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Table 6.16c   Karnaugh map of K0 , K0 = Vcc 

Present State Input Y1Y0 K0 

00 01 11 10 

00 – 1 1 – 

01 – 1 1 – 

11 – 1 1 – 

 

Y3Y2 

Present State 
Input 10 – 1 1 – 

 
 

Table 6.16d Karnaugh map of J1 , J1 = Y0 

Present State Input Y1Y0 J1 

00 01 11 10 

00 0 1 - - 

01 0 1 - - 

11 0 1 - - 

 

Y3Y2 

Present State 
Input 10 0 1 - - 

 

Table 6.16e Karnaugh map of K1 , K1 = Y0 

Present State Input Y1Y0 K1 

00 01 11 10 

00 – – 1 0 

01 – – 1 0 

11 – – 1 0 

 

Y3Y2 

Present State 
Input 10 – – 1 0 
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Table 6.16f Karnaugh map of J2 , J2 = Y1Y0 

Present State Input Y1Y0 J2 

00 01 11 10 

00 0 0 1 0 

01 – – – – 

11 – – – – 

 

Y3Y2 

Present State 
Input 10 0 0 1 0 

 

 
Table 6.16g Karnaugh map of K2 , K2 = Y1Y0 

Present State Input Y1Y0 K0 

00 01 11 10 

00 – – – – 

01 0 0 1 0 

11 0 0 1 0 

 

Y3Y2 

Present State 
Input 10 – – – – 

 

 
Table 6.16h Karnaugh map of J3 , J3 = Y2Y1Y0 

Present State Input Y1Y0 J3 

00 01 11 10 

00 0 0 0 0 

01 0 0 1 0 

11 – – – – 

 

Y3Y2 

Present State 
Input 10 – – – – 
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Table 6.16i Karnaugh map of K3 , K3 = Y2Y1Y0 

Present State Input Y1Y0 K3 

00 01 11 10 

00 - - - - 

01 - - - - 

11 0 0 1 0 

 

Y3Y2 

Present State 
Input 10 0 0 0 0 

 

Step 3：Find any minimum expression of input and output functions 

 J0 = Vcc K0 = Vcc 

 J1 = Y0     K1 = Y0 

 J2 = Y1Y0  K2 = Y1Y0 

 J3 = Y2Y1Y0  K3 = Y2Y1Y0 

 Q0 = Y0  Q1 = Y1 

 Q2 = Y2  Q3 = Y3 

 

Step 4： Complete circuit entry, Figure 6.24, by using graphic editor in 

MAX+PLUS II 

Figure 6.24 Complete the circuit entry of Table 6.16a by using MAX+PLUS II 
(document：S4CNTR.GDF) 
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Step 5: Complete the circuit functional simulation by using MAX+PLUS II, Figure 

6.25 shows the result of functional simulation, and check weather the 

functions meet the specification. Go on the next step if meet the 

specification; otherwise go back to step 1 to check the cause of error 

sequentially. 
 
Step 6：If the circuit allow to test by downloading (programming), select download 

(programming) chip and then floorplan.  

 

As circuit modified that showed in Figure 5.3 of Section 5.1, please modify Figure 

6.24. Please re-compile it after modifying, and adapt the ploorplan techniques in 

Section 4.6, select chip EPF10K10-TC144-4 and use Table 6.17 pin assignment 

reference. After assemble logic circuit design Lab platform LP-2900, download 

four-bit binary up counter to chip EPF10K10TC144-4. Please try to push PS1 on 

left-bottom of LP-2900, and please note the changes of L1 (Y3), L2 (Y2), L3 (Y1) 

and L4, which if is sequence “ 0000”、“0001”、“0010”、… “1111” 
 

Figure 6.25 Complete simulation of circuit Table 6.16a by using MAX+PLUS II 
(document：S4CNTR.SCF) 
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Table 6.17 Pin assignment of EPF10K10TC144-4  

Name of Signal Pin of 
EPF10K10TC144-4 

Name of Signal Pin of 
EPF10K10TC144-4 

CLKIN Pin 54 (PS1) Y2 Pin 49 

Y0 Pin 47 Y3 Pin 50 

Y1 Pin 48 LED_COM Pin 141 

 

Exercise 3：To design sequential circuit of four-bit binary down counter by JK 

Flip-flops.  

Exercise 4：To design sequential circuit of four-bit binary down counter by D type 

Flip-flops.  

6.2.2 BCD Counter 
There is a counter, which the initial value is 0000(0), and arithmetic value of 

counter becomes 0001 (1) when clock positive edge enters. If arithmetic clock 

keeps flowing in , the counter will sequentially turn to 0010 (2) → 0011 (3) →

0100 (4) →0101 (5) →…1001 (9) → 0000 (0) →…and keeps cycling like this 

From above circuit specification, we know it is a BCD up counter. The progress of 

the design is as follows 

 

Step 1：Complete the state assignment of the circuit specification and illustrate by 

state diagrams or state tables. Circuit specification of BCD up counter 

been illustrated as state tables of Table 6.18a.  

  

Step 2：Find each Karnaugh map of Flip-flops inputs and output function by using 

excitation table. We have found each Karnaugh map of Flip-flops inputs and 

output function as Table 6.16b~Table 6.16i by using excitation table of 

Table 6.14c.  
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Table 6.18a  State tables of BCD up counter sequential circuit 

Present State  Next State Output 

0000 0001 0000 

0001 0010 0001 

0010 0011 0010 

0011 0100 0011 

0100 0101 0100 

0101 0110 0101 

0110 0111 0110 

0111 1000 0111 

1000 1001 1000 

1001 0000 1001 

 

 

 
Table 6.18b Karnaugh map of J0 , J0 = Vcc 

Present State Input Y1Y0 J0 

00 01 11 10 

00 1 – – 1 

01 1 – – 1 

11     

 

Y3Y2 

Present State 
Input 10 1 –   
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Table 6.18c Karnaugh map of K0 , K0 = Vcc 

Present State Input Y1Y0 K0 

00 01 11 10 

00 – 1 1 – 

01 – 1 1 – 

11     

 

Y3Y2 

Present State 
Input 10 – 1   

 

Table 6.18d  Karnaugh map of J1 , J1 = Y3’Y0 

Present State Input Y1Y0 J1 

00 01 11 10 

00 0 1 - - 

01 0 1 - - 

11     

 

Y3Y2 

Present State 
Input 10 0 0   

 

 
Table 6.18e  Karnaugh map of K1 , K1 = Y3’Y0 

Present State InputY1Y0 K1 

00 01 11 10 

00 – – 1 0 

01 – – 1 0 

11     

 

Y3Y2 

Present State 
Input 10 – –   
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Table 6.18f  Karnaugh map of J2 , J2 = Y1Y0 

Present State InputY1Y0 J2 

00 01 11 10 

00 0 0 1 0 

01 – – – – 

11     

 

Y3Y2 

Present State 
Input 10 0 0   

 

 
Table 6.18g  Karnaugh map of K2 , K2 = Y1Y0 

Present State InputY1Y0 K2 

00 01 11 10 

00 – – – – 

01 0 0 1 0 

11     

 

Y3Y2 

Present State 
Input 10 – –   

 

 
Table 6.18h  Karnaugh map of J3 , J3 = Y2Y1Y0 + Y3Y0 

Present State InputY1Y0 J3 

00 01 11 10 

00 0 0 0 0 

01 0 0 1 0 

11     

 

Y3Y2 

Present State 
Input 10 – –   
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Table 6.18i  Karnaugh map of K3 , K3 = Y2Y1Y0+Y3Y0 

Present State InputY1Y0 K3 

00 01 11 10 

 00 – – – – 

Y3Y2 01 – – – – 

Present State 11     

 10 0 1   

 

Step 3：Find any minimum expression of input and output functions. 
 
 J0 = Vcc       ， K0 = Vcc 

 J1 = Y3’Y0  ， K1 = Y3’Y0 

      J2 = Y1Y0                 ，           K2 = Y1Y0 

       J3 = Y2Y1Y0 + Y3Y0  ，           K3 = Y2Y1Y0+Y3Y0 

      Q0 = Y0                 ，          Q1 = Y1 

      Q2 = Y2                 ，          Q3 = Y3 

 

Step 4：Complete the circuit entry, Figure 6.26, by using graphic editor in 

MAX+PLUS II. 

 

Step 5: Complete the circuit functional simulation by using MAX+PLUS II, Figure 

6.27 shows the result of functional simulation, and check weather the 

functions meet the specification. Go on the next step if meet the 

specification; otherwise go back to step 1 to check the cause of error 

sequentially. 
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Figure 6.26 Complete the circuit entry of Table 6.18a by using MAX+PLUS 
II(document：SBCDCNTR.GDF) 

Figure 6.27 The functional simulation result of Table6.18a by using MAX+PLUS 
II simulator (document: SBCDCNTR.SCF) 

 

Step 6：If the circuit allow to test by downloading (programming), select download 

(programming) chip and then floorplan.  

 

As circuit modified that showed in Figure 5.3 of Section 5.1, please modify Figure 

6.26. Please re-compile it after modifying, and adapt the ploorplan techniques in 

Section 4.6, select chip EPF10K10TC144-4 and use Table 6.19 pin assignment 

reference. After assemble logic circuit design Lab platform LP-2900, download 

BCD up counter to chip EPF10K10TC144-4. Please try to push PS1 on left-bottom 

of LP-2900, and please note the changes of L1 (Y3), L2 (Y2), L3 (Y1) and L4, 

which if is sequence “ 0000”,“0001”,“0010”,… “1001”,“0000”. 
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Table 6.19  Pin assignment of EPF10K10TC144-4 
Name of Signal Pin of 

EPF10K10TC144-4 
Name of Signal Pin of 

EPF10K10TC144-4 

CLKIN Pin 54 (PS1) Y2 Pin 49 

Y0 Pin 47 Y3 Pin 50 

Y1 Pin 48 LED_COM Pin 141 

 

Exercise 5：Please design sequential circuit of BCD down counter by JK Flip-flops 

Exercise 6：Please design sequential circuit of BCD down counter by D type Flip-

flops 

6.3   The Design, Simulation and Test of 
Synchronous Shift Register 

In this section, we will use D type Flip-flops to design four shift registers: four-bit 

serial input and serial output (SISO), four-bit serial input and parallel output (SIPO), 

Four-bit parallel input and serial output (PISO), Four-bit parallel input and parallel 

output (PIPO)  

6.3.1 SISO Shift Register  

There a circuit, which has four registers with input D3D2D1D0 and output Y3Y2Y1Y0, 

has serial input Sin and serial output So. Original data Y1 showed in Y0, original 

data Y2 showed in Y1, and original data Y3 showed in Y2 and original data Sin 

showed in Y3 when clock positive edge enters. Besides, So data is Y0 data. 

To achieve above circuit specification design, the design progress as follows 
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Step 1：Complete the state assignment of the circuit specification and illustrate by 

state diagrams or state tables. Circuit specification of four-bit SISO shift 

register been illustrated as state tables of Table 6.20a.  

 

 
Table 6.20a  State tables of SISO shift register sequential circuit 

Input X Output  Present State 
0 1 So 

0000 0000 1000 0 
0001 0000 1000 1 
0010 0001 1001 0 
0011 0001 1001 1 
0100 0010 1010 0 
0101 0010 1010 1 
0110 0011 1011 0 
0111 0011 1011 1 
1000 0100 0100 0 
1001 0100 1100 1 
1010 0101 1101 0 
1011 0101 1101 1 
1100 0110 1110 0 
1101 0110 1110 1 
1110 0111 1111 0 
1111 0111 1111 1 

Note：Next state shows in double-line grid 
 

Step 2：Find each Karnaugh map of Flip-flops inputs and output function by using 

excitation table. We have found each Karnaugh map of D type Flip-flops 

inputs and output function as Table 6.20b~Table 6.20f by using excitation 

table of Table 6.14c. (This example uses Karnaugh map of 5 variables)   
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Table 6.20b Karnaugh map of D0 , D0 = Y1 

Input x = 0 

Present State InputY1Y0 D0 

00 01 11 10 

00 0 0 1 1 

01 0 0 1 1 

11 0 0 1 1 

 

Y3Y2 

Present State 
Input 10 0 0 1 1 

 

 
Input x = 1  

Present State InputY1Y0 D0 

00 01 11 10 

00 0 0 1 1 

01 0 0 1 1 

11 0 0 1 1 

 

Y3Y2 

Present State 
Input 10 0 0 1 1 

 
 

Table 6.20c Karnaugh map of D1 , D1 = Y2  
Input x = 0  

Present State InputY1Y0 D1 

00 01 11 10 

00 0 0 0 0 

01 1 1 1 1 

 

Y3Y2 

Present State 11 1 1 1 1 

 10 0 0 0 0 
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Input X = 1  

Present State InputY1Y0 D1 

00 01 11 10 

00 0 0 0 0 

01 1 1 1 1 

11 1 1 1 1 

 

Y3Y2 

Present State 
Input 10 0 0 0 0 

 

 
Table 6.20d Karnaugh map of D2 , D2 = Y3  

Input x = 0  

Present State InputY1Y0 D2 

00 01 11 10 

00 0 0 0 0 

01 0 0 0 0 

11 1 1 1 1 

 

Y3Y2 

Present State 
Input 10 1 1 1 1 

 

Input X = 1  

Present State InputY1Y0 D2 

00 01 11 10 

00 0 0 0 0 

01 0 0 0 0 

11 1 1 1 1 

 

Y3Y2 

Present State 
Input 10 1 1 1 1 
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Table 6.20e Karnaugh map of D3 , D3 = x 

Input x = 0  

Present State Input Y1Y0 D3 

00 01 11 10 

00 0 0 0 0 

01 0 0 0 0 

11 0 0 0 0 

 

Y3Y2 

Present State 
Input 10 0 0 0 0 

 

Input X = 1  

Present State Input Y1Y0 D3 

00 01 11 10 

00 1 1 1 1 

01 1 1 1 1 

11 1 1 1 1 

 

Y3Y2 

Present State 
Input 10 1 1 1 1 

 
Table 6.20f Karnaugh map of So , So = Y0 

Input x = 0  

Present State Input Y1Y0 So 

00 01 11 10 

00 0 1 1 0 

01 0 1 1 0 

11 0 1 1 0 

 

Y3Y2 

Present State 
Input 10 0 1 1 0 
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Input X = 1  

Present State Input Y1Y0 So 

00 01 11 10 

00 0 1 1 0 

01 0 1 1 0 

11 0 1 1 0 

 

Y3Y2 

Present State 
Input 10 0 1 1 0 

 

Step 3：Find any minimum expression of input and output functions 

 D0 = Y1 ； D1 = Y2 

 D2 = Y3 ； D3 = X 

 So = Y0。 

 

Step 4：Complete the circuit entry, shown in Figure 6.28, by using graphic editor in 

MAX+PLUS II. 

 

Step 5: Complete the circuit functional simulation by using MAX+PLUS II, Figure 

6.29 illustrates the result of functional simulation, and check weather the 

functions meet the specification. Go on the next step if meet the 

specification; otherwise go back to step 1 to check the cause of error 

sequentially.  

Figure 6.28 Complete the circuit entry Table 6.20e by using MAX+PLUS II 
(document：S4SISO.GDF) 
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Figure 6.29 The functional simulation result of Table 6.20e by using MAX+PLUS 
II simulator (document：S4SISO.SCF) 

 

Step 6：If the circuit allow to test by downloading(programming), select download 

(programming) chip and then floorplan.  

 

As circuit modified that showed in Figure 5.3 of Section 5.1, please modify Figure 

6.28. Please re-compile it after modifying, and adapt the ploorplan techniques in 

Section 4.6, select chip EPF10K10TC144-4 and use Table 6.21 pin assignment 

reference. After assemble logic circuit design Lab platform LP-2900, download 

SISO shift register to chip EPF-10K10TC144-4. Please regulate X input and try to 

push PS1 on left-bottom of LP-2900. Please note the changes of L1 (So).  

 
Table 6.21 Pin assignment of EPF10K10TC144-4  

Name of Signal EPF10K10TC144-4 

Chip pin  

Name of Signal EPF10K10TC144-4 

Chip pin 
CLKIN Pin 54 (PS1) So Pin 7 

X Pin 47 LED_COM Pin 141 

 

Exercise 7：Please design sequential circuit of Four-bit binary SISO shift register 

by JK Flip-flops. 

Exercise 8：Please design sequential circuit of Four-bit binary SISO shift register 

by T type Flip-flops. 
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6.3.2 SIPO Shift Register   

There a circuit, which has four registers with input D3D2D1D0 and output Y3Y2Y1Y0, 

has a serial input Sin and parallel output P3P2P1P0. Original data Y1 showed in Y0, 

original data Y2 showed in Y1, and original data Y3 showed in Y2 and original data 

Sin showed in Y3 when clock positive edge enters. Besides, P3P2P1P0 also show 

Y3Y2Y1Y0 data. 

 

To approach above circuit specification design, the design progress as follows 

 

Step 1：Complete the state assignment of the circuit specification and illustrated by 

state diagrams or state tables. Circuit specification of Four-bit SIPO shift 

register is illustrated as state tables of Table 6.22a.  

 
 Table 6.22a  State table of SIPO shift register sequential circuit 

Input   X Present  

0 1 

Output  

P3P2P1P0 

0000 0000 1000 0000 

0001 0000 1000 0001 

0010 0001 1001 0010 

0011 0001 1001 0011 

0100 0010 1010 0100 

0101 0010 1010 0101 

0110 0011 1011 0110 

0111 0011 1011 0111 

1000 0100 0100 1000 

1001 0100 1100 1001 

1010 0101 1101 1010 
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1011 0101 1101 1011 

1100 0110 1110 1100 

1101 0110 1110 1101 

1110 0111 1111 1110 

1111 0111 1111 1111 

 

Step 2：Find each Karnaugh map of Flip-flops inputs and output function by using 

excitation table. We have found each Karnaugh map of D type Flip-flops 

inputs and output function as Table 6.22b~Table 6.22i by using excitation 

table of Table 6.14c. (The example uses Karnaugh map of 5 variables)  
 

Table 6.22b Karanugh map of D0 , D0 = Y1 

Input x = 0  
Present State Input Y1Y0 D0 

00 01 11 10 

00 0 0 1 1 

01 0 0 1 1 

11 0 0 1 1 

 

Y3Y2 

Present State 
Input 10 0 0 1 1 

 
Input X = 1  

Present State Input Y1Y0 D0 

00 01 11 10 

00 0 0 1 1 

01 0 0 1 1 

11 0 0 1 1 

 

Y3Y2 

Present State 
Input 10 0 0 1 1 
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Table 6.22c Karnaugh map of D1 , D1 = Y2 

Input x = 0  
Present State Input Y1Y0 D1 

00 01 11 10 

00 0 0 0 0 

01 1 1 1 1 

11 1 1 1 1 

 

Y3Y2 

Present State 
Input 10 0 0 0 0 

 

Input X = 1  

Present State Input Y1Y0 D1 

00 01 11 10 

00 0 0 0 0 

01 1 1 1 1 

11 1 1 1 1 

 

Y3Y2 

Present State 
Input 10 0 0 0 0 

 
 

Table 6.22d Karnaugh map of D2 , D2 = Y3 

Input x = 0  
Present State Input Y1Y0 D2 

00 01 11 10 

00 0 0 0 0 

01 0 0 0 0 

11 1 1 1 1 

 

Y3Y2 

Present State 
Input 10 1 1 1 1 
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Input X = 1  
Present State InputY1Y0 D2 

00 01 11 10 

00 0 0 0 0 

01 0 0 0 0 

11 1 1 1 1 

 

Y3Y2 

Present State 
Input 10 1 1 1 1 

 
Table 6.22e Karanaugh map of D3 , D3 = x 

Input x = 0  

Present State Input Y1Y0 D3 

00 01 11 10 

00 0 0 0 0 

01 0 0 0 0 

11 0 0 0 0 

 

Y3Y2 

Present State 
Input 10 0 0 0 0 

 

 
Input X =1  

Present State Input Y1Y0 D3 

00 01 11 10 

00 1 1 1 1 

01 1 1 1 1 

11 1 1 1 1 

 

Y3Y2 

Present State 
Input 10 1 1 1 1 
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Table 6.22f Karmaugh map of P0 , P0 = Y0 

Present State Input Y1Y0 P0 

00 01 11 10 

00 0 1 1 0 

01 0 1 1 0 

11 0 1 1 0 

 

Y3Y2 

Present State 
Input 10 0 1 1 0 

 
Table 6.22g Karnaugh map of P1 , P1 = Y1 

Present State Input Y1Y0 P0 

00 01 11 10 

00 0 0 1 1 

01 0 0 1 1 

11 0 0 1 1 

 

Y3Y2 

Present State 
Input 10 0 0 1 1 

 

 
Table 6.22h Karmaugh map of P2 , P2 = Y2 

Present State Input Y1Y0 P2 

00 01 11 10 

00 0 0 0 0 

01 1 1 1 1 

11 1 1 1 1 

 

Y3Y2 

Present State 
Input 10 0 0 0 0 
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Table 6.22i Karnaugh map of P3 , P3 = Y3 

Present State Input Y1Y0 P3 

00 01 11 10 

00 0 0 0 0 

01 0 0 0 0 

11 1 1 1 1 

 

Y3Y2 

Present State 
Input 10 1 1 1 1 

 

Step 3：Find any minimum expression of input and output functions 
 
 D0 = Y1 ； D1 = Y2 

 D2 = Y3 ； D3 = X 

 P0 = Y0 ； P1 = Y1 

 P2 = Y2 ； P3 = Y3 

 

Step 4：Complete the circuit entry, Figure 6.30, by using graphic editor in 

MAX+PLUS II 

 

Step 5: Complete the circuit functional simulation by using MAX+PLUS II, Figure 

6.3 illustrates the result of functional simulation, and check weather the 

functions meet the specification. Go on the next step if meet the 

specification; otherwise go back to step 1 to check the cause of error 

sequentially.  

 

Step 6：If the circuit allow to test by downloading (programming), select download 

(programming) chip and then floorplan.  
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As circuit modified that showed in Figure 5.3 of Section 5.1, please modify Figure 

6.30. Please re-compile it after modifying, and adapt the ploorplan techniques in 

Section 4.6, select chip EPF10K10-TC144-4 and use Table 6.23 pin assignment 

reference. After assemble logic circuit design Lab platform LP-2900, download 

SISO shift register to chip EPF10K10TC144-4. Please regulate X input and try to 

push PS1 on left-bottom of LP-2900, and please note the changes of L1 (P3), L2 

(P2), L3 (P1) and L4 (Po).  

 
Figure 6.30 Complete the circuit entry of Table 6.22a by using MAX+PLUS II  

(document：S4SIPO.GDF) 

 

Figure 6.31 The functional simulation result of Table6.22a by using MAX + 
PLUS II simulator (document：S4SIPO.SCF) 
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Table 6.23  Pin assignment of EPF10K10TC144-4  

Name of Signal Pin of 
EPF10K10TC144-4 

Name of Signal Pin of 
EPF10K10TC144-4 

CLKIN Pin 54 (PS1) P2 Pin 48 

X Pin 47 P3 Pin 47 

P0 Pin 50   

P1 Pin 49 LED_COM Pin 141 

 

Exercise 9：Please design sequential circuit of Four-bit binary SIPO shift register 

by JK Flip-flops. 

Exercise 10：Please design sequential circuit of Four-bit binary SIPO shift register 

by T type Flip-flops. 

6.3.3 PISO Shift Register   

There a circuit, which has four registers with input D3D2D1D0 and output Y3Y2Y1Y0, 

has parallel input dcba and serial output So and input L is load signal. Original data 

Y1 showed in Y0, original data Y2 showed in Y1, original data Y3 showed in Y2 and 

data “0” showed in Y3 when L=0 and clock positive edge enters. Besides, So also 

shows Y0 data. 

 

To achieve above circuit specification design, the design progress as follows 

 

Step 1：Complete the state assignment of the circuit specification and illustrated by 

state diagrams or state tables. Circuit specification of four-bit PISO shift 

register be illustrated as state tables of Table 6.24a   
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Step 2：Find each Karnaugh map of Flip-flops inputs and output function by using 

excitation table. We have found Karnaugh map of D type Flip-flops inputs 

and output function as Table 6.24b~Table 6.24f by using excitation table of 

Table 6.14c. (The example uses Karnaugh map of 6 variables). 

 

 
Table 6.24a  State tables of PISO shift register sequential circuit 

Input  Present State  

0 1 

Output  

So 
0000 0000 dcba 0 

0001 0000 dcba 1 

0010 0001 dcba 0 

0011 0001 dcba 1 

0100 0010 dcba 0 

0101 0010 dcba 1 

0110 0011 dcba 0 

0111 0011 dcba 1 

1000 0100 dcba 0 

1001 0100 dcba 1 

1010 0101 dcba 0 

1011 0101 dcba 1 

1100 0110 dcba 0 

1101 0110 dcba 1 

1110 0111 dcba 0 

1111 0111 dcba 1 

Note ：dcba is parallel input data 
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Table 6.24b Karnaugh map of D0 , D0 = La + L’Y1 

Input L = 0, a  

Present State Input Y1Y0 D0 

00 01 11 10 

00 0 0 1 1 

01 0 0 1 1 

11 0 0 1 1 

 

Y3Y1 

Present State 
Input 10 0 0 1 1 

 

 
Input L = 1, a  

Present State Input Y1Y0 D0 

00 01 11 10 

00 A a a a 

01 A a a a 

11 A a a a 

 

Y3Y2 

Present State 
Input 10 A a a a 

 

 
Table 6.24c Karnaugh map of D1 , D1 = Lb + L’Y2 

Input L = 0, b  

Present State Input Y1Y0 D1 

00 01 11 10 

00 0 0 0 0 

01 1 1 1 1 

11 1 1 1 1 

 

Y3Y2 

Present State 
Input 10 0 0 0 0 
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Input L = 1, b  

Present State Input Y1Y0 D1 

00 01 11 10 

00 B b b b 

01 B b b b 

11 B b b b 

 

Y3Y2 

Present State 
Input 10 B b b b 

 

 
Table 6.24d Karnaugh map of D2 , D2 = Lc + L’Y3 

Input L = 0, c  

Present State Input Y1Y0 D2 

00 01 11 10 

00 0 0 0 0 

01 0 0 0 0 

11 1 1 1 1 

 

Y3Y2 

Present State 
Input 10 1 1 1 1 

 
Input L = 1,0 c  

Present State Input Y1Y0 D2 

00 01 11 10 

00 C c c c 

01 C c c c 

11 C c c c 

 

Y3Y2 

Present State 
Input 10 C c c c 
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Input L = 0, d  

Present State Input Y1Y0 D3 

00 01 11 10 

00 0 0 0 0 

01 0 0 0 0 

11 0 0 0 0 

 

Y3Y2 

Present State 
Input 10 0 0 0 0 

 

 
Table 6.24e Karnaugh map of D3 , D3 = Ld 

Input L = 1, d  

Present State Input Y1Y0 D3 

00 01 11 10 

00 d d d d 

01 d d d d 

11 d d d d 

 

Y3Y2 

Present State 
Input 10 d d d d 

 

Table 6.24f Karnaugh map of So , So = Y0 

Present State InputY1Y0 So 

00 01 11 10 

00 0 1 1 0 

01 0 1 1 0 

11 0 1 1 0 

 

Y3Y2 

Present State 
Input 10 0 1 1 0 
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Step 3：Find any minimum expression of input and output functions 

 

 D0 = La + L’Y1 ； D1 = Lb + L’Y2 

 D2 = Lc + L’Y3 ； D3 = Ld。 

 So = Y0。 

 

Step 4： Complete circuit entry, Figure 6.32, by using graphic editor in 

MAX+PLUS II 

 

Step 5: Complete the circuit functional simulation by using MAX+PLUS II, Figure 

6.33 illustrates the result of functional simulation, and check weather the 

functions meet the specification. Go on the next step if meet the 

specification; otherwise go back to step 1 to check the cause of error 

sequentially.  
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Figure 6.32  Complete the circuit entry of Table 6.24a by using MAX+PLUS II 
(document：S4PISO.GDF) 

Figure 6.33 The functional simulation results of Table 6.24a by using MAX + 
PLUS II  simulator(document：S4PISO.SCF) 

 

Step 6：If the circuit allow to test by downloading (programming), select download 

(programming) chip and then floorplan.  
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As circuit modified that showed in Figure 5.3 of Section 5.1, please modify Figure 

6.32. Please re-compile it after modifying, and adapt the ploorplan techniques in 

Section 4.6, select chip EPF10K10TC144-4 and use Table 6.25 pin assignment 

reference. After assemble logic circuit design Lab platform LP-2900, download 

four-bit PISO shift register to chip EPF-10K10TC144-4. Please regulate input of a 

(SW3), b (SW2), c (SW1) and d (SW0). Let Ld/sft (SW8) on “1” and try to push 

PS1 on left-bottom of LP-2900, then let Ld/sft (SW8) off “0” and try to push PS1 

on left-bottom of LP-2900. Please note the changes of L1 (So), which if shows 

input of a (SW3), b (SW2), c (SW1) and d (SW0).  

 
Table 6.25 Pin assignment of EPF10K10TC144-4  

Name of Signal EPF10K10TC144-4 
chip pin 

Name of Signal EPF10K10TC144-4 
chip pin 

D Pin 47 CLKIN Pin 54 (PS1) 

C Pin 48 Ld/sft Pin 63 

B Pin 49 So Pin 7 

A Pin 51 LED_COM Pin 141 

 

Exercise 11：Please design sequential circuit of Four-bit binary PISO shift register 

by JK Flip-flops. 

Exercise 12：Please design sequential circuit of Four-bit binary PISO shift register 

by T type Flip-flops. 

6.3.4 PIPO Shift Register   

There a circuit, which has four registers with input D3D2D1D0 and output Y3Y2Y1Y0, 

has parallel input dcba and parallel output P3P2P1P0 and input L is load signal. The 

input dcba show in Y3Y2Y1Y0 when L=1 and clock positive edge enters. Original 
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data Y1 showed in Y0, original data Y2 showed in Y1, original data Y3 showed in Y2 

and data “0” showed in Y3 when L=0 and clock positive edge enters. Besides, 

P3P2P1P0 also shows Y3Y2Y1Y0 data.  

 

To approach above circuit specification design, the design progress as follows 

 
Table 6.26a  State tables of PIPO shift register sequential circuit 

Input L Present State 

0 1 

Output 

P3P2P1P0 

0000 0000 dcba 0000 

0001 0000 dcba 0001 

0010 0001 dcba 0010 

0011 0001 dcba 0011 

0100 0010 dcba 0100 

0101 0010 dcba 0101 

0110 0011 dcba 0110 

0111 0011 dcba 0111 

1000 0100 dcba 1000 

1001 0100 dcba 1001 

1010 0101 dcba 1010 
1011 0101 dcba 1011 
1100 0110 dcba 1100 
1101 0110 dcba 1101 
1110 0111 dcba 1110 
1111 0111 dcba 1111 

Note ：dcba is parallel input data  
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Step 1：Complete the state assignment of the circuit specification and illustrates by 

state diagrams or state tables. Circuit specification of four-bit PIPO shift 

register is illustrated as state tables of Table 6.26a. 

 

Step 2：Find each Karnaugh map of Flip-flops inputs and output function by using 

excitation table. We have found Karnaugh map of D type Flip-flops inputs 

function as Table 6.27b~Table 6.27i by using excitation table of Table 6.14c.  

 
Table 6.27b Karnaugh map of D0 , D0 = La + L’Y1 

Input L = 0, a  
Present State Input Y1Y0 D0 

00 01 11 10 

00 0 0 1 1 

01 0 0 1 1 

11 0 0 1 1 

 

Y3Y2 

Present State 
Input 10 0 0 1 1 

 
Input L = 1, a  

Present State Input Y1Y0 D0 
00 01 11 10 

00 A a a a 

01 A a a a 

11 A a a a 

 

Y3Y2 

Present State 
Input 10 A a a a 
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Table 6.27c Karnaugh map of D1 , D1 = Lb + L’Y2 

Input L = 0, b  

Present State Input Y1Y0 D1 

00 01 11 10 

00 0 0 0 0 

01 1 1 1 1 

11 1 1 1 1 

 

Y3Y2 

Present State 
Input 10 0 0 0 0 

 

Input L = 1, b  

Present State Input Y1Y0 D1 

00 01 11 10 

00 B b b b 

01 B b b b 

11 B b b b 

 

Y3Y2 

Present State 
Input 10 B b b b 

 
Table 6.27d Karnaugh map of D2 , D2 = Lc + L’Y3 

Input L = 0, c  
Present State Input Y1Y0 D2 

00 01 11 10 

00 0 0 0 0 

01 0 0 0 0 

11 1 1 1 1 

 

Y3Y2 

Present State 
Input 10 1 1 1 1 
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Input L = 1, c  

Present State InputY1Y0 D2 

00 01 11 10 

00 C c c c 

01 C c c c 

11 C c c c 

 

Y3Y2 

Present State 
Input 10 C c c c 

 
 

Table 6.27e Karnaugh map of D3 , D3 = Ld 

Input L = 0, d  

Present State Input Y1Y0 D3 

00 01 11 10 

00 0 0 0 0 

01 0 0 0 0 

11 0 0 0 0 

 

Y3Y2 

Present State 
Input 10 0 0 0 0 

 
 

Input L = 1, d  

Present State Input Y1Y0 D3 

00 01 11 10 

00 D d d d 

01 D d d d 

11 D d d d 

 

Y3Y2 

Present State 
Input 10 D d d d 
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Table 6.27f Karnaugh map of P0 , P0 = Y0 

Present State Input Y1Y0 P0 

00 01 11 10 

00 0 1 1 0 

01 0 1 1 0 

11 0 1 1 0 

 

Y3Y2 

Present State 
Input 10 0 1 1 0 

 

 
Table 6.27g Karnaugh map of P1 , P1 = Y1 

Present State InputY1Y0 P1 

00 01 11 10 

00 0 0 1 1 

01 0 0 1 1 

11 0 0 1 1 

 

Y3Y2 

Present State 
Input 10 0 0 1 1 

 

 
Table 6.27h Karnaugh map of P2 , P2 = Y2 

Present State Input Y1Y0 P1 

00 01 11 10 

00 0 0 0 0 

01 1 1 1 1 

11 1 1 1 1 

 

Y3Y2 

Present State 
Input 10 0 0 0 0 
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Table 6.27i Karnaugh map of P3, P3 = Y3 

Present State Input Y1Y0 P1 

00 01 11 10 

00 0 0 0 0 

01 0 0 0 0 

11 1 1 1 1 

 

Y3Y2 

Present State 
Input 10 1 1 1 1 

 

Step 3：Find any minimum expression of input and output functions 

 

 D0 = La + L’Y1 ； D1 = Lb + L’Y2 

 D2 = Lc + L’Y3 ； D3 = Ld 

 P0 = Y0 ； P1 = Y1 

 P2 = Y2 ； P3 = Y3 

 

Step 4： Complete circuit entry, Figure 6.34, by using graphic editor in 

MAX+PLUS II. 

 

Step 5: Complete the circuit functional simulation by using MAX+PLUS II, Figure 

6.35 illustrates the result of functional simulation, and check weather the 

functions meet the specification. Go on the next step if meet the 

specification; otherwise go back to step 1 to check the cause of error 

sequentially.  

 

Step 6：If the circuit allow to test by downloading (programming), select download 

(programming) chip and then floorplan.  
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As circuit modified that showed in Figure 5.3 of Section 5.1, please modify Figure 

6.34. Please re-compile it after modifying, and adapt the ploorplan techniques in 

section 4.6, select chip EPF10K10TC144-4 and use Table 6.28 pin assignment 

reference. After assemble logic circuit design Lab platform LP-2900, download 

four-bit PIPO shift register to chip EPF10K10TC144-4. Please regulate input of a 

(SW3), b (SW2), c (SW1) and d (SW0). Let Ld/sft (sw8) on “1” and try to push PS1 

on left-bottom of LP-2900.  Please note the changes of L1 (P3), L2 (P2), L3 (P1) 

and L4 (P0). And then let Ld/sft (sw8) off “1” and try to push PS1. Please note the 

changes of L1, L2, L3 and L4. 

 

Figure 6.34 Complete the circuit entry of Table 6.24a by using MAX + PLUS II 
(document：S4PIPO.GDF) 
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Figure 6.35 The functional simulation results of Table 6.27a by using MAX + 
PLUS II simulator (document：S4PIPO.SCF) 

 
Table 6.28  Pin assignment EPF10K10TC144-4  

Name of Signal EPF10K10TC144-4 
chip pin 

Name of Signal EPF10K10TC144-4 
chip pin 

CLKIN Pin 54 PS1) P0 Pin 10 

Ld/sft Pin 63 P1 Pin 9 

D Pin 47 P2 Pin 8 

C Pin 48 P3 Pin 7 

B Pin 49   

A Pin 51 LED_COM Pin 141 

 

Exercise 13：Please design sequential circuit of Four-bit binary PIPO shift register 

by JK Flip-flops. 

Exercise 14：Please design sequential circuit of Four-bit binary PIPO shift register 

by T type Flip-flops. 
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6.4   The Design, Simulation and Test of 
Synchronous Shift Count Register  

In this section, we will use T type Flip-flops to design four-bit ring counter and 

four-bit Johnson counter.  

6.4.1 Ring Counter 

There is a counter, which the state of after clear is 1000 (8); arithmetic value of 

counter becomes 0100 (4) when clock positive edge enters. If arithmetic clock 

keeps flowing in , the counter will sequentially turn to 0010 (2) → 0001 (1) →

1000 (8) →0100 (4) →0010 (2) →0001 (1) →1000 (8) →……and keeps cycling 

like this. 

From above circuit specification, we know it is a Four-bit Ring counter with 

asychronous clear function, because its “1” bit cyclic progress likes as ripple, the 

progress of the design is as follows 

 

Step 1：Complete the state assignment of the circuit specification and illustrated by 

state diagrams or state tables. Circuit specification of Four-bit ring counter 

is illustrated as state tables of Table 6.29a.  

 
Table 6.29a  Sequential circuit of state tables of Ring counter  

Input  clrn Present State 

0 1 

Outpot  

D3D2D1D0 

1000 1000 0100 1000 

0100 1000 0010 0100 

0010 1000 0001 0010 

0001 1000 1000 0001 
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Step 2：Find each Karnaugh map of Flip-flops inputs and output function by using 

excitation table. We have found each Karnaugh map of T type Flip-flops 

inputs function as Table 6.29b~Table 6.29e by using excitation table of 

Table 6.14c.  

 
Table 6.29b Karnaugh map of T0 , T0 = Y3’Y2’Y1’Y0 + Y3’Y2’Y1Y0’clrn 

Input clrn = 1  

Present State Input Y1Y0 T0 

00 01 11 10 

00  1  1 

01 0    

11     

 

Y3Y2 

Present State 
Input 10 0    

 

 
Input clrn = 0  

Present State Input Y1Y0 T0 

00 01 11 10 

00  1  0 

01 0    

11     

 

Y3Y2 

Present State 
Input 10 0    
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Table 6.29c Karnaugh map of T1 , T1 = Y3’Y2Y1’Y0’clrn + Y3’Y2’Y1Y0’ 

Input clrn = 1  

Present State Input Y1Y0 T1 

00 01 11 10 

00  0  1 

01 1    

11     

 

Y3Y2 

Present State 
Input 10 0    

 
Input clrn = 0  

Present State Input Y1Y0 T0 

00 01 11 10 

00  0  1 

01 0    

11     

 

Y3Y2 

Present State 
Input 10 0    

 

 
Table 6.29d Karnaugh map of T2 , T2 = Y3’Y2Y1’Y0’ + Y3Y2’Y1’Y0’ clrn 

Input clrn = 1  

Present State Input Y1Y0 T2 

00 01 11 10 

00  0  0 

01 1    

11     

 

Y3Y2 

Present State 
Input 10 1    
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Input clrn = 0   

Present State Input Y1Y0 T0 

00 01 11 10 

00  0  0 

01 1    

11     

 

Y3Y2 

Present State 
Input 10 0    

 

Table 6.29e Karnaugh map of T3 , T3 = Y3’Y2’Y1’Y0 clrn + Y3Y2’Y1’Y0’ clrn 

Input clrn = 1  

Present State Input Y1Y0 T3 

00 01 11 10 

00  1  0 

01 0    

11     

 

Y3Y2 

Present State 
Input 10 1    

 

Input clrn = 0   

Present State Input Y1Y0 T0 

00 01 11 10 

00  0  0 

01 0    

11     

 

Y3Y2 

Present State 
Input 10 0    
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Step 3：Find any minimum expression of input and output functions 

 

 T0 = Y3’Y2’Y1’Y0 + Y3’Y2’Y1Y0’ clrn 

 T1 = Y3’Y2Y1’Y0’ clrn + Y3’Y2’Y1Y0’ 

 T2 = Y3’Y2Y1’Y0’ + Y3Y2’Y1’Y0’ clrn 

 T3 = Y3’Y2’Y1’Y0 clrn + Y3Y2’Y1’Y0’ clrn 

 Q0 = Y0 ； Q1 = Y1 

 Q2 = Y2 ； Q3 = Y3 

 

Step 4：Complete the circuit entry, Figure 6.36, by using graphic editor in 

MAX+PLUS II. 

Figure 6.36 Complete the circuit entry of Table 6.29a by using MAX+PLUS II 
(document：Ring4.GDF) 
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Step 5: Complete the circuit functional simulation by using MAX+PLUS II, Figure 

6.37 illustrates the result of functional simulation, and check weather the 

functions meet the specification. Go on the next step if meet the 

specification; otherwise go back to step 1 to check the cause of error 

sequentially. 

Figure 6.37 The functional simulation results of Table 6.29a by using MAX+PLUS 
II simulator (document：Ring4.SCF) 

 

Step 6：If the circuit allow to test by downloading (programming), select download 

(programming) chip and then floorplan.  

 

As circuit modified that showed in Figure 5.3 of Section 5.1, please modify Figure 

6.36. Please re-compile it after modifying, and adapt the ploorplan techniques in 

section 4.6, select chip EPF10K10TC144-4 and use Table 6.30 pin assignment 

reference. After assemble logic circuit design Lab platform LP-2900, download 

four-bit ring counter to chip EPF10K10TC144-4. Please try to push SW1 (CLRN) 

then push PS1 on left-buttom of LP-2900. Please note the changes of L1 (Q3), L2 

(Q2), L3 (Q1) and L4 (Q0), and see if cyclic like as 1000 (8) →0100 (4) → 0010 

(2) → 0001 (1) →1000 (8) → 0100 (4) → 0010 (2) → 0001 (1) → 1000 (8) 

→….  
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Table 6.30 Pin assignment of EPF10K10TC144-4  

Name of Signal Pin of 
EPF10K10TC144-4 

Name of Signal Pin of 
EPF10K10TC144-4 

CLKIN Pin 54(PS1) Q2 Pin 8 

CLRN Pin 47 Q3 Pin 7 

Q0 Pin 10   

Q1 Pin 9 LED_COM Pin 141 

 

Exercise 15：Please design sequential circuit of Four-bit bins by using JK Flip-

flops. 

Exercise 16：Please design sequential circuit of Four-bit binary PIPO ring counter 

by using D type Flip-flops. 

6.4.2 Johnson Counter 

There is a counter, which the state of after clear is 0000 (0), arithmetic value of 

counter becomes 0000 (1) when clock positive edge enters. If arithmetic clock 

keeps flowing in , the counter will sequentially turn to 0011 (3) → 0111 (7) → 

1111 (F) →  1110 (E) →  1100 (C) →  1000 (8) →  0000 (0) →  0001 (1) 

→……and keeps cycling like this 

From above circuit specification, we know it is a four-bit johnson counter with 

asychronous clear. The progress of the design is as follows 

 

Step 1：Complete the state assignment of the circuit specification and illustrated by 

state diagrams or state tables. Circuit specification of Four-bit Johnson 

counter is illustrated as state tables of Table 6.31a. 
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Table 6.31a  Sequential circuit of state tables of Johnson counter  

Input   clrn Present State 

0 1 

Output  
D3D2D1D0 

0000 0000 0001 0000 

0001 0000 0011 0001 

0011 0000 0111 0011 

0111 0000 1111 0111 

1111 0000 1110 1111 

1110 0000 1100 1110 

1100 0000 1000 1100 

1000 0000 0000 1000 

 

Step 2：Find each Karnaugh map of Flip-flops inputs and output function by using 

excitation table. We have found each Karnaugh map of T type Flip-flops 

inputs function as Table 6.31b~Table 6.31e by using excitation table of 

Table 6.14c. 

 
Table 6.31b Karnaugh map of T0 , T0 = Y3’Y2’Y1’Y0’ + Y3Y2Y1Y0 

Input clrn = 1   

Present State Input Y1Y0 T0 

00 01 11 10 

00 1 0 0  

01   0  

11 0  1 0 

 

Y3Y2 

Present State 
Input 10 0    
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Table 6.31c Karnaugh map of T1 , T1 = Y3’Y2’Y1’Y0 + Y3Y2Y1Y0’ 

Input clrn = 1   

Present State InputY1Y0 T1 

00 01 11 10 

00 0 1 0  

01   0  

11 0  0 1 

 

Y3Y2 

Present State 
Input 10 0    

 
 

Table 6.31d Karnaugh map of T2 , T2 = Y3’Y2’Y1Y0 + Y3Y2Y1’Y0’ 

Input clrn = 1  

Present State InputY1Y0 T2 

00 01 11 10 

00 0 0 1  

01   0  

11 1  0 0 

 

Y3Y2 

Present State 
Input 10 0    

 

Table 6.31e Karnaugh map of T3 , T3 = Y3’Y2Y1Y0 + Y3Y2’Y1’Y0’ 

Input clrn = 1   

Present State Input Y1Y0 T3 

00 01 11 10 

00 0 0 0  

01   1  

11 0  0 0 

 

Y3Y2 

Present State 
Input 10 1    
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Step 3：Find any minimum expression of input and output functions 

 

  T0 = Y3’Y2’Y1’Y0’+ Y3Y2Y1Y0 

  T1 = Y3’Y2’Y1’Y0+ Y3Y2Y1Y0’ 

  T2 = Y3’Y2’Y1Y0+ Y3Y2Y1’Y0’ 

  T3 = Y3’Y2Y1Y0+ Y3Y2’Y1’Y0’ 

 Q0 = Y0 ； Q1 = Y1 

 Q2 = Y2 ； Q3 = Y3 

 

Step 4：Complete the circuit entry, Figure 6.38, by using graphic editor in 

MAX+PLUS II 

 

Step 5: Complete the circuit functional simulation by using MAX+PLUS II, Figure 

6.39 illustrates the result of functional simulation, and check weather the 

functions meet the specification. Go on the next step if meet the 

specification; otherwise go back to step 1 to check the cause of error 

sequentially.  
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Figure 6.38 Complete the circuit entry of Table 6.31a by using MAX+PLUS II  
(document：JSCNTR4.GDF) 

 

Figure 6.39 The functional simulation results of Table 6.31a by using 
MAX+PLUS II simulator (document: JSCNTR4.SCF) 
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Step 6：If the circuit allow to test by downloading (programming), select download 

(programming) chip and then floorplan.  

 

As circuit modified that showed in Figure 5.3 of Section 5.1, please modify Figure 

6.38. Please re-compile it after modifying, and adapt the ploorplan techniques in 

Section 4.6, select chip EPF10K10TC144-4 and use Table 6.32 pin assignment 

reference. After assemble logic circuit design Lab platform LP-2900, download 

four-bit Johnson counter to chip EPF10K10TC144-4. Please try to push SW1 

(CLRN) then push PS1 on left-bottom of LP-2900. Please note the changes of L1 

(Q3), L2 (Q2), L3 (Q1) and L4 (Q0), and see if cyclic like as follows, 0000 (0) →

0001 (1) → 0011 (3) → 0111 (7) →1111 (F) → 1110 (E) → 1100 (C) →

1000 (8) → 0000 (0) → 0001 (1) "….  

 

Table 6.32  Pin assignment of EPF10K10TC144-4 
Name of Signal Pin of 

EPF10K10TC144-4 
Name of Signal Pin of 

EPF10K10TC144-4 

CLKIN Pin 54 (PS1) Q2 Pin 8 

CLRN Pin 47 Q3 Pin 7 

Q0 Pin 10   

Q1 Pin 9 LED_COM Pin 141 

  

Exercise 17 ：Please design sequential circuit of Four-bit Johnson counter by using 

JK Flip-flops. 

Exercise 18：Please design sequential circuit of Four-bit Johnson counter by using 

D type Flip-flops. 
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6.5   The Design, Simulation and Test of 
Asynchronous Counter 

The asynchronous sequential circuit, sequential circuit of clock of Flip-flops doesn’t 

connect together. So Flip-flops doesn’t change state in same time. Frequently, 

primary stage output (positive edge or negative edge) becomes next stage clock 

input. Therefore, asynchronous sequential circuit doesn’t have systematic procedure 

of design. It leads to asynchronous sequential circuit unusual applied, we will 

introduce common asynchronous count circuit as follows 

6.5.1 Asynchronous Four-bit Binary Counter 

Apply JK Flip-flops changing state function, when J=K=1 clock enters, illustrated 

in Table 6.14c. The proceed of asynchronous counter design is as follow  

 

Step 1: design circuit and complete circuit entry by using graphic editor of 

MAX+PLUS II. We can design Four-bit binary counter as Figure 6.40. The 

first JK Flip-flops be clocked by clkin negative edge, the second JK Flip-

flops be clocked by QA, inverse of first JK Flip-flops output, the third JK 

Flip-flops be clocked by QB, inverse of second JK Flip-flops output, the 

fourth JK Flip-flops be clocked by QC, inverse of third JK Flip-flops output. 

So, QA wants to complete a cyclic, it needs two CLKIN negative edges 

(two CLKIN clocks), QB wants to complete a cyclic, it needs two QA 

negative edges (two QA clocks), QC wants to complete a clock, it needs two 

QB negative edges (two QB clocks), QD wants to complete a clock, it needs 

two QC negative edges (two QC clocks), in other words, if QD wants to 

complete a clock it needs 2 × 2 × 2 × 2 CLKIN negative edge (also 16 

CLKIN clocks). It is four-bit binary up counter. 
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Figure 6.40 Four-bit binary up counter (documents：A4UCNTR.GDF)。 

     

 

Step 2： Complete the Figure 6.39 circuit functional simulation by using 

MAX+PLUS II and check weather the functions meet the specification. Go 

on the next step if meet the specification; otherwise go back to step 1 to 

check the cause of error sequentially. Figure 6.41 is simulation result of 

four-bit binary up counter. Propagation delay of asynchronous clock is 

illustrated as Figure 6.42.  Figure 6.43 is four-bit binary down counter. 

Figure 6.44 is simulation result of four-bit binary down counter.  Please 

compare Figure 6.40 with Figure, you can see that the inverse of JK Flip-

flops outputs be considered as down counter.  

 

Figure 6.41  The simulation result of four-bit binary up counter 

(document：A4UCNTR.SCF) 
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Figure 6.42 The magnified diagrams of cyclic of Figure 6.41 

 

 Figure 6.43 Four-bit binary down counter(document：A4DCNTR.GDF) 

 

Figure 6.44 simulation result of four-bit binary down counter (document：
A4DCNTR.SCF) 

 

Step 3：If the circuit allow to test by downloading (programming), select download 

(programming) chip and then floorplan.  

 

As circuit modified that showed in Figure 5.3 of Section 5.1, please modify Figure 

6.40. Please re-compile it after modifying, and adapt the ploorplan techniques in 
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Section 4.6, select chip EPF10K10TC144-4 and use Table 6.33 pin assignment 

reference. After assemble logic circuit design Lab platform LP-2900, download 

four-bit binary up (down) counter to chip EPF10K10TC144-4. Please try to push 

SW1 (CLRN) then push PS1 on left-bottom of LP-2900. Please note the changes of 

L1 (Q3), L2 (Q2), L3 (Q1) and L4 (Q0), and to see if 0000 (0) → 0001 (1) → 

0010 (2) → 0011 (3) →0100 (4) → 0101 (5) →0110 (6) → 0111 (7) →1000 

(8) →… keeps cycling by binary count.  

 
Table6.33 Pin assignment of EPF10K10TC144-4  

Name of 
Signal  

Pin of 
EPF10K10TC144-4 

Name of 
Signal  

Pin of 
EPF10K10TC144-4 

CLKIN Pin 54 (PS1) Q0 Pin 10 

LED_COM Pin 141 Q1 Pin 9 

  Q2 Pin 8 

  Q3 Pin 7 

 

6.5.2 Asynchronous BCD Counter 

The design procedures of asynchronous BCD counter are as follows. 

 

Step 1: design circuit and complete circuit entry by using graphic editor of 

MAX+PLUS II. We can design BCD counter as Figure 6.45. The first JK 

Flip-flops is clocked by clkin negative edge, the second JK Flip-flops be 

clocked by QA, inverse of first JK Flip-flops, the third JK Flip-flops be 

clocked by QB, inverse of second JK Flip-flops, the fourth JK Flip-flops be 

clocked by QC, inverse of third JK Flip-flops. So, QA wants to complete a 

clock, it needs two CLKIN negative edges (two CLKIN clocks), QB wants 
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to complete a clock, it needs two QA negative edges (two QA clocks), QC 

wants to complete a clock, it needs two QB negative edges (two QB clocks), 

QD wants to complete a clock, it needs two QC negative edges (two QC 

clocks), in other words, if QD wants to complete a clock it needs 2 × 2 ×

2 × 2 CLKIN negative edge (also 16 CLKIN clocks). But, the count comes 

to (QD, QC, QB, QA) = (1, 0, 1, 0), it will show one asynchronous clear and 

all come back to “0000”. The “1010” only shows briefly. It is BCD counter. 

 

Step 2：Complete the Figure 6.46 circuit entry and Figure 6.47 circuit functional 

simulation by using MAX+PLUS II and check weather the functions meet 

the specification. Go on the next step if meet the specification; otherwise go 

back to step 1 to check the cause of error sequentially.  

Figure 6.45 BCD counter(document：ABCDCNTR.GDF) 
 

Figure 6.46 Simulation result of BCD counter(document：ABCDCNTR.SCF) 
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Figure 6.47  The magnified diagrams of cyclic of Figure 6.46 (document：
ABCDCNTR.SCF) (“1010” shows briefly) 

 

Step 3：If the circuit allow to test by downloading (programming), select download 

(programming) chip and then floorplan.  

 

As circuit modified that showed in Figure 5.3 of Section 5.1, please modify Figure 

6.45. Please re-compile it after modifying, and adapt the ploorplan techniques in 

Section 4.6, select chip EPF10K10TC144-4 and use Table 6.34 pin assignment 

reference. After assemble logic circuit design Lab platform LP-2900, download 

SCD counter to chip EPF10K10TC144-4. Please try to push SW1 (CLRN) then 

push PS1 on left-bottom of LP-2900. Please note the changes of L1 (Q3), L2 (Q2), 

L3 (Q1) and L4 (Q0), and see if 0000 (0) →0001 (1) → 0010 (2) → 0011 (3) → 

0100 (4) → 0101 (5) → 0110 (6) → 0111 (7) → 1000 (8) → 1001 (9) → 

0000 (0) →… keeps cycling by BCD counter.  

 
Table6.34 Pin assignment of EPF10K10TC144-4  

Name of Signal Pin of 
EPF10K10TC144-4 

Name of Signal Pin of 
EPF10K10TC144-4 

CLKIN Pin 54 (PS1) Q1 Pin 9 

LED_COM Pin 141 Q2 Pin 8 

Q0 Pin 10 Q3 Pin 7 
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6.5.3 Asynchronous Mod 14 Counter 

The design procedures of asynchronous mod 14 counter are as follows  

 

Step 1: design circuit and complete circuit entry by using graphic editor of 

MAX+PLUS II. We can design asynchronous mod 14 counter as Figure 

6.48. The first JK Flip-flops is clocked by clkin negative edge, the second 

JK Flip-flops be clocked by QA, inverse of first JK Flip-flops, the third JK 

Flip-flops be clocked by QB, inverse of second JK Flip-flops, the fourth JK 

Flip-flops be clocked by QC, inverse of third JK Flip-flops. So, QA wants to 

complete a cyclic, it needs two CLKIN negative edges (two CLKIN clocks), 

QB wants to complete a clock, it needs two QA negative edges (two QA 

clocks), QC wants to complete a clock, it needs two QB negative edges (two 

QB clocks), QD wants to complete a clock, it needs two QC negative edges 

(two QC clocks), in other words, if QD wants to complete a clock it needs 2 

× 2 × 2 × 2 CLKIN negative edge (also 16 CLKIN clocks). But, the count 

comes to (QD, QC, QB, QA) = (1, 1, 1, 0), it will show one asynchronous 

clear and all come back to “0000”. The “1110” only shows briefly. It is 

asynchronous mod 14 counter.  

 

Step 2：Complete the Figure 6.46 design entry and Figure 6.49 circuit functional 

simulation by using MAX+PLUS II and check weather the functions meet 

the specification. Go on the next step if meet the specification; otherwise go 

back to step 1 to check the cause of error sequentially.  

 

Step 3：If the circuit allow to test by downloading (programming), select 

download (programming) chip and then floorplan.  
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Figure 6.48 Asynchronous mod14 counter (document：Amod14.GDF) 

 

Figure 6.49 Simulation result of asynchronous mod14 counter (document：
Amod14.SCF) 

 

As circuit modified that showed in Figure 5.3 of Section 5.1, please modify Figure 

6.48. Please re-compile it after modifying, and adapt the ploorplan techniques in 

Section 4.6, select chip EPF10K10TC144-4 and use Table 6.35 pin assignment 

reference. After assemble logic circuit design Lab platform LP-2900, download 

asynchronous mod 14 counter to chip EPF10K10TC144-4. Please try to push SW1 

(CLRN) then push PS1 on left-bottom of LP-2900. Please note the changes of L1 

(Q3), L2 (Q2), L3 (Q1) and L4 (Q0), and see if 0000 (0) → 0001 (1) → 0010 (2) 

→ 0011 (3) → 0100 (4) → 0101 (5) → 0110 (6) → 0111 (7) → 1000 (8) 

→…→ 1011 (13) → 0000 (0) →→… keeps cycling by MOD/4 count.  
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Table6.35  Pin assignment of EPF10K10TC144-4  

Name of Signal Pin of 
EPF10K10TC144-4 

Name of Signal Pin of 
EPF10K10TC144-4 

CLKIN Pin 54 (PS1) Q0 Pin 10 

LED_COM Pin 141 Q1 Pin 9 

  Q2 Pin 8 

  Q3 Pin 7 

   

6.6 Evaluation  

  Please do the following evaluation according to the questions listed below,  

#$Do you know what does sequential logic circuit define? 

#$Do you know those are memory cell of sequential logic circuit? 

#$Do you know process of design, simulation and test of sequential logic circuit?  

#$Do you know what is Mealy state machine? What is Moore state machine? 

#$The sequential logic circuit is almost synchronous. Why? 

#$Can you design, simulate and test synchronous mod 13 counter? 

#$Can you design, simulate and test five-bit Johnson counter?  
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CHAPTER 7 
 

 

SIMPLE  

DESIGN  

EXAMPLES 

LEAP



In this chapter, some frequent-applied design examples will be illustrated allowing 

the readers to familiarize with MAX+PLUS II devices and tactfully apply the 

designing theories stated in Chapter 5 and Chapter 6. The examples of circuit’s 

layout drawn in this chapter include Frequency Generator, Simple Electronic Dice, 

Counter, Simple Traffic Light Controller, Dot Matrix Display, Keyboard Scan and 

Display, and LCD Interface.  

7.1 Frequency Generator 

Various clock frequencies, from Hz, KHz to MHz, are required in the field of digital 

logic. The generation of diverse frequencies depends on the frequency divider of the 

main frequency, such as the generation of quartz oscillator. The design of divider, 

therefore, is quite important. In this section, the divider is designed individually as 

the following basic divider formats: ÷2, ÷5, ÷10 and ÷50. The readers, referring to 

this section, are invited to design other dividers by your own creation.  

7.1.1 ÷÷÷÷2 Divider Design 

Step 1：Form a Truth table (Table 7.1a) 
 

Table 7.1a State table of ÷2 divider’s sequential circuit 

Present State Next State Output 

0 1 0 

1 0 1 

 

Step 2：From the above Truth table (Table 7.1a) leads to the following Karnaugh 

Map and equation (Table 7.1b). 
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Table 7.1b Karnaugh Map of T, T = Vcc 

T  

0 1 Present State Input 

Y 1 1 

Step 3：Figure out the minimized equation of each input and output function. 

 

T = VCC 

 

Step 4：Please use the Graphic editor of MAX+PLUS II to complete editing the 

circuit entry of the above equation (Figure 7.1a). 

 

Step 5：Complete functional simulation by using Simulator in MAX+PLUS II and 

test weather the functions meet the circuit specifications (Table 7.1b).  Go 

on to the next step if the functions meet the specifications; otherwise go 

back to step 1 to check the cause of error sequentially. 

 

Step 6：Should circuits allow download testing, download (or programming) to test 

the circuit after selecting the download (or programming) device and the 

floorplan program; 
 

〜Skip this download test〜 

 

Stop 7:  Please refer to File > Create Default Symbol to generate the internal 

circuit symbol of ÷2 divider for the upper layer circuit. 
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Figure 7.1a ÷2 divider circuit entry by using graphic editor in MAX+PLUS II  

(File：div2.gdf) 

 

 Figure 7.1b Simulation result of div2.gdf (File：div2.scf) 

 

Figure 7.1c The symbol of ÷2 divider circuit  

7.1.2 ÷÷÷÷5 Divider Design 

 

Step 1：Form a Truth table. There are five states, 0, 1, 2, 3 and 4, requiring 3-bit, 

T2T1T0 to signify the state value (Table 7.2a). 

 

Step 2:  From the above Truth table (Table 7.2a) leads to the following Karnaugh 

Map and equations (Table 7.2b〜7.2e). 

 

 



 

Table 7.2a  State table of ÷5 divider’s sequential circuit 

Current State Next State Output 

000 001 0 

001 010 0 

010 011 1 

011 100 1 

100 000 1 

 

Table 7.2b Karnaugh Map of T0, T0 = Y2’ + Y1’Y0’ 

Present State Inputs Y1Y0 T0 
00 01 11 10 

0 1 1 1 1 Present State 

Inputs Y2 1 1    

Note： “／” represents the state would never occur, so as in the following talbes. 

 

Table 7.2c  Karnaugh Map of T1, T1 = Y2’Y0 

Present State Inputs Y1Y0 T1 
00 01 11 10 

0 0 1 1 0 Present State 

Inputs Y2 1 0    

 

Table 7.2d  Karnaugh Map of T2, T2 = Y2’Y1Y0 + Y2Y1’Y0’ 

Present State Inputs Y1Y0 T2 
00 01 11 10 

0 0 0 1 0 Present State 

Inputs Y2 1 1    
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Table 7.2e Karnaugh Map of Z, Z = Y2’Y1Y0’ + Y2Y1’Y0’ 

Present State Inputs Y1Y0 Z 
00 01 11 10 

0 0 0 0 1 Present State 

Inputs Y2 1 1    

 

Step 3: Figure out each minimized input and output functions. 

 

 T0 = Y2’ + Y1’Y0’ 

 T1 = Y2’Y0 

 T2 = Y2’Y1Y0 + Y2Y1’Y0’ 

 Z = Y2’Y1 Y0’ + Y2Y1’Y0’ 

 

Step 4: Please use the Graphic editor of MAX+PLUS II to complete the circuit entry 

of the above equations (Figure 7.2a)。 

 

Step 5:  Complete functional simulations by using Simulator in MAX+PLUS II 

and test weather the functions meet the circuit specifications (Table 7.2b).  

Go on to the next step if the functions meet the specifications; otherwise, 

go back to step 1 to check the cause of error sequentially. 
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Figure 7.2a Using MAX+PLUS II Graphic editor to create ÷5 divide circuit 

 (File: div5.gdf) 

 

Figure 7.2b div5.gdf simulation result (File: div5.scf) 

 

Step 6:  Should circuits allow download testing, download (or programming) to 

test the circuit after selecting the download (or programming) device and 
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the floorplan program; 

〜Skip this download test〜 

 

Step 7:  Please refer to File>Create Default Symbol to generate the internal circuit 

symbol of ÷5 divider for the upper layer circuit. 

 

Figure 7.2c The symbol of ÷5 divider 

 

7.1.3 ÷÷÷÷10 Divider Design 

Step 1:  Form a Truth table. There are 10 states, 0, 1, 2, 3, 4,… and 9, requiring a 

4-bit, T3T2T1T0 to signify the state value (Table 7.3a)。 

 

Step 2:  From the above Truth table (Table 7.3a) leads to the following Karnaugh 

Map and equations. (Table 7.3b〜7.3f)。 

 

Table 7.3a State table of ÷10 divide’s sequential circuit 

Present State Next State Output 

0000 0001 0 

0001 0010 0 

0010 0011 0 

0011 0100 0 

0100 0101 0 

0101 0110 1 

0110 0111 1 
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0111 1000 1 

1000 1001 1 

1001 0000 1 

 

Table 7.3b Karnaugh Map of T0, T0 = Y3’ + Y2’Y1’ 

Present State Inputs Y1Y0 T0 
00 01 11 10 

00 1 1 1 1 

01 1 1 1 1 

11     

 

Present State 

Inputs Y3Y2 

10 1 1   

 

Table 7.3c Karnaugh Map of T1, T1 = Y3’Y0 

Present State Inputs Y1Y0 T1 
00 01 11 10 

00 0 1 1 0 

01 0 1 1 0 

11     

Present State 

Inputs 

Y3Y2 

10 0 0   

 

Table 7.3d  Karnaugh Map of T2, T2 = Y3’Y1Y0 

Present State Inputs Y1Y0 T2 
00 01 11 10 

00 0 0 1 0 

01 0 0 1 0 

11     

 

Present State 

Inputs Y3Y2 

10 0 0   
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Table 7.3e  Karnaugh Map of T3, T3 = Y3’Y2Y1Y0 + Y3Y2’Y1’Y0 

Present State Inputs Y1Y0 T3 
00 01 11 10 

00 0 0 0 0 

01 0 0 1 0 

11     

 

Present State 

Inputs Y3Y2 

10 0 1   

 

 

Table 7.3f  Karnaugh Map of Z, Z = Y3’Y2Y1’Y0’ + Y3Y2’Y1’Y0 

Present State Inputs Y1Y0 Z 
00 01 11 10 

00 0 0 0 0 

01 1 0 0 0 

11     

 

Present State 

Inputs Y3Y2 

10 0 1   

 

Step 3:  Figure out each minimized input and output functions.  

 

 T0 = Y3’ + Y2’Y1’ 

 T1 = Y3’Y0 

 T2 = Y3’Y1Y0 

 T3 = Y3’Y2Y1Y0 + Y3Y2’Y1’Y0 

 Z = Y3’Y2Y1’Y0’ + Y3Y2’Y1’Y0 
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entry of the above equations (Figure 7.3a)。 

 

 Figure 7.3a Using MAX+PLUS II Graphic editor to create ÷10 divide circuit 

(File: div10.gdf) 

 

Step 5:  Complete functional simulation by using Simulator in MAX+PLUS II and 

test weather the functions meet the circuit specifications (Table 7.3b).  Go 

on to the next step the functions meet the specifications; otherwise, go 

back to step 1 to check the cause of error sequentially. 
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Step 4:  Please use the Graphic editor of MAX+PLUS II to complete the circuit 



Step 6:  If the circuits allow download testing, download (or programming) to test 

the circuit after selecting the download (or programming) device and 

floorplan program.  

〜Skip this download test〜 

Step 7:  Please refer to File > Create Default Symbol to generate the internal 

circuit symbol of ÷10 circuit for the upper layer circuit. (Figure 7.3c) 

 

Figure 7.3b Simulation Result of div10.gdf (File: div10.scf) 

 

Figure 7.3c Internal Circuit symbol of ÷10 divide circuit 

7.1.4 ÷÷÷÷50 Divider Design 

 

Step 1:  Form a Truth table. There are 50 states, 0, 1, 2, 3, 4, …and 49, requiring a 

6-bit, T5T4T3T2T1T0 to signify the state value (Table 7.4a)。 

 

Step 2:  From the above Truth table (Table 7.4a) leads to the following Karnaugh 

Map and equations. (Table 7.4b〜Table 7.4h)。 
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Table 7.4a State table of ÷50 divider’s sequential circuit 

Present State Next State Output 

000000 000001 0 

000001 000010 0 

000010 000011 0 

000011 000100 0 

000100 000101 0 

………… ………… ………… 

011000 011001 0 

011001 011010 1 

………… ………… ………… 

110001 000000 1 

 

Table 7.4b Karnaugh Map of T0, T0 = Y5’ + Y5Y4’ + Y5Y3’Y2’Y1’ 

Y5 = 0 

Present State Inputs Y1Y0 T0 
00 01 11 10 

Y4 = 0 1 1 1 1 
00 

Y4 = 1 1 1 1 1 

Y4 = 0 1 1 1 1 
01 

Y4 = 1 1 1 1 1 

Y4 = 0 1 1 1 1 
11 

Y4 = 1 1 1 1 1 

Y4 = 0 1 1 1 1 

 

 

 

Present State 

Inputs Y3Y2 

 

 

 
10 

Y4 = 1 1 1 1 1 
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Y5 = 1 

Present State Inputs Y1Y0 T0 
00 01 11 10 

Y4 = 0 1 1 1 1 
00 

Y4 = 1 1 1   

Y4 = 0 1 1 1 1 
01 

Y4 = 1     

Y4 = 0 1 1 1 1 
11 

Y4 = 1     

Y4 = 0 1 1 1 1 

 

 

 

Present State 

Inputs Y3Y2 

10 
Y4 = 1     

 

 

Table 7.4c  Karnaugh Map of T1, T1 = Y5’Y0 + Y5Y4’Y0 

Y5 = 0 

Present State Inputs Y1Y0 T1 
00 01 11 10 

Y4=0 0 1 1 0 
00 

Y4=1 0 1 1 0 

Y4=0 0 1 1 0 
01 

Y4=1 0 1 1 0 

Y4=0 0 1 1 0 
11 

Y4=1 0 1 1 0 

Y4=0 0 1 1 0 

 

 

 

Present State 

Inputs Y3Y2 

10 
Y4=1 0 1 1 0 
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Y5 = 1 

Present State Inputs Y1Y0 T1 
00 01 11 10 

Y4 = 0 0 1 1 0 
00 

Y4 = 1 0 0   

Y4 = 0 0 1 1 0 
01 

Y4 = 1     

Y4 = 0 0 1 1 0 
11 

Y4 = 1     

Y4 = 0 0 1 1 0 

 

 

 

Present State 

Inputs Y3Y2 

10 
Y4 = 1     

 

 

Table 7.4d  Karnaugh Map of T2, T2 = Y5’Y1Y0 + Y5Y4’Y1Y0 

Y5 = 0 

Present State Inputs Y1Y0 T2 
00 01 11 10 

00 Y4 = 0 0 0 1 0 

 Y4 = 1 0 0 1 0 

01 Y4 = 0 0 0 1 0 

 Y4 = 1 0 0 1 0 

11 Y4 = 0 0 0 1 0 

 Y4 = 1 0 0 1 0 

10 Y4 = 0 0 0 1 0 

 

 

 

Present State 

Inputs Y3Y2 

 Y4 = 1 0 0 1 0 
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Y5 = 1 

Present State Inputs Y1Y0 T2 
00 01 11 10 

Y4=0 0 0 1 0 
00 

Y4=1 0 0   

Y4=0 0 0 1 0 
01 

Y4=1     

Y4=0 0 0 1 0 
11 

Y4=1     

Y4=0 0 0 1 0 

 

 

 

Present State 

Inputs Y3Y2 

10 
Y4=1     

 

 

Table 7.4e  Karnaugh Map of T3, T3 = Y5’Y2Y1Y0 + Y5Y4’Y2Y1Y0 

Y5 = 0 

Present State Inputs Y1Y0 T3 
00 01 11 10 

Y4=0 0 0 0 0 
00 

Y4=1 0 0 0 0 

Y4=0 0 0 1 0 
01 

Y4=1 0 0 1 0 

Y4=0 0 0 1 0 
11 

Y4=1 0 0 1 0 

Y4=0 0 0 0 0 

 

 

 

Present State 

Inputs Y3Y2 

10 
Y4=1 0 0 0 0 
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Y5 = 1 

Present State Inputs Y1Y0 T3 
00 01 11 10 

Y4 = 0 0 0 0 0 
00 

Y4 = 1 0 0   

Y4 = 0 0 0 1  
01 

Y4 = 1     

Y4 = 0 0 0 1 0 
11 

Y4 = 1     

Y4 = 0 0 0 0 0 

 

 

 

Present State 

Inputs Y3Y2 

10 
Y4 = 1     

 

 

Table 7.4f  Karnaugh Map of T4 , T4 = Y5’Y3Y2Y1Y0 + 

Y5Y4’Y3Y2Y1Y0+Y5Y4Y3’Y2’Y1’Y0 

Y5 = 0 

Present State Inputs Y1Y0 T4 
00 01 11 10 

Y4 = 0 0 0 0 0 
00 

Y4 = 1 0 0 0 0 

Y4 = 0 0 0 0 0 
01 

Y4 = 1 0 0 0 0 

Y4 = 0 0 0 1 0 
11 

Y4 = 1 0 0 1 0 

 

 

 

Present State 

Inputs Y3Y2 

Y4 = 0 0 0 0 0 

 
10 

Y4 = 1 0 0 0 0 
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Y5 = 1 

Present State Inputs Y1Y0 T4 
00 01 11 10 

Y4 = 0 0 0 0 0 
00 

Y4 = 1 0 1   

Y4 = 0 0 0 0 0 
01 

Y4 = 1     

Y4 = 0 0 0 1 0 
11 

Y4 = 1     

Y4 = 0 0 0 0 0 

 

 

 

Present State 

Inputs Y3Y2 

10 
Y4 = 1     

 

 

Table 7.4g  Karnaugh Map of T5, T5 = Y5’Y4Y3Y2Y1Y0 + Y5Y4Y3’Y2’Y1’Y0 

Y5 = 0 

Present State Inputs Y1Y0 T5 
00 01 11 10 

Y4 = 0 0 0 0 0 
00 

Y4 = 1 0 0 0 0 

Y4 = 0 0 0 0 0 
01 

Y4 = 1 0 0 0 0 

Y4 = 0 0 0 0 0 
11 

Y4 = 1 0 0 1 0 

Y4 = 0 0 0 0 0 

 

 

 

Present State 

Inputs Y3Y2 

10 
Y4 = 1 0 0 0 0 
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Y5 = 1 

Present State Inputs Y1Y0 T5 
00 01 11 10 

Y4 = 0 0 0 0 0 
00 

Y4 = 1 0 1   

Y4 = 0 0 0 0 0 
01 

Y4 = 1     

Y4 = 0 0 0 0 0 
11 

Y4 = 1     

Y4 = 0 0 0 0 0 

 

 

 

Present State 

Inputs Y3Y2 

10 
Y4 = 1     

 

 

Table 7.4h  Karnaugh Map of Z , Z = Y5’Y4Y3Y2’Y1’Y0’ + Y5Y4Y3’Y2’Y1’Y0 

Y5 = 0 

Present State Inputs Y1Y0 Z 
00 01 11 10 

Y4 = 0 0 0 0 0 
00 

Y4 = 1 0 0 0 0 

Y4 = 0 0 0 0 0 
01 

Y4 = 1 0 0 0 0 

Y4 = 0 0 0 0 0 
11 

Y4 = 1 0 0 0 0 

Y4 = 0 0 0 0 0 

 

 

 

Present State 

Inputs Y3Y2 

10 
Y4 = 1 1 0 0 0 
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Y5 = 1 

Present State Inputs Y1Y0 Z 
00 01 11 10 

 Y4 = 0 0 0 0 0 
00 

Y4 = 1 0 1   

Y4 = 0 0 0 0 0 
01 

Y4 = 1     

Y4 = 0 0 0 0 0 
11 

Y4 = 1     

Y4 = 0 0 0 0 0 

 

 

Present State 

Inputs Y1Y2 

10 
Y4 = 1     

 

Step 3:  Figure out each minimized input and output functions.  

 

 T0 = Y5’ + Y5Y4’ + Y5Y3’Y2’Y1’ 

 T1 = Y5’Y0 + Y5Y4’Y0 

 T2 = Y5’Y1Y0 + Y5Y4’Y1Y0 

 T3 = Y5’Y2Y1Y0 + Y5Y4’Y2Y1Y0 

 T4 = Y5’Y3Y2Y1Y0 + Y5Y4’Y3Y2Y1Y0 +Y5Y4Y3’Y2’Y1’Y0 

 T5 = Y5’Y4Y3Y2Y1Y0 + Y5Y4Y3’Y2’Y1’Y0 

 Z = Y5’Y4Y3Y2’Y1’Y0’ + Y5Y4Y3’Y2’Y1’Y0 

 

Step 4:  Please use the Graphic editor of MAX+PLUS II to complete the circuit 

entry of the above equations (Figure 7.4a)。 

 

Step 5:  Complete functional simulation by using Simulator in MAX+PLUS II and 
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test weather the functions meet the circuit specifications (Figure 7.4b and 

Figure 7.4c).  Go on to the next step if the functions meet the 

specifications; otherwise go back to step 1 to check the cause of error 

sequentially. 

 

Figure 7.4a Using MAX+PLUS II Graphic editor to create ÷50 divider 

 (File: div50.gdf) 

 

 

Figure 7.4b Simulation result of div50.gdf (File: div50.scf) 
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Figure 7.4c Simulation result of div50.gdf (File: div50.scf) 

 

Step 6:  If the circuits allow download testing, download (or programming) to test 

the circuit after selecting the download (or programming) device and 

floorplan program. 
 

〜Skip this download test〜 

 

Step 7:  Please refer to File > Create Default Symbol to create the internal circuit 

symbol of ÷50 circuit for the upper layer circuit (Figure 7.4d). 

 

Figure 7.4d Internal circuit symbol of ÷50 divide circuit  

7.1.5 Frequency Generator  

  In this section, we will use the circuits designed in the previous sections, to 

divide the frequency of 10 MHz to 1 MHz, 100 KHz, 10 KHz, 1 KHz, 100 Hz, 10 

Hz and 1 Hz, as illustrated in Figure 7.5a. Figure 7.5b〜7.5d are the simulation 

Results.  
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Figure 7.5a Using MAX+PLUS II Graphic editor to create frequency generator 

circuit (File: clkgen.gdf) 

 

 

Figure 7.5b Frequency generator circuit simulation result of 1 MHz and 100 KHz 

(File: clkgen.scf) 
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Figure 7.5c  Frequency generator circuit simulation result of 10 KHz  

(File: clkgen.scf) 

 

Figure 7.5d  Frequency generator circuit simulation result of 1 KHz 

 (File: clkgen.scf) 

7.2 Simple Electronic Dice  

  To design the circuits of a simple dice game, we need 3 types of sub-circuits 

(terms of hierarchical design, which means integrate the tiny circuits to compose a 

large circuit) dice decoder circuit, MOD6 counter and frequency generator. The 

frequency generator would divide the high frequency into two diverse frequencies, 

and differentiate to the MOD6 counter. The MOD6 counter would output to the dice 

decoder to show the points.   
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7.2.1 Dice Decoder Circuit 

  The Dice Decoder introduced here is a 6 to 7 decoder. The Dice Decoder 

Circuits have to apply the functions shown in Figure 7.6. Please complete the design, 

simulation, and verification of this decoder. 

 

Figure 7.6 Functional code of dice decoder 

 

Step 1: Form a Truth table (Table 7.5a). 

 

Table 7.5a Truth table of dice decoder 

Inputs Outputs 

D2D1D0 O6~O0 

000 0001000 

001 0100010 

010 1001001 

011 1010101 

100 1011101 

101 1110111 
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Step 2:  The above Truth table leads to the following Karnaugh Matrix and 

equations. (Table 7.5b〜Table 7.5h). 

 

Table 7.5b Karnaugh Map of output O0 

D1D0 O0 
00 01 11 10 

0 0 0 1 1 
D2 

1 1 1 0 0 
 

Table 7.5c  Karnaugh Map of output O1 

D1D0 O1 
00 01 11 10 

0 0 1 0 0 
D2 

1 0 1 0 0 

 

Table 7.5d  Karnaugh Map of output O2 

D1D0 O2 
00 01 11 10 

0 0 0 1 0 
D2 

1 1 1 0 0 

 

Table 7.5e  Karnaugh Map of output O3 

D1D0 O3 
00 01 11 10 

0 1 0 0 1 
D2 

1 1 0 0 0 
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Table 7.5f  Karnaugh Map of output O4  

D1D0 O4 
00 01 11 10 

0 0 0 1 0 
D2 

1 1 1 0 0 

 

Table 7.5g  Karnaugh Map of output O5 

D1D0 O6 
00 01 11 10 

0 0 1 0 0 
D2 

1 0 1 0 0 

 

Table 7.5h  Karnaugh Map of output O6 

D1D0 O6 
00 01 11 10 

0 0 0 1 1 
D2 

1 1 1 0 0 

 

Step 3:  Figure out each minimized input and output functions. 

 O0 = D2D1’ + D2’D1  ； O1 = D1’D0    

 O2 = D2D1’ + D2’D1D0 ； O3 = D2’D0’ + D1’D0’  

 O4 = O2 ； O5 = O1  

 O6 = O0 

 

Step 4:  According to the above Boolean Equations, please use the proper logic 

gate by Graphic editor of MAX+PLUS II to create the circuit. (Figure 

7.7a)。 
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Step 5:  Complete the functional simulation and check weather the functions meet 

the specification. If the functions meet the specification, please create the 

internal circuit symbol for the upper circuit. Figure 7.7b is the simulation 

result of the dice decoder, and it meets the functional specifications. 

 

Figure 7.7a Using MAX+PLUS II Graphic editor to create decide decoder circuits 

(File: dice_dec.gdf) 

Figure 7.7b Simulation result of dice decoder (File: dice_dec.scf) 
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Step 6:  After floorplan programming, please download the circuits and perform 

the testing of the circuit. Please modify Figure 7.7a, dice decoder circuit, 

as shown in Figure 5.3, to Figure 7.7c. Dice_COM is ready for connecting 

the VCC output to the dice anode. Please re-compile it after modifying and 

adapt the floorplan programming techniques in Section 4.6. Please select 

EPF10K10TC144-4 chip and use the pin assignment reference shown in 

Table 7.6.  

 

Figure 7.7c Using MAX+PLUS II Graphic editor to create dice decoder circuits 
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Table 7.6  Pin assignment of EPF10K10TC144-4 chip 

Signal 
EPF10K10TC144-4 

chip pin 
Signal 

EPF10K10TC144-4 

chip pin 

D0 Pin 47 O3 Pin 10 

D1 Pin 48 O4 Pin 11 

D2 Pin 49 O5 Pin 12 

O0 Pin 7 O6 Pin 13 

O1 Pin 8   

O2 Pin 9 Dice_COM Pin 142 

 

After setting up LP-2900 Lab Platform, go on to download the dice decoder to 

EPF10K10TC144-4 chip. Try to push down SW1 (D0), SW2 (D1), and SW3 

(D2), on the left-bottom of LP-2900. Please note the changes of L13 (O0), L14 

(O10), L15 (O9) … and L19 (O0) . 

 

Step 7:  Please refer to File > Create Default Symbol to generate the internal 

circuit symbol of “Dice Decoder” for the upper layer circuit (Figure 7.7d). 

 

Figure 7.7d The internal circuit symbol of “Dice Decoder” 

7.2.2 MOD6 Counter 

There a counter, which the initial value is 0000 (0), has the value turns to 0001 (1) 

when the positive edge of the clock enters.  If the clock keeps flowing in, the 

counter will sequentially turns to 0010 (2) → 0011 (3) → 0100 (4) → 0101 (5) 

→ 0000 (0) →…and keeps cycling like this. 
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From the above circuit specifications, we know it is a MOD6 Counter. The design is 

as follows: 

 

Step 1:  Complete the state setup of the circuit specification and illustrate by a 

State table. The circuit specification of MOD6 counter can be illustrated as 

the State table 7.7a. 

 

Table 7.7a MOD 6 Counter sequential circuits 

Present State Next State Outputs 

000 001 000 

001 010 001 

010 011 010 

011 100 011 

100 101 100 

101 000 101 

 

Step 2:  Figure out the input and output functions of Karnaugh Matrix or other 

minimized functions of each Flip-Flop by adapting an Excitation table.  

From the Flip-Flop Excitation table, Table 6.14c, we can figure out the 

Karnaugh Matrix of Flip-Flop input function, as shown from Table 7.7b to 

Table 7.7g. 

 

Table 7.7b Karnaugh Map of J0 , J0 = Y2’Y0’ + Y1’Y0’ 

Present State Input Y1Y0 J0 
00 01 11 10 

0 1 – – 1 Present State 

Input Y2 1 1 –   
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Table 7.7c  Karnaugh Map of K0, K0 = Y1’Y0 + Y2’Y0 

Present State Input Y1Y0 K0 
00 01 11 10 

0 – 1 1 – Present State 

Input Y2 1 – 1   

 

 

Table 7.7d  Karnaugh Map of J1, J1 = Y2’Y0 

Present State Input Y1Y0 J1 
00 01 11 10 

0 0 1 – – Present State 

Input Y2 1 0 0   

 

 

Table 7.7e  Karnaugh Map of K1 , K1 = Y2’Y0 

Present State InputY1Y0 K1 
00 01 11 10 

0 – – 1 0 Present State 

Input Y2 1 – –   

 

 

Table 7.7f  Karnaugh Map of J2, J2 = Y2’Y1Y0 

Present State Input Y1Y0 J2 
00 01 11 10 

0 0 0 1 0 Present State 

Input Y2 1 – –   

 

    CPLD Logic Design and Practices                           Simple Designing Examples 



Table 7.7g  Karnaugh Map of K2, K2 = Y1’Y0 

Present State Input Y1Y0 K2 
00 01 11 10 

0 – – – – Present State 

Input Y2 1 0 1   

 

Step 3:  Figure out each minimized input and output functions.  
 

 J0 = Y2’Y0’ + Y1’Y0’ ； K0 = Y1’Y0 + Y2’Y0 

 J1 = Y2’Y0 ； K1 = Y2’Y0 

 J2 = Y2’Y1Y0 ； K2 = Y1’Y0 

 Q0 = Y0 ； Q1 = Y1 

 Q2 = Y2 

 

Step 4:  Using the Graphic editor of MAX+PLUS II to create a circuit entry 

illustrated in Figure 7.8. 

 

Step 5:  Complete functional simulation by using MAX+PLUS II (Figure 7.9) and 

test weather the functions meet the circuit specifications. Go on to the next 

step if the functions meet the specifications; otherwise, reinitialize step 1 to 

check the cause of error sequentially.  

 

Step 6:  If the circuits allow test by downloading, download (or programming) to 

test the circuit after selecting the download (or programming) device and 

floorplan program. Please modify Figure 7.8, MOD6 counter circuit, as the 

verification of the circuit shown in Figure 5.3. Re-compile it when 

complete the verification. Then, adapting the floorplan programming 

techniques instructed in Section 4.6, to select an EPF10K10TC144-4 chip 
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and use the pin assignment shown in Table 7.8.  After assemble LP-2900 

Lab Platform, download MOD6 counter to EPF10K10TC144-4 chip. Try 

to push PS1 down on the left-bottom of LP-2900.  Please note the 

changes of L1 (O2), L2 (O1), and L3 (O0).  

 

Step 7:  Please refer to File > Create Default Symbol to generate the internal 

circuit symbol of MOD 6 (Figure 7.10) for the good of the upper layer 

circuit. 

 

Figure 7.8 Using MAX+PLUS II Graphic editor to create MOD 6 counter circuit 

(File：mod6.gdf) 

 

    CPLD Logic Design and Practices                           Simple Designing Examples 



Figure 7.9 Simulation result of Mod 6 counter circuit (File：mod6.scf) 

 

Table 7.8  Pin assignment of EPF10K10TC144-4 chip 

Signal 
EPF10K10TC144-4 

chip pin 
Signal 

EPF10K10TC144-4 

chip pin 

CLKIN Pin 54   

Q0 Pin 9 LED_COM Pin 141 

Q1 Pin 8   

Q2 Pin 7   

Figure 7.10 Internal circuit symbol of MOD 6  
 

7.2.3 Dice Game Circuit 

In this section, we will use “dice decoder circuit”, “MOD6 counter” and the 

frequency circuit listed in Section 7.1 to compose a simple dice game circuit.   

 

Step 1:  Using MAX+PLUS II Graphic editor to create a circuit entry illustrated in 

Figure 7.11a and modify circuit, Figure 7.11b, for simulation purpose.   

 

Step 2: Complete functional simulation (Figure 7.12) by using MAX+PLUS II, and 

test weather the functions meet the circuit specifications. For the 

convenience of the mimic of the circuit shown in Figure 7.11a, we slightly 

modify the circuit as shown in Figure 7.11b. Go on to the next step if the 
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functions meet the specifications; otherwise, reinitialize step 1 to check the 

cause of error sequentially.   

 

Step 3:  If the circuit allows download testing, download (or programming) to test 

the circuit after selecting the download (or programming) device and   

floorplan. 

 

Figure 7.11a Use MAX+PLUS II Graphic editor to create dice game circuit  

(File: dice_game.gdf) 

Figure 7.11b Dice game circuit modified for simulation purpose  

(File: dice_gamb.gdf) 
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Figure 7.12 Simulation result of “Dice Game Circuit” (File: dice_gamb.scf) 

 

Please restore Figure 7.11a, modify this Dice Game Circuit according to Figure 5.4a 

shown in Section 5.2.1. Please re-compile it when complete the modification.  

Then, adapting the floorplan programming techniques instructed in Section 4.6 to 

choose EPF10K10TC144-4 chip, and use pin assignment in Table 7.9.  

After setting up LP-2900 Lab Platform, download Dice Game Circuit to 

EPF10K10TC144-4 chip. Try to push PS3 (Pin 124) and PS4 (Pin 126) on the left 

bottom of LP-2900.  Please note the changes of the “Dice”. 

 

Table 7.9 Pin assignment of EPF10K10TC144-4 chip 

Signal 
EPF10K10TC144-4 

pin setup 
Signal 

EPF10K10TC144-4 

pin setup 

DiceA0 Pin7 DiceB0 Pin14 

DiceA1 Pin8 DiceB1 Pin17 

DiceA2 Pin9 DiceB2 Pin18 

DiceA3 Pin10 DiceB3 Pin19 

DiceA4 Pin11 DiceB4 Pin20 

DiceA5 Pin12 DiceB5 Pin21 

DiceA6 Pin13 DiceB6 Pin22 

PlayerA Pin 124 PlayerB Pin 126 

CLKIN Pin 55 DICE_COM Pin 142 
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7.3 Timer  

In this section, we will design a timer that has a start/stop button to control the start 

and stop of the timer, and a clrn button to clear the figure. The timer is set as 

follows:  

 X. XX. XX. X.  

 Hour Minute Second 10 Hertz 

To implement the timer circuit, the circuit of 10 Hz pause generator, decimal 

counter, and 60-carry counter, 12-carry counter and a scan display are required. 

Since the circuit of 10Hz pause generator circuit has shown in Section 7.1.5, we will 

not mention it again in this section. The following sections are the descriptions of 

each sub-circuit that will be integrated into a timer circuit.  

 

7.3.1 Decimal Counter 

Step 1:  Form a Truth table (Table 7.10a)。 

 

Table 7.10a State table of decimal counter sequential circuit 

Present State Next State 
Outputs 

Clko 

Outputs 

x[3..0] 

0000 0001 0 0000 

0001 0010 0 0001 

0010 0011 0 0010 

0011 0100 0 0011 

0100 0101 0 0100 

0101 0110 1 0101 

0110 0111 1 0110 
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0111 1000 1 0111 

1000 1001 1 1000 

1001 0000 1 1001 

Note: Decimal counter is similar with 10-divider 

 

Step 2:  From the above Truth table (Table 7.10a) leads to the following Karnaugh 

Map and equations. (Table 7.10b to Table 7.10j) 

 

Table 7.10b Karnaugh Map of T0 , T0 = Y3’ + Y2’Y1’ 

Present State Input Y1Y0 T0 
00 01 11 10 

00 1 1 1 1 

01 1 1 1 1 

11     

 

Present State 

Input Y3Y2 

10 1 1   

 

 

Table 7.10c Karnaugh Map of T1, T1 = Y3’Y0 

Present State Input Y1Y0 T1 
00 01 11 10 

00 0 1 1 0 

01 0 1 1 0 

11     

 

Present State 

Input Y3Y2 

10 0 0   
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Table 7.10d Karnaugh Map of T2, T2 = Y3’Y1Y0 

Present State Input Y1Y0 T2 
00 01 11 10 

00 0 0 1 0 

01 0 0 1 0 

11     

 

Present State 

Input Y3Y2 

10 0 0   

 

 

Table 7.10e  Karnaugh Map of T3 , T3 = Y3’Y2Y1Y0 + Y3Y2’Y1’Y0 

Present State Input Y1Y0 T3 
00 01 11 10 

00 0 0 0 0 

01 0 0 1 0 

11     

 

Present State 

Input Y3Y2 

10 0 1   

 

 

Table 7.10f Karnaugh Map of clko, clko = Y3’Y2Y1’Y0’ + Y3Y2’Y1’Y0 

Present State Input Y1Y0 clko 
00 01 11 10 

00 0 0 0 0 

01 1 0 0 0 

11     

 

Present State 

Input Y3Y2 

10 0 1   
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Table 7.10g Karnaugh Map of X0, X0 = Y0 

Present State Input Y1Y0 X0 
00 01 11 10 

00 0 1 1 0 

01 0 1 1 0 

11     

 

Present State 

Input Y3Y2 

10 0 1   

 

 

Table 7.10h Karnaugh Map of X1, X1 = Y1 

Present State Input Y1Y0 X1 
00 01 11 10 

00 0 0 1 1 

01 0 0 1 1 

11     

 

Present State 

Input Y3Y2 

10 0 0   

 

 

Table 7.10i    Karnaugh Map of X2, X2 = Y2 

Present State Input Y1Y0 X2 
00 01 11 10 

00 0 0 0 0 

01 1 1 1 1 

11     

 

Present State 

Input Y3Y2 

10 0 0   
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Table 7.10j Karnaugh Map of X3, X3 = Y3 

Present State InputY1Y0 X3 
00 01 11 10 

00 0 0 0 0 

01 0 0 0 0 

11     

 

Present State 

Input Y3Y2 

10 1 1   

 

Step 3:  Figure out each minimized functions of each Inputs and Outputs. 
 

 T0 = Y3’ + Y2’Y1’ ； T1 = Y3’Y0 

 T2 = Y3’Y1Y0 ； T3 = Y3’Y2Y1Y0 + Y3Y2’Y1’Y0 

 X0 = Y0 ； X1 = Y1 

 X2 = Y2 ； X3 = Y3 

 clko = Y3’Y2Y1’Y0’ + Y3Y2’Y1’Y0 

 

Step 4:  Please use the Graphic editor of MAX+PLUS II to complete editing the 

circuit entry of the above equations (Figure 7.13a)。 

 

Step 5:  Complete functional simulation by using MAX+PLUS II (Figure 7.13b) 

and test weather the functions meet the circuit specifications. Go on to the 

next step if the functions meet the specifications; otherwise go back to step 

1 to check the cause of error sequentially. 
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Figure 7.13a Use Graphic editor of MAX+PLUS II to create decimal counter  

(File: bcd10.gdf) 

 

Step 6:  If the circuits allow download testing, download (or programming) to test 

the circuit after selecting the download (or programming) device and 

floorplan program.  

〜Skip the download testing〜 

 

Step 7:  Please use File > Create Default Symbol to generate a decimal counter 

circuit symbol (Figure 7.13c) for the use of upper layer circuits. 
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Figure 7.13b Simulation result of decimal counter circuit 

 (File: bcd10.scf) 

 

Figure 7.13c Internal circuit symbol of decimal counter 

 

7.3.2 60-carry Counter Circuit 

Two elements 6-carry counter and decimal counter compose a 60-carry counter. The 

design of decimal counter is illustrated in 7.3.1. 6-carry counter, adapting the clock 

output of decimal counter, is designed as follows: 

 

Step 1: Form a 6-carry counter Truth table (Table 7.11a). 

 

Table 7.11a State table of a 6-carry counter’s sequential circuit  

Present State Next State Outputs 

clko 

Outputs 

x[2..0] 

000 001 0 000 

001 010 0 001 

010 011 0 010 

011 100 1 011 

100 101 1 100 

101 000 1 101 
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Step 2:  From the above Truth table  (Table 7.11a) leads to the following 

Karnaugh Map and equations (Table 7.11b〜Table 7.11e). 

 

Table 7.11b  Karnaugh Map of T0, T0 = Vcc 

Present State Input x1x0 T0 
00 01 11 10 

0 1 1 1 1 Present State 

Input x2 1 1 1   

 

 

Table 7.11c  Karnaugh Map of T1, T1 = x2’x0 

Present State Input x1x0 T1 
00 01 11 10 

0 0 1 1 0 Present State 

Input x2 1 0 0   

 

 

Table 7.11d  Karnaugh Map of T2, T2 = x2’x1x0 + x2x1’x0 

Present State Input x1x0 T2 
00 01 11 10 

0 0 0 1 0 Present State 

Input x2 1 0 1   
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Table 7.11e  Karnaugh Map of Clko, clko = x2’x1’x0 + x2x1’x0 

Present State Input x1x0 clko 
00 01 11 10 

0 0 0 0 1 Present State 

Input x2 1 0 1   

 

Step 3:  Figure out the minimized equations of each input and output function.  

Decimal parts are shown in 7.3.1. The following is are parts of 6-carry 

counter: 

 

 T0 = Vcc ； T1 = x2’x0 

 T2 = x2’x1x0 + x2x1’x0 ； clko = x2’x1’x0 + x2x1’x0 

 

Step 4:  Please use the Graphic editor of MAX+PLUS II to complete editing the 

circuit entry of the above equations (Figure 7.14a)。 

 

Step 5:  Complete functional simulation by using MAX+PLUS II (Figure 7.14b 

and Figure 7.14c) and test weather the functions meet the circuit 

specifications. Go on to the next step if the functions meet the 

specifications; otherwise go back to step 1 to check the cause of error 

sequentially  
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Figure 7.14a Use AX+PLUS II Graphic editor to create a 60-carry counter circuit 

(File: bcd60.gdf) 

 

Figure 7.14b Simulation results of a 60-carry counter circuit (File: bcd60.scf) 
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Figure 7.14c Simulation result of a 60-carry counter circuit (File: bcd60.scf) 

 

Step 6:  If the circuits allow download testing, download (or programming) to test 

the circuit after selecting the download (or programming) device and 

floorplan program.   
 

〜Skip this download testing〜 

 

Step 7:  Please use File > Create Default Symbol to generate an internal circuit 

symbol of 60-carry counter Circuit (Figure 7.14d) for the upper layer 

circuit. 

Figure 7.14d The internal circuit symbol of 60-carry counter 
 

7.3.3 12-carry Counter Circuit 

  Like 60-carry counter, 12-carry counter is designed as the followings: 

 

Step 1:  Form a Truth table (Table 7.12a)。 

 

Step 2:  From the above Truth table (Table 7.12a) leads to the following Karnaugh 

Map and equations (Table 7.12b to Table 7.12g)。 
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Table 7.12a State table of 12-carry counter’s sequential circuit  

Present State 

X0Y3Y2Y1Y0 

Next State 

x0Y3Y2Y1Y0 

Output 

clko 

Output 

x0Y3Y2Y1Y0 

00000 00001 0 00000 

00001 00010 0 00001 

00010 00011 0 00010 

00011 00100 0 00011 

00100 00101 0 00100 

00101 00110 0 00101 

00110 00111 1 00110 

00111 01000 1 00111 

01000 01001 1 01000 

01001 10000 1 01001 

10001 10010 1 10001 

10010 00000 1 10010 

Note: x0 is decimal  

 

Table 7.12b Karnaugh Map of T0, T0 = x0’Y3’ + Y3’Y2’Y1’ + x0’Y3Y2’Y1’ 

Present State Input Y1Y0 T0 
00 01 11 10 

X0 = 0 1 1 1 1 
00 

X0 = 1 1 1  0 

X0 = 0 1 1 1 1 
01 

X0 = 1     

X0 = 0     
11 

X0 = 1     

X0 = 0 1 1   

 

 

Present State 

Input Y3Y2 

10 
X0 = 1     
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Table 7.12c Karnaugh Map of T1, T1 = Y3’Y0 + x0Y3’Y2’Y1 

Present State Input Y1Y0 T1 
00 01 11 10 

X0 = 0 0 1 1 0 
00 

X0 = 1 0 1  1 

X0 = 0 0 1 1 0 
01 

X0 = 1     

X0 = 0     
11 

X0 = 1     

X0 = 0 0 1   

 

 

 

Present State 

Input Y3Y2 

10 
X0 = 1     

 

 

Table 7.12d Karnaugh Map of T2, T2 = Y1Y0 

Present State Input Y1Y0 T2 
00 01 11 10 

X0 = 0 0 0 1 0 
00 

X0 = 1 0 0  0 

X0 = 0 0 0 1 0 
01 

X0 = 1     

X0 = 0     
11 

X0 = 1     

X0 = 0 0 0   

 

 

 

Present State 

Input Y3Y2 

10 
X0 = 1     
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Table 7.12e Karnaugh Map of T3 , T3 = x0’Y3’Y2Y1Y0 + x0’Y3Y2’Y1’Y0 

Present State Input Y1Y0 T3 
00 01 11 10 

X0 = 0 0 0 0 0 
00 

X0 = 1 0 0  0 

X0 = 0 0 0 1 0 
01 

X0 = 1     

X0 = 0     
11 

X0 = 1     

X0 = 0 0 1   

 

 

 

Present State 

Input Y3Y2 

10 
X0 = 1     

 

 

Table 7.12f Karnaugh Map of T4, T4 = x0’Y3Y2’Y1’Y0 + x0Y3’Y2’Y1Y0’ 

Present State Input Y1Y0 T4 
00 01 11 10 

X0 = 0 0 0 0 0 
00 

X0 = 1 0 0  1 

X0 = 0 0 0 0 0 
01 

X0 = 1     

X0 = 0     
11 

X0 = 1     

X0 = 0 0 1   

 

 

 

Present State 

Input Y3Y2 

10 
X0 = 1     

 

 

 

    CPLD Logic Design and Practices                           Simple Designing Examples 



Table 7.12g Karnaugh Map of clko, clko = x0’Y3’Y2Y1Y0’ + x0Y3’Y2’Y1Y0’ 

Present State Input Y1Y0 T5 
00 01 11 10 

X0 = 0 0 0 0 0 
00 

X0 = 1 0 0  1 

X0 = 0 0 0 0 1 
01 

X0 = 1     

X0 = 0     
11 

X0 = 1     

X0 = 0 0 1   

 

 

 

Present State 

Input Y3Y2 

10 
X0 = 1     

 

Step 3:  Figure out the minimized equations of each input and output functions.  

 

 T0 = x0’Y3’ + Y3’Y2’Y1’ + x0’Y3Y2’Y1’ 

 T1 = Y3’Y0 + x0Y3’Y2’Y1 

 T2 = Y1Y0 

 T3 = x0’Y3’Y2Y1Y0 + x0’ Y3Y2’Y1’Y0 

 T4 = x0’Y3Y2’Y1’Y0 + x0Y3’Y2’Y1Y0’ 

 Clko = x0’Y3’Y2Y1Y0’ + x0Y3’Y2’Y1Y0’ 

 

Step 4:  Please use the Graphic editor of MAX+PLUS II to complete editing the 

circuit entry of the above equations (Figure 7.15a)。 

 

Step 5:  Complete functional simulation by using MAX+PLUS II (Figure 7.15b) 

and test weather the functions meet the circuit specifications. Go on to the 

next step if meets the specifications; otherwise go back to step 1 to check 

the cause of error sequentially. 
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Figure 7.15a Use Graphic editor of MAX+PLUS II to create 12-carry counter 

circuit (File: bcd12.gdf) 

 

 

Figure 7.15b Simulation result of 12-carry counter (File: bcd12.scf) 

 

Step 6:  If the circuits allow download testing, download (or programming) to test 

the circuit after selecting the download (or programming) device and 

floorplan program.  
 

〜Skip this download testing〜 
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symbol of 12-carry Counter (Figure 7.15c) for the upper layer circuit. 

 

Figure 7.15c The internal circuit symbol of 12-carry counter 

7.3.4 Scan Display Circuit 

 The Scan Display Circuit is in charge of selecting data, and through 7-segment 

display decoding, the figures will be displayed on the proper 7-segment display.  

Take Figure 7.16a as an example, in segment T0 (c0 = “0”, others = “1”) D0 is 

selected to Y. After decoding, the result will be transferred from Z to (a, b, c, d, e, 

f, g, h).  In segment T1 (c1 = “0”, others = “1”) D1 is selected to Y.  After 

decoding, the result will be transferred from Z to (a, b, c, d, e, f, g, h). In segment 

T2 (c2 = “0”, others = “1”) D2 is selected to Y. After decoding, the result will be 

transferred from Z to (a, b, c, d, e, f, g, h). In segment T3 (c3 = “0”, others =  

“1”) D3 is selected to Y. After decoding, the result will be transferred from Z to 

(a, b, c, d, e, f, g, h). In segment T4 (c4 = “0”, others = “1”) D4 is selected to Y.  

After decoding, the result will be transferred from Z to (a, b, c, d, e, f, g, h).  In 

segment T5 (c5 = “0”, others = “1”) D5 is selected to Y. After decoding, the 

result will be transferred from Z to (a, b, c, d, e, f, g, h). In  segment T6（c0 = 

“0”, others = “1”）again, D0 is selected to Y. After decoding, the result will be 

transferred from Z to (a, b, c, d, e, f, g, h). The transmission will keep on cycling 

like this. If the speed of scanning is faster than that of visual pause, we can see 

the steady, non-flashing display of the digits.  

Theoretically, we need three types of circuits, scan signal generator, data selecting, 
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Step 7:  Please use File > Create Default Symbol to generate an internal circuit 



and 7-segment display decoding circuit. There are only 144 pins on EPF10K-

10TC144-4 chip on LP-2900 Logic Circuit Design Lab Platform; therefore, except 

for EPF10K10TC144-4 chip, a 74138 LSI chip, see Figure 7.16b, which provides 

the scan signal of c1 to c6 (code number on LP-2900) is required to save pins.  

However, EPF10K10TC144-4 chip has provided a, b, and c signals for activating 

74138 to generate scan signals of c1 to c6. So, what kind functions of 74138 are? 

We can distinguish its functions from the following Truth table  (Table 7.13). 

Under the condition of G1 = “1” and G2A = G2B = “0”, make ABC sequentially 

turns “000” to “111” and the scan signals would be consequentially generated.  

Therefore, we modify the scan display circuit of Figure 7.16a into a circuit like 

Figure 7.16c. In other words, scan display circuit turns into a composition circuits 

(in the frame of dotted lines) from MOD 8 circuit (to generate ABC signals for 

74138), data selecting circuit, and 7-segment display decoding circuit.   

 

Figure 7.16a Scan display  
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Figure 7.16c Modified Scan Display  

 

Table 7.13 Truth table of 74138  

Inputs Outputs 

G1 G2A G2B CBA Y7Y6Y5Y4Y3Y2Y1Y0 

0 – – – 11111111 

– 1 1 – 11111111 

1 0 0 000 11111110 

1 0 0 001 11111101 

1 0 0 010 11111011 

1 0 0 011 11110111 

1 0 0 100 11101111 

1 0 0 101 11011111 

1 0 0 110 10111111 

1 0 0 111 01111111 
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Step 1:  The 7-segment display decoding circuit has been introduced in Section 

5.6.2 which we will adopt the circuit directly in this section. For the circuit 

design of MOD 8 counter, please refer to Figure 7.17a in Section 7.2.2. 

Figure 7.17b illustrates the simulation result of Figure 7.17a, whereas the 

Figure 7.17c shows the internal circuit symbol.  

Figure 7.17a MOD 8 Counter 

 

Figure 7.17b Simulation result of MOD 8 Counter 

 

Figure 7.17c The internal circuit symbol of MOD 8 Counter 

 

Step 2:  Similarly, please refer to the design, simulation, and verification of 8 to 1 

multiplexer illustrated in Section 5.7.1 to design the circuit of data 

selecting. Figure 7.18c shows the simulation result whereas Figure 7.18b 

illustrates the internal circuit symbol.   
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Figure 7.18a Simulation result of data selecting circuit 

 

 

Figure 7.18b The internal circuit symbol of data selecting circuit 

 

Step 3:  The scan display circuit, Figure 7.19a, can be composed as the completion 

of mod8 counter, data selecting circuit, and 7-segment display decoding 

circuit. Figure 7.19b is the simulation result of Figure 7.19a whereas 

Figure 7.19c is the internal circuit symbol.   
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Figure 7.18c Data selecting circuit 
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Figure 7.19a Scan display circuit 

 

Figure 7.19b Simulation result of scan display circuit 

 

Figure 7.19c The internal circuit symbol of scan display circuit 
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7.3.5 Timer Circuit 

Step 1:  Please use the Graphic editor of MAX+PLUS II to create the circuit entry 

of the following figure (Figure 7.20).   

 

Figure 7.20 Use Graphic editor of MAX+PLUS II to create the Timer Circuit 

(File: timer.gdf) 

 

Step 2:  Complete functional simulation by using MAX+PLUS II and test weather 

the functions meet the circuit specification.   

 

〜Skip this functional simulation〜 

 

Step 3:  If the circuits allow download testing, download (or programming) to test 

the circuit after selecting the download (or programming) device and 

floorplan program. Please adapt the floorplan programming techniques 

instructed in Section 4.6. Choose an EPF10K10TC144-4 chip and use the 

pin assignment shown in Table 7.14. After setting up LP-2900 Lab 

Platform, download the timer circuit to EPF10K10TC144-4 chip. Please 

try to push PS1 (START/STOP) on the bottom of LP-2900 and SW4 (clrn) 

on the left-bottom of LP-2900. At the mean time, please note the changes 

of 7-segment displayer and the position of displaying. 
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Table 7.14  Pin assignment of EPF10K10TC144-4 chip 

Signal 
EPF10K10TC144-4 

chip pin 
Signal 

EPF10K10TC144-4 

chip pin 

Clrn Pin 51 A Pin 23 

10 MHz Pin 55 B Pin 26 

Start/stop Pin 54 C Pin 27 

  D Pin 28 

138 sel0 Pin 33 E Pin 29 

138 sel1 Pin 36 F Pin 30 

138 sel2 Pin 37 G Pin 31 

  H Pin 32 
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7.4 Simple Traffic Light Controller  

The following is the status changes of the traffic light that we are familiar with: 

        HG      →      HY     →      VG      →     VY   

  |Horizontal Green|  |Horizontal Yellow|  |Vertical Green|  |Vertical Yellow| 

                VR              →          HR            

           |Vertical Red|                |Horizontal Red| 

 

From the above circuit specifications, the circuits of the state machine, and 

lightening timer are required for the traffic light controller.  The state machine will 

keep cycling with the states of HG → HY → VG → VY → … where as the 

lightening timer is for controlling the flashing time of the light. 

  

7.4.1 State Machine 

Step 1:  Please complete the state assignment of the circuit specifications and 

illustrate with a state diagram or a State table; the specifications of the 

traffic light state machine is shown as the State table of Table 7.15a.   

 

Step 2:  Use the Excitation table to figure out each input and output functions’ 

Karnaugh Map or other minimized functions. Please use Table 6.14c, Flip-

Flop Excitation table, to figure out the Karnaugh Map of D Type Flip-

Flop’s Input Functions, as Table 7.15b〜Table 7.15g. 
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Table 7.15a State table of traffic light state machine  

Inputs    x1x2 Present State 
00 01 10 11 

Outputs 

Abcd 

00 00 01 00 00 1000 

01 01 01 10 01 0100 

10 10 11 10 10 0010 

11 11 11 00 11 0001 

Note: The double-lined frame shows the next state 

 
 
 

Table 7.15b Karnaugh Map of D0, D0 = x1’x0 + Y0x1’ + Y0x0 

Present State Input x1x0 D0 
00 01 11 10 

00 0 1 0 0 

01 1 1 1 0 

11 1 1 1 0 

 

Y1Y0 

Present State 

Input  10 0 1 0 0 

 

 

Table 7.15c Karnaugh Map of D1, D1 = Y1x1’ + Y1x0 + Y1’Y0x1 x0’ 

Present State Input x1x0 D1 
00 01 11 10 

00 0 0 0 0 

01 0 0 0 1 

11 1 1 1 0 

 

Y1Y0 

Present State 

Input  10 1 1 1 0 
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Table 7.15d Karnaugh Map of a, a = Y1’Y0’ 

Present State Input x1x0 a 
00 01 11 10 

00 1 1 1 1 

01 0 0 0 0 

11 0 0 0 0 

 

Y1Y0 

Present State 

Input  10 0 0 0 0 

 

 

 

Table 7.15e Karnaugh Map of b, b = Y1’Y0 

Present State Input x1x0 b 
00 01 11 10 

00 1 1 1 1 

01 0 0 0 0 

11 0 0 0 0 

 

Y1Y0 

Present State 

Input  10 0 0 0 0 

 

Table 7.15f Karnaugh Map of c, c = Y1Y0’ 

Present State Input x1x0 c 
00 01 11 10 

00 1 1 1 1 

01 0 0 0 0 

11 0 0 0 0 

 

Y1Y0 

Present State 

Input  10 0 0 0 0 
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Table 7.15g Karnaugh Map of d, d = Y1Y0 

Present State Input x1x0 d 
00 01 11 10 

00 1 1 1 1 

01 0 0 0 0 

11 0 0 0 0 

 

Y1Y0 

Present State 

Input  10 0 0 0 0 

 

 

Step 3:  Figure out the minimized functions of each Input and output. 

 D0 = x1’x0 + Y0x1’ + Y0x0 

 D1 = Y1x1’ + Y1x0 + Y1’Y0x1 x0’ 

 a = Y1’Y0’ 

 b = Y1’Y0 

 c = Y1Y0’ 

 d＝Y1Y0 

Step 4:  Please use the Graphic editor of MAX+PLUS II to complete editing the 

circuit entry of the above equations (Figure 7.21a)。 
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Figure 7.21a Use Graphic editor of MAX+PLUS II to create traffic light state 

machine circuit (File: traf_stm.gdf) 

 

Step 5:  Complete functional simulation by using MAX+PLUS II (Figure 7.21b) 

and test weather the functions meet the circuit specifications. Go on to the 

next step if the functions meet the specifications; otherwise go back to step 

1 to check the cause of error sequentially. 
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Step 6:  If the circuits allow testing by download, download (or programming) to 

test the circuit after selecting the download (or programming) device and 

floorplan program.  
 

〜Skip this download testing〜 

 

Step 7:  Please use File > Create Default Symbol to generate the internal circuit 

symbol (Figure 7.21c) for the upper layer circuit.  

 

Figure 7.21b Simulation result of traffic light state machine 

 (File: traf_stm.scf) 

 

Figure 7.21c The internal circuit symbol of traffic light state machine 
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7.4.2 Lightening Timer 

Refer to Section 6.4.1 of ring counter, each pulse input will make a position 

movement. In other words, for a 4-step ring counter, a cycle costs four pulses. If 

each pulse spends one second, then a cycle would spend 4 seconds. This is the 

reason why we take a ring counter as the timer. Please refer to Section 6.4.1 for 

detail information of a ring counter.。 

 

7.4.3 Simple Traffic Light Controller 

Step 1:  Please use MAX+PLUS II Graphic editor to complete the circuit entry of 

Figure 7.22a. 

 

Step 2:  Complete functional simulation by using MAX+PLUS II (Figure 7.22b) 

and test weather the functions meet the circuit specifications. 

 

Step 3:  If the circuits allow download testing, download (or programming) to test 

the circuit after selecting the download (or programming) device and 

floorplan program. 

 

Please adapt the techniques of floorplan programming instructed in Section 4.6 to 

chose an EPF 10K10TC144-4 chip and use the pin set up of Table 7.16. 

After setting up LP-2900 Lab Platform, download the traffic light circuit to 

the EPF 10K 10TC144-4 chip and try to push SW1 (clrn) on the left bottom 

of LP-2900. At the mean time, please note the changes of L1〜L6 LED 

and the position of lighting. 
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Figure 7.22a Use Graphic editor of  MAX+PLUS II to create Traffic Light 

Controller (File: traf_light.gdf) 

 

Figure 7.22b Use Graphic editor of MAX+PLUS II to create Traffic Controller 

Circuit (File: traf_light.scf) 

    CPLD Logic Design and Practices                           Simple Designing Examples 



Table 7.16  Pin assignment of EPF10K10TC144-4 chip 

Signal 
EPF10K10TC144-4 

chip pin 
Signal 

EPF10K10TC144-4 

chip pin 

CLKIN Pin 55 (OSC) HG Pin 12 (L6) 

CLRN  Pin 47 (SW1) HY Pin 11 (L5) 

HG Pin 9 (L3) HR Pin 710 (L4)  

HY Pin 8 (L2)   

HR Pin 7 (L1)  LED_COM Pin 141 

 

 

7.5 Dot Matrix Displayer Test Circuit 

Dot Matrix LED is a common display device in digital circuit. The appearance, 

which may have two types, is shown as Figure 7.23a. One is uni-color dot matrix 

LED and the other is bi-color dot matrix LED. For a bi-color one, the structure is 

illustrated as Figure 7.23b. In each circle, there exits two LEDs, which one is red, 

and the other is green. Therefore, the combination shows 4 conditions: unlighted, 

red light, green light and yellow light. From the construction layout, signal Row has 

to be sent to “1” together with sending Col to “0”, the relative LED would 

consequently flash. 

In this section, a simple test circuit of a bi-color dot matrix LED is drawn here as an 

illustration. The progress of design is as follows: 

 

Step 1:  Use the Graphic editor of MAX+PLUS II to complete the circuit entry as 

illustrated in Figure 7.24. 

Step 2:  Complete functional simulation by using MAX+PLUS II and test weather 

the functions meet the circuit specifications.   
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〜Skip the functional simulation〜 

 

Step 3:  If the circuits allow download testing, download (or programming) to test 

the circuit after selecting the download (or programming) device and 

floorplan program. Please adapt the techniques of floorplan programming 

instructed in Section 4.6 to choose an EPF10K10TC144-4 chip, and use the 

pin assignment listed in Table 7.17. After setting up LP-2900 Lab Platform, 

please download the test circuit of simple bi-color dot matrix LED to 

EPF10K10TC144-4 chip. Please notice the changes of bi-color dot matrix 

LED. 

 

Figure 7.23a The appearance of dot matrix LED 
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Figure 7.23b The structure of a bi-color dot matrix LED 
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Figure 7.24 Use the Graphic editor of MAX+PLUS II to create a test circuit board 

of simple bi-color dot matrix LED (File: dot_mtrx.gdf) 

 

Table 7.17  Pin assignment of EPF10K10TC144-4 chip 

Signal 
EPF10K10TC144-4 

chip pin 
Signal 

EPF10K10TC144-4 

chip pin 

10 Mhz  Pin 55   

Cr1 Pin 98 Cg1 Pin 112 

Cr2 Pin 99 Cg2 Pin 113 

Cr3 Pin 100 Cg3 Pin 114 

Cr4 Pin 101 Cg4 Pin 116 

Cr5 Pin 102 Cg5 Pin 117 
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Cr6 Pin 109 Cg6 Pin 118 

Cr7 Pin 110 Cg7 Pin 119 

Cr8 Pin 111 Cg8 Pin 120 

    

Row 1 Pin 88 Row 5 Pin 92 

Row 2 Pin 89 Row 6 Pin 95 

Row 3 Pin 90 Row 7 Pin 96 

Row 4 Pin 91 Row 8 Pin 97 

 

7.6 Keyboard Scan and Display Scan 
Circuit 

Keyboard and 7-segment displayer are the common input and output devices in the 

digital system. The input of keyboard scan and the display circuit of 7-segment 

displayer are, therefore, become the required circuits. The scan display circuit of 7-

segment displayer has instructed in Section 7.3.4. Hereafter is the design 

descriptions of the integrated keyboard scan. 

 

♣ Principles of keyboard scan: 

  The left diagram of Figure 7.25a shows an illustration of a 4 × 3 keyboard. 

The black dot depicts the connections when pushing the button, whereas the white 

dot depicts the non-connection of non-pushed buttons. In the left diagram of Figure 

7.25a, scan signals generator circuit creates signals c3〜c0, which are sent to 

keyboard and keyboard decoder circuit separately. The changing sequences of c3〜

c0 are : “1110” → “1101” → “1011” → “0111” → “1110” → …, and cycling. 

Hypothesis that now c3〜c0 are “1101”.  r[2..0] = “111” because the button is not 
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push down. After decoding through keyboard decoder circuit, the result is that d3〜

d0 are “1111” and shift latch clock, the control signals for shift and latch data, is “0”. 

As in the right diagram of Figure 7.25a, hypothesis that  c3〜c0 are “1101”. 

Because the button of 6 is push down, r[2..0] = “110”. After decoding through 

keyboard decoder circuit, the result is that d3〜d0 are  “0110”, while the shift latch 

clock turns to “1”.  

Figure 7.25a Block diagram of keyboard scanner and decoder 

 

In the left diagram of Figure 7.25b, c3〜c0 are“1101” and because the button of 4 

is push down, r[2..0] = “011”. Through keyboard decoder circuit, d3〜d0 turn to

“0100” and the shift latch clock is “1”. In the right diagram of Figure 7.25b, c3〜

c0 are “1101” and because the button of 5 is push down, r[2..0] = “101”. From this 

pattern, we know that when c1 = “0”, go on to check weather the button of 4, 5 and 

6 is push down individually, then we will get the value of r[2..0] which would be 

sent with c3〜c0 to the keyboard decode circuit for decoding. Accordingly, when c0 

= “0”, check weather the button of 1, 2 and 3 is bush down individually; when c2 = 

“0”, check weather the button of 7, 8, and 9 is push down; when c3 = “0”, check 
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weather “*”, “0”, and “#” is push down.  

Keyboard decode circuit implements decoding by means of the input of c3〜c0 and 

r[2..0].   

Figure 7.25b Block Diagram of keyboard scanner and decoder (Continue) 

 

To form a keyboard scan and display scan circuit, three types of sub-circuits are 

required: (1) Scan signal generate circuit, disbounce and (single-key detector 

circuit); (2) Keyboard decoder circuit; (3) Data buffer circuit, display scan circuit of 

7-segment display, as illustrated in Figure 7.26. Scan signal generator circuit creates 

the signals of scan keyboard, usually scans 7-segment displayer as well. Disbounce 

and single-key detector eliminate the bounce when pushing the key and prevent 

multiple keys input. Keyboard decoder can decode the input keys. Data buffer 

circuit keeps the latest six input keys. The displays scan circuits of the 7-segment 

displayer in charge of displaying the data in buffer to the six 7-segment displayers.   

However, in LP-2900, the c3〜c0 scan wires on the keyboard are same as the wires 

C3〜C0 7-segment displayer. In other words, scan signals is the scan wires of 7-

segment displayer. Please refer to Section 7.3.4 for the scan and display circuits of 
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the 7-segment displayer. The data buffer is composed by 6 sets of 4-bit parallel shift 

registers for storing the code sent by keyboard decoder. Directions of shift are: new 

push code→Set 1→Set 2→Set 3→Set 4→Set 5→Set 6→…. 

Figure 7.26 Functional Diagram of keyboard scan and display scan circuit 

 

7.6.1 Disbounce and Single-key detector 

Step 1:  Please use the Graphic editor of MAX+PLUS II to edit a circuit entry as 

shown in Figure 7.27a. Usually, the buttons would bump and lead to a 

misunderstanding of multiple inputs. Therefore, it is necessary to create a 

disbounce mechanism. Please refer to Chapter 4 for designing and 

functional simulation of the disbounce circuit. In this section, we will adapt 

it as the blueprint for designing a proper disbounce cell of 4 × 3 keyboard 
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as Figure 7.27a. Figure 7.27b is the internal circuit symbol. We can 

compose a 4 x 3 disbounce circuit array after creating a disbounce cell or 

according to the disbounce cell to design a horizontal single-key detector 

and vertical single-key detector circuits, as Figure 7.27d and Figure 7.27e.   

 

Figure 7.27a Disbounce circuit 

 

Figure 7.27b Circuit symbol of disbounce 
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Figure 7.27c 4 × 3 disbounce circuits array (File: key_debun.gdf) 

 

Figure 7.27d 4 × 3 keyout Circuits (File: key_debun.gdf) 
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Figure 7.27e 4 × 3 keyout disbounce cricuits (Continue) (File: key_debun.gdf) 

 

Step 2:  Complete functional simulation by using MAX+PLUS II (Figure 7.27f) 

and test weather the functions meet the circuit specifications. Please notice 

the relations of the circles on the Figure below. 

 

Step 3:  If the circuits allow downloading to test, download (or programming) to 

test the circuit after selecting the download (or programming) device and 

floorplan program. For download testing, please create the internal circuit 

symbol, Figure 7.27, of key_debun and modify the circuits as illustrated in 

Figure 7.27g. Further, please adapt the techniques of floorplan 

programming instructed in Section 4.6, and select EPF10K10TC144-4 chip 
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as well as the pin assignment listed in Table 7.18. 

 

 

 



Figure 7.27f Functional simulation results of kbd_debun.gdf circuit 

 (File: key_debun.scf) 

 

Figure 7.27g debun_test.gdf 

 

Figure 7.27h The internal circuit symbol of key_debun 
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Table 7.18 Pin assignment of EPF10K10TC144-4 chip  

Signal 
EPF10K10TC144-4 

chip pin 
Signal 

EPF10K10TC144-4 

chip pin 

10Mhz  Pin 55   

Ko0 Pin 7 S0 Pin 47 

Ko1 Pin 8 S1 Pin 48 

Ko2 Pin 9   

Kpress Pin 10 K0 Pin 49 

Row 0 Pin 11 K1 Pin 51 

Row 1 Pin 12 K2 Pin 59 

 

After setting up LP-2900 Lab Platform, please push down the keys of SW3, SW4, 

and SW5 which means the inputs of K0, K1, and K2 are “1”. Then, please 

download the file, debun_test.sof, to EPF-10K10TC144-4 chip. Pull up SW3, or 

SW4, or SW5 to check weather the changes of L1 to L6 meet the requirements.    

Please note weather there is outputs when pulling up two or three keys 

simultaneously. Pushing down the keys of SW3, SW4, and SW5 at the same time 

and adjust SW1 (S0) and SW2 (S1) to another combination and repeat the actions to 

check.   
 

7.6.2 Keyboard Decoder  
 

Step 1:  Form a Truth table (Table 7.19a). 

 

Step 2:  From the above Truth table (Table 7.19a) leads to the following Karnaugh 

Map and equations. (Table 7.19b to Table 7.19e) 
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Table 7.19a The State table of keyboard decoder   

Inputs 

(From Scan 

Circuit)  s1s0 

Inputs 

(From keyboard) 

k2k1k0 

 

Outputs 

d3d2d1d0 

 

Descriptions 

00 111 1111 No action 

00 011 0001 Push Key “1”  

00 101 0010 Push Key “2”  

00 110 0011 Push Key “3” 

01 111 1111 No action 

01 011 0100 Push Key “4”  

01 101 0101 Push Key “5”  

01 110 0110 Push Key “6”  

10 111 1111 No action 

10 011 0111 Push Key “7”  

10 101 1000 Push Key “8”  

10 110 1001 Push Key “9”  

11 111 1111 Nil 

11 011 1010 Push Key “*” 

11 101 0000 Push Key “0”  

11 110 1011 Push Key “#”  
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Table 7.19b Karnaugh Map of D0,  

D0 = k2k1k0 + s1k2k1 + s0’k1k0 + s1’s0k2k0 + s0’k2k1 

Present State Input s1s0 D0 
00 01 11 10 

K0 = 0 0 0 0 0 
00 

K0 = 1 0 0 0 0 

K0 = 0 0 0 0 0 
01 

K0 = 1 1 0 0 1 

K0 = 0 1 0 1 1 
11 

K0 = 1 1 1 1 1 

K0 = 0 0 0 0 0 

 

 

 

Present State 

Input  

k2k1 

10 
K0 = 1 0 1 0 0 

 

Table 7.19c Karnaugh Map of D1, D1 = k2k1k0 + s1’k2k1 + s0k2k1 + s1k1k0 + 

s1’s0’k2k0 

Present State Input s1s0 D1 
00 01 11 10 

K0 = 0 0 0 0 0 
00 

K0 = 1 0 0 0 0 

K0 = 0 0 0 0 0 
01 

K0 = 1 0 0 1 1 

K0 = 0 1 1 1  
11 

K0 = 1 1 1 1 1 

K0 = 0 0 0 0 0 

 

 

 

Present State 

Input k2k1 

10 
K0 = 1 1 0 0 0 
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Table 7.19d Karnaugh Map of D2, D2 = k2k1k0 + s1’s0k2k0 + s1’s0k2k1 + s1’s0k1k0 + 

s1s0’k1k0 

Present State Input s1s0 D2 
00 01 11 10 

K0 = 0 0 0 0 0 
00 

K0 = 1 0 0 0 0 

K0 = 0 0 0 0 0 
01 

K0 = 1 0 1 0 1 

K0 = 0 0 1 0 0 
11 

K0 = 1 1 1 1 1 

K0 = 0 0 0 0 0 

 

 

 

Present State 

Input  

k2k1 

10 
K0 = 1 0 1 0 0 

 

Table 7.19e Karnaugh Map of D3, D3 = k2k1k0 + s1k2k1 + s1s0’k2k0 + s1s0k1k0 

Present State Input s1s0 D3 
00 01 11 10 

K0=0 0 0 0 0 
00 

K0=1 0 0 0 0 

K0=0 0 0 0 0 
01 

K0=1 0 0 1 0 

K0=0 0 0 1 1 
11 

K0=1 1 1 1 1 

K0=0 0 0 0 0 

 

 

 

Present State 

Input k2k1 

10 
K0=1 0 0 0 1 
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Step 3:  Figure out the minimized equations of each Input and output functions 
 

 D0 = k2k1k0 + s1k2k1 + s0’k1k0 + s1’s0k2k0 + s0’k2k1 

 D1 = k2k1k0 + s1’k2k1 + s0k2k1 + s1k1k0 + s1’s0’k2k0 

 D2 = k2k1k0 +s1’s0k2k0 + s1’s0k2k1 + s1’s0k1k0 + s1s0’k1k0 

 D3 = k2k1k0 + s1k2k1 + s1s0’k2k0 + s1s0k1k0 

 

Step 4:  Please use the Graphic editor of MAX+PLUS II to complete editing the 

circuit entry of the above equations (Figure 7.28a)  

 

Step 5:  Complete functional simulation by using MAX+PLUS II (Figure 7.28b) 

and test weather the functions meet the circuit specifications.  Go on to 

the next step if the functions meet the specifications; otherwise go back to 

step 1 to check the cause of error sequentially. 

 

Step 6:  Please download the circuits after floorplan programming and test the 

circuits.  Modify Figure 7.28a as Figure 5.3 in Section 5.1 and re-compile.  

Further, please adapt the techniques of floorplan programming instructed in 

Section 4.6, and select EPF10K10TC144-4 chip as well as the pin setup 

listed in Table 7.20. 
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Figure 7.28a Keyboard decoder created by the Graphic editor of  MAX+PLUS II 

(File: kbd_dec.gdf) 

 

 

Figure 7.28b Simulation result of Keyboard decoder (Figure 7.28a)  

(File: kbd_dec.scf) 
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Table 7.20 Pin assignment of EPF10K10TC144-4 chip 

Signal 
EPF10K10TC144-4 

chip pin 
Signal 

EPF10K10TC144-4 

chip pin 

D0 Pin 10  K0 Pin 47  

D1 Pin 9 K1 Pin 48  

D2 Pin 8 K2 Pin 49  

D3 Pin 7 S0 Pin 51 

  S1 Pin 59 

LED_COM Pin 141   

 

After setting up LP-2900 Lab Platform, please download the keyboard decode 

circuit to EPF10K10TC144-4 chip.  Try to push down SW1 (k0), or SW2 (k1) or 

SW3 (K2) on the left bottom of LP-2900 and note the changes of L1 (D3), L2 (D2), 

L3 (D1), and L4 (D0).  Adjust the inputs of S0 and S1 and, again, push down SW1 

(k0) or SW2 (k1) or SW3 (K2), and note the changes of L1 (D3), L2 (D2), L3 (D1), 

and L4 (D0). 

 

Step 7:  Creating the internal circuit symbol (Figure 7.28) by means of File > 

Create Default Symbol for the upper circuits.  

 

Figure 7.28c The internal circuit symbol of keyboard decoder 

 (Figure 7.28a)  

    CPLD Logic Design and Practices                           Simple Designing Examples 



7.6.3 Data Buffer 

Data Buffer (Figure 7.29b) is composed by 6 sets of 4-bit parallel shift register, for 

storing the key code sent by keyboard decode circuit.  The directions of the shift 

are: new key code→Set 1→Set 2→Set 3→Set 4→Set 5→Set 6→….  As a matter 

of fact, this is the bit-expandation of one bit SIPO in Section 6.3.2.   

 

Figure 7.29a Simulation result of data buffer circuit (File: data_buf.scf) 
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Figure 7.29b Use Graphic editor of MAX+PLUS II to create data buffer circuit 
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(File: data_buf.gdf) 

Figure 7.29c The internal circuit symbol of data buffer 

7.6.4 Complete Keyboard Scan and Display Scan 
Circuit 

Step 1:  Use Graphic editor MAX+PLUS II to create a circuit entry as illustrated in 

Figure 7.30. 

 

Figure 7.30 Keyboard scan and display scan by using graphic editor of 

MAX+PLUS II  (File: kbd_7seg.gdf) 

 

Step 2:  Complete functional simulation by using MAX+PLUS II and test weather 

the functions meet the circuit specifications.  
 

〜Skip the functional simulation〜 
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Step 3:  If the circuits allow downloading to test, download (or programming) to 

test the circuit after selecting the download (or programming) device and 

floorplan program.  

 

After setting up LP-2900 Lab Platform, please select EPF10K10TC144-4 chip and 

the pin setup listed in Table 7.21. Try to push down SW4 (clrn) on the middle 

bottom of LP-2900 and note the changes of 7-segment displayer and the changes of 

L1 (CLK_IND), L2 (KP), L4 (DE0), L5 (DE1), L6 (DE2), L7 (DE3), L10 (KO2), 

L11 (KO1) and L12 (KO2).  

 

Table 7.21 Pin assignment of EPF10K10TC144-4 chip 

Signal 
EPF10K10TC144-4 

chip pin 
Signal 

EPF10K10TC144-4 

chip pin 

LED_COM Pin 141 A Pin 23 

10 Mhz Pin 55 B Pin 26 

CLK_IND Pin 7 C Pin 27 

KP Pin 8 D Pin 28 

DE0 Pin 10 E Pin 29 

DE1 Pin 11 F Pin 30 

DE2 Pin 12 G Pin 31 

DE3 Pin 13 H Pin 32 

K2 Pin 18   

K1 Pin 19 138sel0 Pin 33 

K0 Pin 20 138sel1 Pin 36 

KEY2 Pin 42 138sel2 Pin 37 

KEY1 Pin 43   

KEY0 Pin 44   
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7.7 LCD Interface Circuit 

Nowadays, LCD displayer plays an important role in our daily life. From variety 

domestic electrics such as alarm clock and microwave, to office suppliers such as 

fax machine, printer, copy machine, calculator and notebook. Therefore, it applies 

to many mechanics and is very popular. In this section, we will introduce the 

applications and interface circuit of a design textual LCD module. 

7.7.1 Descriptions of LCD Module 

Currently, there are two types of mini LCD module, one is textual LCD module, and 

the other is Figure LCD module. First, let’s get acquainting with textual LCD 

module, which applies to most of the office machine. Figure 7.31 illustrates the 

internal structure of textual LCD, which is composed by LCD board, LCD driving 

chip, and HD44780 control chip. The features are as follows:  

 

1. Compatible with 4-bit or 8-bit CPU; 

2. Data Display Ram(DD RAM) has 80 bytes，and can display 80 words; 

3. Installed Character Generator ROM (CG RAM), and installed 160 5 ×7 

dot matrix characters; 

4. Installed Character Generator RAM (CG RAM), and allows to build eight 5 

×7 dot matrix characters; 

5. CPU can read both the data of DD RAM and CG RAM; 

6. HD44780 provides many functions of display control orders, such as clear 

displayer, cursor reset, on/off display, on/off cursor, flash display, etc. 

  

Note: Please refer to other references for further information about display control 

instructions.  
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Figure 7.31 The functions blocks of Textual LCD  

 

From Figure 7.31, we know that the connection of LCD interface circuit and textual 

LCD module is through control wires and data wires, 4 or 8 lines. The control lines 

are ENA, RS, and R/W that the descriptions are listed in Table 7.22. 

 

Table 7.22 The combination of ENA, RS, and R/W  

ENA RS R/W Descriptions 

1 0 0 Writing orders to IR Register of HD44780 

1 0 1 Reading Busy Flag (DB7) and Dress Counter (DB6〜DB0) 

1 1 0 Writing data to DR Register (CG RAM or DD RAM) 

1 1 1 Reading data from DR Register (CG RAM or DD RAM)  

 

Each time, after sending power, LCD module has to accomplish the initial phase of 

sending instructions to IR (Instruction Register), which the address is 00H.  The 

processes of the initial phase are described as follows. 

 

1.Setting Functions 

  Instructions Format: 
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ENA RS R/W D7 D6 D5 D4 D3 D2 D1 D0 

1 0 0 0 0 1 DL N F * * 
 

 DL: setting data width, DL = 0 is 4-bit, DL = 1 is 8-bit. 

 N: display rows are one or two. 

 F: setting character types. 
 

N F rows Character types 

0 0 1 5 ×7 dot 

0 1 1 5 ×10 dot 

1 * 2 5 ×7 dot 
 

  Therefore, “38H” means 8-bit, double line display, and 5 × 7 dot character. 

 

2.Open displayer 
 

Instructions Format: 
 

ENA RS R/W D7 D6 D5 D4 D3 D2 D1 D0 

1 0 0 0 0 0 0 1 D C B 
 

 D:  D = 0, data not display 

  D = 1, data display 

 C: C = 0, cursor not display 

  C = 1, cursor display 

 B: B = 0, not flush 

  B = 1, flush 

 

  Therefore, “0EH” means the displayer is open and the cursor display. 
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3.Enter to Mode setup 
 

  Instructions Format 
 

ENA RS R/W D7 D6 D5 D4 D3 D2 D1 D0 

1 0 0 0 0 0 0 0 1 I/D S 
 

I/D: I/D = 0, when reading/writing data to DD RAM, address counter should minus 

one unit. 

 I/D = 1, when reading/ writing data to DD RAM, address counter should plus 

one unit. 

S: S = 1, when writing data to DD RAM, displayed data move left for a column. 

 S = 0, when writing data to DD RAM, the displayed data should not move left 

for a column. 

 

Therefore, when “06H” means reading/writing data to DD RAM, the address 

counter would add one unit; and when writing data to DD RAM, the displayed data 

would not move left for a column.  

 

4. Clear Displayer 

Instruction Format: 
 

ENA RS R/W D7 D6 D5 D4 D3 D2 D1 D0 

1 0 0 0 0 0 0 0 0 0 1 
 

Complete LCD Interface Circuit by “Data Path Circuit” and “Control Circuit.”  

The control circuit is in charge of generating necessary signals of ENA, RS, and 

R/W and creating states which start from “000” (the state of sending instruction 

38H), and “001” (the state of sending instruction 0EH), then “010” (the state of 
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sending instruction 06H), and “011” (the state of sending instruction 01H), and the 

following is “100” which sends out the digits. Except for the clock input, the 

“Control Circuit” has “START” signals for activating clear and sends out data.  

According to the states sent by the “Control Circuit,” the “Data Path Circuit” sends 

out the relative data, including displayed digits and instructions, to LCD module. 

  

7.7.2 Data Path Circuit of LCD Interface  

“Data Path Circuit” is in charge of supplying the data for LCD modules, which 

include the orders of the initial phase, such as 38H, 0EH, 06H and 01H, and the 

input of the displayed data. 

Step 1:  Use the Graphic editor of MAX+PLUS II to create the following circuit 

entry, from Figure 7.23a to Figure 7.32h, and create the internal circuit 

symbol.  

Figure 7.32a Data Circuit Module “38H” (File: 38H.gdf) 
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Figure 7.32b The internal circuit symbol of data circuit module “38H”  

 

 

Figure 7.32c Data circuit module “0EH” (File: 0EH.gdf) 

 

Figure 7.32d The internal circuit symbol of data circuit module “0EH”  
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Figure 7.32e Data circuit module “06H” (File: 06H.gdf) 

 

Figure 7.32f the internal circuit symbol of data circuit module “06H”  
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Figure 7.32g Data Circuit Module “01H” (File: 01H.gdf) 

 

Figure 7.32h The internal circuit symbol of data circuit module “01H” 

 

Step 2:  Please use the Graphic editor of MAX+PLUS II to create the following 

circuit entry of “8-bit 5 × 1 data muliplexer”, Figure 7.33a, and the 

internal circuit symbol.  

 

Step 3: Complete functional simulation of “8-bit 5 x 1 data multiplexing circuit” by 

using MAX+PLUS II (Figure 7.33b) and test weather the functions meet 

the circuit specification.  Go on to generate the internal circuit symbol, 

Figure 7.33c. 
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Figure 7.33a 8-bit 5 × 1 data mulplexer circuit (File: LCD_MUX.gdf) 
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Figure 7.33b Simulation result of 8-bit 5 × 1 data multiplexer circuits  

(File: LCD_MUX.scf) 

 

Figure 7.33c Internal circuit symbol of 8-bit 5 × 1 data muliplexer circuit 

 

Step 4： Use the Graphic editor of MAX+PLUS II to complete the circuit entry of 

data path circuit (Figure 7.34a). 

Figure 7.34a Data path circuit (File: DATAPATH.gdf) 
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Step 5:  Complete functional simulation of “Data Path” by using MAX+PLUS II 

and test weather the functions meet the circuit specification. Figure 7.34b 

shows the simulation results of data path circuit. Then, go on to generate 

the internal circuit symbol, Figure 7.34c. 

 

Figure 7.34b Simulation result of data path circuit (File: DATAPATH.scf) 

 

Figure 7.34c Internal circuit symbol of data path circuit 

 

7.7.3 Control Circuit of LCD Interface Circuit 

“Control Circuit” in charge of generating necessary signals of EN, RS, and R/W.   

 

Step 1:  Use the Graphic editor of MAX+PLUS II to complete the following circuit, 

Figure 7.35a and Figure 7.33b, and generate the internal circuit symbols. 

 

Step 2:  Complete functional simulation by using MAX+PLUS II and test weather 

the functions meet the circuit specifications. Figure 7.35b shows the 
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simulation result of CTRL.gdf circuit. Go on to generate the internal circuit 

symbol if meets the specifications. 

 

Figure 7.35a Control circuit module (File: CTRL.gdf) 
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Figure 7.35a Control circuit module (continue) 

 

 

Figure 7.35b Simulation result of control circuit (File: CTRL.scf) 
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Figure 7.35c The internal circuit symbol of control circuit module 

 

7.7.4 Complete LCD Interface Circuit 

Step 1:  Please use the Graphic editor of MAX+PLUS II to create the following 

circuit, Figure 7.36a. Please use the devices of DIV10.GDF, CTRL.GDF, 

CTRL.GDF, DATAPATH, DISBOUNCE listed in this chapter and 

DIV1000 listed in Chapter 4 to complete the LCD interface. 

Figure 7.36a Complete LCD interface circuit (File: LCD_INTF.gdf) 

 

Step 2:  Complete functional simulation by using MAX+PLUS II and test weather 

the functions meet the circuit specifications.   
 

〜Skip this functional simulation〜 
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Table 7.23 Pin setup of EPF10K10TC144-4 chip 

Signal 
EPF10K10TC144-4 

chip pin 
Signal 

EPF10K10TC144-4 

chip pin 

10 MHz Pin 55 LCD_EN Pin 130 

START Pin 124 LCD_RS Pin 122 

CLRN Pin 126 LCD_RW Pin 128 

    

DIN0 Pin 63 DOUT Pin 131 

DIN1 Pin 62 DOUT Pin132 

DIN2 Pin 60 DOUT Pin133 

DIN3 Pin 59 DOUT Pin135 

DIN4 Pin 51 DOUT Pin136 

DIN5 Pin 49 DOUT Pin137 

DIN6 Pin 48 DOUT Pin138 

DIN7 Pin 47 DOUT Pin140 

 

Step 3:  If the circuits allow download testing, download (or programming) to test 

the circuit after selecting the download (or programming) device and 

floorplan program. Please adapt the techniques of floorplan programming 

instructed in Section 4.6 to choose an EPF10K10TC144-4 chip and use the 

pin assignment listed in Table 7.23. After setting up LP-2900 Lab Platform, 

download the keyboard scan and display circuit to EPF10K10TC144-4 

chip, and try to: 
 

1. After pressing PS4 (CLRN) at the middle bottom of LP-2900, try to 

press PS3 (START).  The LCD should be cleared. 

2. Please press PS3 after inserting the digits of ASCII code, such as 32H 
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of “2”, from SW1 (DIN7)〜SW8 (DIN0). The digit “2” will display in 

front of the cursor on the LCD. Please try to insert other digits.   

 

This example is for your own reference on designing LCD Module Interface Circuit.  

Please modify the circuit to satisfy your need.   
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7.8 Evaluations 

Please do the following evaluations according to the questions listed below: 

!" Do you know the principles of each frequency generation?  

!" Do you know the display scan principles of a 7-segment displayer? 

!" Do you know how to detect the keys of a 4 ×3 keyboard? 

!" Do you know how to test a 8 ×8 bi-color dot matrix LED? 

!" Can you sense whether the key bumps?  If yes, how to eliminate it? 

!" Can you design, simulate, and verify the display scan interface circuit of a 7-

segment displayer? 

!" Can you design, simulate, and verify the clock interface? 
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CHAPTER 8 
 

 

Connecting with  

Analog Circuit 
 

LEAP



In Chapter one, it notes that all the physical measuring is analog signal. However, 

the digital signal processor is more concise, faster, programmable, adjustable and 

less effective by device features than analog signal. Therefore, A/D converter and 

D/A converter are acquired in order to converse analog signal into digital signal and, 

conversely, digital signal to analog signal. There are many kinds of A/D converter 

and D/A converter in the market. In this chapter, the most frequently used one is 

introduced.  

8.1 A/D Converter—ADC0804 

Produced by Harris Semi-conductor Co., ADC0804 is an A/D converter. The 

function of A/D converter is to quantify the analog signal to digital signal after 

sampling. ADC0804 is a CMOS successive approximation style A/D converter, 

which has modified potentiometric ladder and three status outputs and is compatible 

with the control bus of 8080A. Without any interface circuit, ADC0804 converter 

can directly connect with microprocessor. 

The input of analog differential voltage has a great common-mode-rejection and 

allows analog zero-voltage offsetting. The input adjustment of referential voltage 

allows any little voltage span to be coded in a complete 8-bit figure.  

 

Main Features of ADC0804： 

 

 1. Compatible with the bus of microprocessor, 80c48 and 80c80/85, and can be 

directly connected without any interface circuit.  

 2. Time cost for transmission is less than 100us. 

 3. Ease interface with most of microprocessors. 

 4. Can be operated “individually” 
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 5. Differential analog voltage input. 

 6. Work under bandgap referential voltage. 

 7. Provide TTL compatible input/output signal. 

 8. The chip contains clock generator circuit. 

 9. 0V to 5V analog input voltage (requiring only a single +5V for operation). 

 10. No zero-adjustment required. 

 

Figure 8.1 is the pin layout of a 20-pin ADC0804. Once the input of /WR generates 

varies from high to low, SAR register in ADC0804 will be latched, reset shift 

register, and /INTR will output high voltage. As long as /CS and /WR input stay in 

low voltage, ADC0804 will keep in the reset status. If one of these two input signals 

changes from low to high as the transmission beginning, /INTR will output 

low-level voltage which is for notifying microprocessor that the transmission has 

completed. Low-level input voltage of /CS and /RD can reset the output signal of 

/INTR. 

 

Figure 8.1 Pin configuration of a 20-pin ADC0804  
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8.2 D/A Converter————AD7528 

AD7528 is a CMOS double 8-bit buffer multiply digital/analog converter produced 

by Analog Devices Co. Figure 8.2 is the Block Diagram of AD7528 which has two 

sets of separated latch providing a perfect interface of microprocessor. Through the 

shared 8-bit TTL/COMS compatible input port, data can be sent to one of the latch.  

/DAC A/DAC B is the control line for controlling the latch that the data sent to and 

transform the data. Writing data to AD7528 is as simple as that to RAM.  Further, 

AD7528 is compatible with microprocessors—6800, 8080, 8085, and Z80. 

Figure 8.3 is the pin configurations of a 20-pin AD7528 which has 2 kinds of 

package, DIP and SOIC. /CS is the control line of chip selection; /CS = “0” reflects 

AD7528 is being selected. Table 8.1 is a signal combination functional description 

of the signal lines- /CS, /WR, and /DAC A/DAC B. 

 

Figure 8.2 Block diagram of AD7528 
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Figure 8.3 Pin configuration of AD7528 

 

Table 8.1 Functional descriptions of /CS, /WR and /DAC A/DAC B signal 

combination 

/CS /WR DAC A/DAC B Description 

1 X X Output the original transmission value 

X 1 X Output the original transmission value 

0 0 0 Operate transmission of D/A in set A  

0 0 1 Operate transmission of D/A in set B 

8.3 Single Chip -- 8051 

MCS-51 is the code of a single chip family.  Table 8.2 is the list of MCS-51 family 

and the main components.  Program memory capacity means the program memory 

of a single chip whereas data memory capacity means the data memory of a single 

chip.  
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Table 8.2  MCS-51 family and the main components 

Name 
Program 
Memory 
Capacity 

Date Memory 

Capacity 

16-bit 

Timer 

Serial I/O 

Port 

Serial I/O 

Port 
Circuit Type 

8051 4K (ROM) 128 bytes 2 4 1  

8751 4K (EPROM) 128 bytes 2 4 1 HMOS 

8031 unavailable 128 bytes 2 4 1 HMOS 

8052 8K (ROM) 256 bytes 3 4 1 HMOS 

8752 8K (EPROM) 256 bytes 3 4 1 HMOS 

8032 unavailable 256 bytes 3 4 1 HMOS 

80c51 4K (ROM) 128 bytes 2 4 1 CHMOS 

87c51 4K (EPROM) 128 bytes 2 4 1 CHMOS 

80c31 Unavailable 128 bytes 2 4 1 CHMOS 

 

The following is the general descriptions of 8x51: 

 

 1. An 8-bit single chip for controlling  

 2. Strengthen logic operation instruction of one bit 

 3. The chip has a 128-bit RAM, 

 4. The chip contains 2 Timer/Counter, 

 5. The chip contains 1 Full-duplex UART (Universal Asynchronous Receiver), 

 6. The ship contains 5 interrupt resources with 2 level priority architecture,  

 7. The chip has a clock oscillator circuit, 

 8. The chip can expand externally to 64K program memory, 

9. The chip can expand externally to 64K data memory. 
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!"Pin configuration of 8051  

The pin configuration of 8051 is displayed as Figure 8.4.  The descriptions of each 

connection are listed in Table 8.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.4 Pin Configuration of 8051 

 

Table 8.3 Pin descriptions of 8051  

Pin Name Pin Descriptions 

Vcc 40 Positive terminal of power.  Voltage: 5V ±10%。 

Vss 20 Negative terminal of power. 

 

RST 

 

9 

Reset signal input of CPU.  Staying in low voltage normally but raise to high 

voltage as resetting and will keep at least 2 machine cycles while the single chip will 

progress the diverse jobs of resetting the system.  Afterward, the address starts 

from 0000h when operating.   
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ALE/PROG 

 

30 

This pin has two functions: (1) ALE is the initial of address latch enable.  When 51 

is reading the external program or when the data sends out the addressing signals, 

the signals would be companied sending out for the external circuit to latch the 

low-bit signals of the addressing line;  (2) PROG is the special functional input pin 

when 8751 is programming.  

/PSEN 29 
/PSEN is the initial of program strobe enable.  When 8051 is reading the external 

program memory, it will at the same time, sending out the signal for reading the 

program code. 

 

/EA/VPP 

 

31 

The pin has double functions: (1) /EA is the initial of external access. Activate with 

voltage low.  Implementing reading the external programs as /EA = “0” while 

reading the internal programs as /EA = “1”; (2) Vpp is the programming voltage 

input pin when 8751 is programming. 

XTAL1 19 Input terminal of systematic oscillator crystal. 

XTAL2 20 Output terminal of systematic oscillator crystal. 

 

PORT0 

 

39~32 

Port0 is part of the open drain construction; therefore, it requires an external 

connection to pull-up resistor.  There are three functions of this set: (1) 

bit-addressable bi-directional port, (2) low byte of output address, (3) bi-direction 

port. 

PORT1 1~8 Port1 is a bit-addressable bi-direction port with internal pull-up resistor. 

PORT2 21~28 
There are two functions of this set (1) bit-addressable bi-direction port with internal 

pull-up resistor, (2) high byte of output address.  

 

 

PORT3 

 

 

10~17 

This set has 2 functions: (1) bit-addressable bi-direction port with internal pull-up 

resistor; (2) The functions of each pin are as follows: RXD (10): input port of serial 

communication; TXD (11): output port of serial communication; INT0 (12): input of 

external interrupt 0, INT1 (13): input of external interrupt1; T0 (14): input of 

external Timer0; T1 (15): input of external Timer1; /WR (16): writing signal; /RD 

(17): reading signal. 

 

Figure 8.5 illustrates the extend circuits of 8051 single chip is not complicated.  

Usually, it only requires reset circuits, oscillator and some I/O devices. 
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Figure 8.5 8x51 microprocessor and its reset circuit and oscillator circuit 

!"8051 addressing modes 

Please note that there are five addressing modes of 8051: 

 

 1. Direct addressing, 

 2. Indirect addressing, 

 3. Register addressing, 

 4. Immediate addressing, 

5. Indexed addressing. 
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!"8051 Program Development Flow 

Generally, the flow of 8051 program development is illustrated as 8.6: 

 
 

Figure 8.6 program development flow of a 8x51 processor 

 

The flow starts with problem definition and explanation, then to draw and develop a 

flow chart. According to the flow chart, the next step is to editing, encoding, linking, 

programming and testing the programs of the sub-program. If problem occurs, then 

modify the sub-program and re-encoding, linking, programming, and testing until 

the problem are eliminated. After the sub-program or go back to edit the 

main-program to modify the main program, and re-encoding, linking, programming 

and testing until the problems are eliminated. After the sub-program has been 

developed, please edit, encode, link, program and test the main program.  Again, if 

problem occurs, go back to edit the sub-program to modify the sub-program or go 
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back to edit the main-program to modify the main program, and re-encoding, 

linking, programming and testing until the problems are eliminated. 

8.4 Design Example————Connecting with 
ADC0804, AD7528, and 8951 

We know that all the natural physical power is analog power from the instruction of 

Chapter 1, and the power is measurable, detectable, and controllable. To implement 

the advantages of digital system, we have to transform the analog signal into digital 

signal and process with digital signal. The procedures of transformation are as 

follows:   

 

 analog signal   analog signal     digital signal 

Physical Power――→Sensor――→A/D converter――→digital processor system 

 

The sensor can transform the natural physical power into the signals of 

electric—voltage signal or electric current signal—that the signal stays in analog 

signal. The voltage signal becomes digital signal through A/D converter under some 

circumstances. The digital signal, after processed, can turn to analog signal to 

control some mechanisms, such as current control valve, cooling fan, heater). The 

conversion is as follows 

 

 digital signal analog signal 

digital processor system——→D/A converter——→Controlled unit 

 

For interpreting the role of ADC0804, AD7528 and 8951, Figure 8.7 illustrates the 

implication of ADC0804, AD7528, and 8951. The 8-bit counter is for replacing the 
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physical power and sensor while 8951 is the digital processor system which take the 

responsibilities of controlling D/A converter, accepting A/D notification to restore 

the transferred data, digits transforms, scanning the 7-segment displayer and 

sending out the displayed digits to the 7-segment displayer. We will implement the 

circuits in the dotted frame of Figure 8.7 to CPLD chip.   

In LP-2900 Logic Circuit Design Lab Platform, the connecting of 8951, ADC0804 

and AD7528 is shown as Figure 8.8. The circuit layout of Figure 8.9 is the 

7-segment displayer of LP-2900 Logic Circuit Design Lab Platform. The 

connection and signal definitions of 8951 and EPF10K10TC144-4 is shown as 

Table 8.4 and Table 8.5 shows that of ADC0804 and EPF10K10TC144-4 and Table 

8.6 listed that of AD7528 and EPF10K10TC144-4. 

Figure 8.7 Connecting application of ADC0804, AD7528, and 8951 
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Figure 8.8 Connecting application of 8951 and ACD0804, AD7528 on LP-2900 

Lab Platform  
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Figure 8.9 Circuit Diagram of a 7-segment displayer on LP-2900 Lab Platform 

 

Table 8.4 Connections of 8951 and EPF10K10TC144-4 chips and signal definition 

Code P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7 

Signal AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 

Pin Pin 131 Pin 132 Pin 133 Pin 135 Pin 136 Pin 137 Pin 138 Pin 140 

P0.0〜P0.7 also connect D0〜D7 of LCD 

   

Code P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 

Signal DE1 DE2 DE3 Not used in the current example 

Pin Pin 17 Pin 18 Pin 19 Pin 20 Pin 21 Pin 22 Pin 141 Pin 142 

P1.0〜P1.7 also connect L21〜L26 and RG_EN and BAR_EN 
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Code P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7 

Signal D0 D1 D2 D3 Dp ENA  

Pin Pin 7 Pin 8 Pin 9 Pin 10 Pin 11 Pin 12 Pin 13 Pin 14 

P2.0〜P2.7 also connect L1〜L8 

   

Code P3.0 P3.1 P3.2 P3.3 P3.4 P3.5 P3.6 P3.7 

Signal AD_CS DA_CS INT0  /WR /RD 

Pin Pin 41 Pin 144 Pin 98 Pin 99 Pin 100 Pin 101 Pin 122 Pin 128 

P3.2〜P3.5 also connect CR1〜CR4 of 8 × 8 dot matrix 

P3.6〜P3.7 also RS and RW of LCD 

 

Table 8.5 Connections and signal definitions of ADC0804 and  

EPF10K10TC144-4  

A/D→→→→ADC0804 

Code DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7 

Signal AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 

Pin Pin 131 Pin 132 Pin 133 Pin 135 Pin 136 Pin 137 Pin 138 Pin 140 

DB0〜DB7 also connect D0〜D7 of LCD 

 

Code /CS /RD AD_INTR 

Signal AD_CS /RD AD_INTR 

Pin Pin 38 Pin 128 Pin 143 

AD_WR is Y6 of 3 to 8 decoder output; /RD also connects RW of LCD. 
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Table 8.6 Connections and signal definition of AD7528 and EPF10K10TC144-4  

D/A→→→→AD7528 

Code DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7 

Signal DD0 DD1 DD2 DD3 DD4 DD5 DD6 DD7 

Pin Pin 131 Pin 132 Pin 133 Pin 135 Pin 136 Pin 137 Pin 138 Pin 140 

DB0〜DB7 also connect D0〜D7of LCD 

 

Code /CS /WR /DACA 

Signal DA_CS /WR /DACA 

Pin Pin 39 Pin 128 Pin 122 

/WR also connect RW of LCD；/DACA also connect RS of LCD 

 

In order to implement the connection applications of Figure 8.7 and ADC0804, 

AD7528 as well as 8951 on LP-2900 Logic Circuit Design Lab Platform, we have 

to 

 1. Complete 8951 programs writing and programming,  

 2. Complete the parts of dotted line of Figure 8.7 in CPLD chip. 

 

Step 1: Please complete the following 8951 program assembling and programming. 

 

  We know the functions of 8951 are:  
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According to the procedure displayed above, we can, therefore, write AD2 

program of 8951 in Figure 8.10.  When assembled the file, AD2.HEX, of 

Figure 8.11 is acquired.  Please program this file onto 8951.  

 

.symbols 

.linklist 

.debug asm 

 
DisplayBuffer      equ       30h      ;4 bytes  

ScanCounter       equ       34h 

VoltLow          equ       35h 
VoltHigh          equ       36h 
;---------------------------------------------- 
             org      0h 
             jmp      Reset 
Reset: 
             mov      sp,#70h           ;Setup stack pointer 
             mov      ScanCounter,#0      
             mov      p1,#06h          ;Initial scan value 
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             mov      p2,#20h          ;Setup blank value 
             mov      p3,#ffh           ;AD_CS-->'H'，DA_CS-->'H' 

                                      ;/RD-->'H', /WR-->  

;---------------------------------------------- 

ADLoop: 
             Push     p1 
             push     p2 
             anl      p3,#fdh          ;DA_CS-->'L' 
             anl      p3,#3fh          ;DA_WR-->'L',DACA-->'L' 
             orl      p3,#c0h          ;DA_WR-->'H',DACA-->'H' 
             orl      p3,#02h          ;DA_CS-->'H' 
; Above four instructions activate set A of D/A Converter  
             anl      p3,#feh          ;AD_CS-->'L' 
             mov      p2,#20H        ;Setup Blank value 
             mov      p1,#07h         ;AD /WR-->'L' 
             mov      p1,#06h         ;AD /WR-->'H' 
; Above four instructions activate A/D Converter 

           jb       p3.2,$          ; Wait for A/D conversion complete 
             anl      p3,#7fh         ;/RD-->'L' 
             mov      a,p0           ;Read A/D result  
             orl      p3,#80h         ;/RD-->'H' 
; Above three instructions read data from A/D conversion 
             orl      p3,#01h         ;AD_CS-->'H' 

; Above nine instructions activate A/D conversion and wait for reading its data 

             pop 

             pop 

             call   Transfer          ; For value translation 

             call   DisplayVoltIntoDisplayBuffer 
            ；Call subprogram of output voltage value  
             push 
             push     psw 
             setb     rs0              ;select RB1 

clr      rs1 
             call     ScanDisplay     ;Call Subroutine of scan display 
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             pop      psw 
             pop      a 
             jmp      ADLoop 
;-------------------------------------------------- 
; Subroutine of Scan Display 
;-------------------------------------------------- 
ScanDisplay: 
           mov      r0,#ScanCounter 
           inc       @r0 
           cjne      @r0,#4,NotOver 
           mov      @r0,#0 
NotOver: 
             cjne     @r0,#0,ScanDisplay2 
             mov      p2,30h          ;Output contain of 30h to p2 
             mov      p1,#05h         ;(DE1,DE2,DE3)―＞ “101” 
             ret 
ScanDisplay2: 
             cjne     @r0,#1,ScanDisplay3 
             mov      p2,31h 
             mov      p1,#04h         ;(DE1,DE2,DE3)―＞ “011” 
             ret 
ScanDisplay3: 
             cjne     @r0,#2,ScanDisplay4 
             mov      p2,32h 
             orl      p2,#10h 
             mov      p1,#03h         ;(DE1,DE2,DE3)―＞ “010” 
             ret 
ScanDisplay4: 
             mov      p2,33h 
             mov      p1,#02h          ;(DE1,DE2,DE3)―＞ “001” 
             ret 
; 
;--------------------------------------------------- 
; Move voltage value, which in VoltHigh and VoltLow, to DisplayBuffer for display  

DisplayVoltIntoDisplayBuffer: 
             mov     r1,#DisplayBuffer 
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Loop:        mov     a,VoltLow 
             mov     b,#10h 
             div      ab 
             mov     @r1,b 
             inc      r1 
             mov     @r1,a 
             inc      r1 
             mov     a,VoltHigh 
             mov     b,#10h 
             div      ab 
             mov     @r1,b 
             inc      r1 
             mov     @r1,a 
             ret 
; 
;---------------------------------------------------------------- 
; Subprogram of value translation 
; Input: a registr 
; Output: VoltHigh and VoltLow 
; Note：The read in value times 0.02 is voltage value 
;----------------------------------------------------------------- 
Transfer: 
             mov    b,#2 
             mul     ab 
             mov    VoltHigh,b 
             mov    VoltLow,a 
             call     Bin2Bcd          ; Call subprogram of  binary to BCD 
             mov    VoltHigh,r4 
             mov    VoltLow,r3 
             ret 
; 
;-------------------------------------------------- 
; Subprogram of binary to BCD 
; Input: VoltHigh and VoltLow  

; Output :  r3 and r4 registers 
;-------------------------------------------------- 
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Bin2Bcd: 

             mov      r5,#16              ;16 bits 

             clr       a 

             mov      r3,a 

             mov      r4,a 

TLoop: 
             mov     a,VoltLow 
             rlc       a 
             mov     VoltLow,a 
             mov     a,VoltHigh 
             rlc       a 
             mov     VoltHigh,a 
             mov     a,r3 
             addc     a,r3 
             da       a 
             mov     r3,a 
             mov     a,r4 
             addc     a,r4 
             da       a 
             mov     r4,a 
             djnz     r5,Tloop 
             ret 
             end 
              

Figure 8.10  AD2 program of 8951 

 

Step 2: Insert the programmed 8951 onto the 8951 socket on LP-2900. 

 

Step 3: Complete the circuit entry, Figure 8.12, by using proper logic gate in the 

Graphic Editor of MAX+plus II. 
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Step 4: Simulating the circuit, and test weather the functions meet the circuit 

specifications. Please proceed the functional simulation after modifying 

Figure 8.12 to Figure 8.13. Figure8.14 is the simulation result of counter 

and display interface and it meet the specifications.  

 

:1000000002000375817075340075900675A0207527 

:10001000B0FFC090C0A053B0FD53B03F43B0C04349 

:10002000B00253B0FE75A02075900775900620B2FF 

:10003000FD53B07FE58043B08043B001D0A0D090A5 

:1000400012009F120087C0E0C0D0D2D3C2D41200E9 

:1000500057D0D0D0E00112783406B604027600B64C 

:1000600000078530A075900522B601078531A0757F 

:10007000900422B6020A8532A043A0107590032294 

:100080008533A0759002227930E53575F01084A78C 

:10009000F009F709E53675F01084A7F009F7227525 

:1000A000F002A485F036F5351200B08C368B35227F 

:1000B0007D10E4FBFCE53533F535E53633F536EBFD 

:1000C0003BD4FBEC3CD4FCDDEC2249 

:00000001FF 

Figure 8.11  AD2 hexadecimal file 
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Figure 8.12  Counter and Display interface 
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Figure 8.13 Modified counter and display interface for simulation and verification 

purpose 
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圖8.14 Simulation result of Figure 8.13 circuit. 

 

Step 5: Please download the circuit, Figure 8.13, after floorplan programming for 

testing circuit. You may use the floorplan techniques illustrated in Section 

4.6 and select an EPF10K10TC144-4 chip while referencing the pin 

assignment listed in Table 8.7. After assemble up LP-2900 Lab platform, 

please download the designed circuit to the EPF10K10TC144-4 chip and 

connect ADIN of CON7 with DAOUT1 by wire. Therefore, the signals 

transmitted by D/A converter can send to A/D converter for conversing. 

Try to push the button of UP (PS4) on the left middle of LP-2900 and note 
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weather the digits of 7-segment displayer raised (2.48v is the highest). 

Then, try to push the button of DOWN (PS2) on the left middle of LP-2900 

and note weather the digits of 7-segment displayer decreased. 

 

    Table 8.7 Pin assignment EPF10K10TC144-4 chip 

Name of Signal 
EPF10K10TC144-4 

chip pin 
Name of Signal 

EPF10K10TC144-4 

chip pin 

DA0 Pin 131 SEG7_A Pin 23 

DA1 Pin 132 SEG7_B Pin 26  

DA2 Pin 133 SEG7_C Pin 27 

DA3 Pin 135 SEG7_D Pin 28 

DA4 Pin 136 SEG7_E Pin 29 

DA5 Pin 137 SEG7_F Pin 30 

DA6 Pin 138 SEG7_G Pin 31 

DA7 Pin 140 SEG7_DP Pin 32 

P2.0 Pin 7 P3.0 Pin 41 

P2.1 Pin 8 P3.1 Pin 144 

P2.2 Pin 9   

P2.3 Pin 10 AD_CS Pin 38 

P2.4 Pin 11 DA_CS Pin 39 

P2.5 Pin 12 OSC Pin 55 

P1.0 Pin 17 51_INT0 Pin 98 

P1.1 Pin 18 AD_INTR Pin 143 

P1.2 Pin 19 DOWN Pin 56 

DE1 Pin 33 UP  Pin 126 

DE2 Pin 36 AD_RD Pin 128 

DE3 Pin 37 /WR Pin 122 

                    Connecting with Analog Circuit    CPLD Logic Circuit Design and Practice 



8.5 Evaluation 

  Please evaluate the accomplishment according to the following questions: 

#" Do you know which A/D converter is adapted in this chapter? 

#" Do you know which D/A converter is adapted in this chapter? 

#" Can you describe the steps to activate A/D converter? 

#" Can you describe the steps to activate D/A converter? 
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CHAPTER 9 
 

 

 CPLD LOGIC 
DESIGN LAB 

PLATFORM LP-2900 

LEAP



9.1 Function Description to LP-2900  

Due to the rapid improvement in electronic technology in these years, our life is 

becoming more and more convenient and comfortable. The domestic electrics, 

mobile phones and computer side products all of these indicate the electric products 

are getting smaller, light-weighted, and powerful. Digital circuits are gradually 

replacing the analog circuits. At the mean time, with the improvement of production 

in digital circuits, the standard IC, such as TTL/COMS is being replaced by 

CPLD/FPGA. With the population of CPLD chip, it is about time to reverse the 

teaching methodologies in Logic Design. LP-2900 CPLD Logic Design Lab 

Platform (Figure 9.1) is a product produced by Leap Electronic Co. in 1999. Under 

the devoted research and development, Leap Electronic Co. integrates the major 

functions--design, simulation, and verification--to provide a comprehend logic 

design teaching environment, in which the features are easy to set up and operate, 

instant response, and the course arrangement set from generous to sophisticated. 

Figure 9.1 LP-2900 Logic Design Lab Platform 
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 Taking ALTERA EPF10K10TC144-4 CPLD chip as the core, LP-2900 is designed 

as a multi-functional logic design lab platform, which is divided into four 

sections, CPLD chipboard, I/O device lab board, PC printer download interface, 

and power. 

!"CPLD chip board 

The four parts (Figure 9.2) set on the CPLD chip board include one ALTERA 10K 

series chip, one EPROM chip socket, one reset bottom, and one pin status display 

LED (Surface Mounted Device, SMD). ALTERA EPF10K10TC144-4 CPLD chip 

provides a diversity and convenient rout of constant re-loading to program new 

circuits. To provide an alternative method to program, users can insert EPROM chip 

with programmed “configuration data” to EPROM chip socket. The reset bottom is 

set to allow 10K chip to exit the user mode and enter into the command mode.  

After configuring the circuits and resetting, it will progress to re-activate the user 

mode. The programming methods introduced in this book allow 10K chip 

automatically exit user mode, enter into the command mode to configure and reset 

and then re-activate the user mode. Thus, it is not necessary to push the reset 

bottom before downloading. The pin status display LED is a SMD, showing the 

status of each pin after the power turns on, for detecting the situation of the 

circuits. 
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Figure 9.2 CPLD chip-board 

!"I/O device lab board 

The big board under the CPLD chipboard is the I/O device lab board. There are 12 

I/O devices on the board, which are (1) 4 sets of Red-Yellow-Green LED; (2) 6 

common cathode 7 segment display; (3) one buzzer; (4) 2 electronic dices; (5) one 

clock circuit; (6) 3 sets of 8-bit data switch; (7) 4 pulse bottom; (8) one frequently-

used 4 × 3 keyboard; (9) one 8 ×8 dot matrix LED display; (10) one LCD; (11) 

A/D & D/A circuit module; and (12) 8051 single chip module. The board contains 

all frequent-used I/O devices of digital logic circuits to provide a learning 

comprehend environment.  

!"PC printer download interface circuit 

The circuit provides downloading “configuration data” from PC printer port that is a 

                    CPLD Logic Design LAB Platform LP-2900    CPLD Logic Circuit Design and Practice 



convenient rout for programming 10K chip.  It saves the trivial works for 

disassembling to set the interface.  The only job that takes is to connect printer bus 

line to PC printer port. 

!"Power 

AC 90V~260V, 50Hz/60Hz, DC 5V, 2A input, providing all the power needed for 

all circuits and it has a short-circuit-protected measure.  

LP-2900 CPLD Logic Design Lab Platform should be used with ALTERA 

MAX+PLUS II software. Currently, the top three popular versions in the market of 

Taiwan are (1) Business Version (9.1 version, February 1999). To make the whole 

functions work, it requires a connecting key-pro to the printer port. (2) Student 

Version (7.21SE version, June 1999). Required by the US universities to apply 

CPLD courses, 7.21SE Version is designed for educating. Although this version 

does not provide functional simulation (except timing simulation), and only supply 

2 types of chip, EPM7128S and EPF10K20, however, it provides VHDL design 

environment. (3) Baseline Version (9.23 Version, June 1999). Except for VHDL 

design environment, it provides a design environment as graphic entry, text entry, 

and waveform entry. Meanwhile, it provides functional and timing simulations.  

This version can be used with any ALTERA chips. For free download and usage of 

Student and Baseline Version, please login at http://www.altera.com. 
 

The features of LP-2900 CPLD Logic Design Lab Platform are： 

 

1. Easy to setup and collect; 

2. Clear description on the board for easier operation;  

3. EPF10K10TC144-4 CPLD chip on the CPLD chipboard provides constant 

reloading for programming new circuits. This is very flexible and 

                    CPLD Logic Design LAB Platform LP-2900    CPLD Logic Circuit Design and Practice 



convenient.  Meanwhile, EPF10K10TC144-4 chip offers a wide range 

circuit application from tiny to large circuits. 

4. The pin status display of SMD LED shows the current status of each pin. 

This equipment is quite convenient for circuit detection.   

5. I/O device lab-board comprises most of the I/O devices required for digital 

logic circuit, providing a comprehensive learning environment.  

6. Used with MAX+PLUS II, it provides an integrated environment of design, 

simulation, and verification of digital circuit.  This integrated environment 

can not only ease the universities’ courses on digital logic design, digital 

circuit design, digital system design and VHDL digital circuit design but 

also provide an excellent environment for the department of R&D to 

develop circuits.  

7. The book ”CPLD Logic Circuit Design and Practice” is edited by graphic-

oriented, arranged from simple to sophisticated, draw out a lots of 

illustrations, instruct with detail descriptions. Teaching with that book to 

present logic design instruction and practices, and unite theories and 

phenomenon testimony are the brand new teaching methodology.   

8. To complete the combined circuit practices using 8051 and CPLD. 

9. Compatible with WIN95/98/2000/NT working systems. 

 

9.2 Setting up LP-2900  

!"Setting up LP-2900 CPLD Logic Design Lab Platform 

  It requires only two steps to setup LP-2900,  

1. Connecting the power cord with 110V socket； 

2. Connecting one terminal of the printer bus line with the parallel port of PC, 
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which has MAX+PLUS II, and the other with the parallel port of LP-2900 

CPLD Logic Design Lab Platform. 

9.3 The Architecture and Circuits of LP-
2900  

 1. Figure 9.3 illustrates LP-2900 Lab-Platform is composed by four parts, 

CPLD chipboard, I/O Lab-board, PC printer download interface and power. 

 2. Figure 9.4 demonstrates the connection status of the three components on 

the CPLD chipboard. There are module connector, CLPD chip, and ISP 

download bus connector. 

 3. Figure 9.5 illustrates the connection status of the eleven parts on the I/O 

Lab-board that are module connector, buzzer, 7 segment display, clock, 

pulse keys, 8 ×8 dot matrix display, LCD module, 4 ×3 keyboard module, 

8051 single chip, A/D & D/A module, and LED display, including the LED 

of dice array. 

 4. Figure 9.6 describes the connection of EPF10K10TC144-4. 

 5. Figure 9.7 is the socket layout of the chip module. 

 6. Figure 9.8 is the circuit layout of I/O status LED on chip module. 

 7. Figure 9.9 is the download interface of EEPROM and printer parallel port. 

 8. Figure 9.10 illustrates the connection on I/O Lab-board. 

 9. Figure 9.11 demonstrates the module connector on CPLD chipboard. 

 10. Figure 9.12 is the LED display driver on I/O Device Lab-board. 

 11. Figure 9.13 is the driver of 7-segment display and buzzer on I/O Device 

Lab-board.  

 12. Figure 9.14 is the buttons of pulse and clock up/down on I/O Device Lab-

board. 
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 13. Figure 9.15 is the circuits of 8 × 8  Dot Matrix Display, LCD module, and 4

×3 keyboard. 

14. Figure 9.16 is the circuits of data switch on I/O Device Lab-board, one of 

which is a set of 8-key with LED display. 

15. Figure 9.17 illustrates A/D and D/A circuits on I/O Device Lab-board. 

16. Figure 9.18 demonstrates 8 × 8 Dot Matrix Module on I/O Device Lab-

board. 

 

Figure 9.3 Blocks of LP-2900  
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Figure 9.4 Connection of the three major parts on CPLD chip-board 
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Figure 9.5 Block Diagram of I/O Device Lab-board  
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Figure 9.6 Connection of EPF10K10TC144-4  
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Figure 9.7 Chip Block-Pinout 
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Figure 9.8 Chip Block I/O Status LEDs 
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Figure 9.9 ISP and EEPROM Extend Download Circuit 
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Figure 9.10 Connectors on I/O Device Lab-board 
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       Figure 9.11 Module Connectors on CPLD chip-board 
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Figure 9.12 LED Display Driver on I/O Device Lab-board 
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Figure 9.13 7-Segment Display and Buzzer on I/O Device Lab-board 
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Figure 9.14 Pulse and Clock Up/Down Push Buttons on I/O Device Lab-board  
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Figure 9.15 Dot Matrix Display, keyboard, and LCD Module 
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Figure 9.16 Data Switches on I/O Device Lab-board  
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 Figure 9.17 8051, A/D and D/A  
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 Figure 9.18 8 × 8 dot matrix module on I/O device lab board 
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9.4 Pin arrangement of LP-2900  

Pin arrangement data, an important data that highly used, is an essential data for 

floor plane setup.  The pin arrangement data of ALTERA EPF10K10TC144 on LP-

2900 is described in detail as follows. 

9.4.1 Red-Yellow-Green LED 

 

 

Code L1 L2 L3 L4 L5 L6 L7 L8 

Device Red Yellow Green Red Yellow Green Red Yellow 

Pin Pin 7 Pin 8 Pin 9 Pin 10 Pin 11 Pin 12 Pin 13 Pin 14 

 

Code L9 L10 L11 L12 LED_COM 

Device Green 

LED 

Red 

LED 

Yellow 

LED 

Green 

LED 

Common cathode of LED1〜

LED12  

Pin Pin 17 Pin 18 Pin 19 Pin 20 Pin 141 

† L1〜L12 are LED anode inputs for each LED 

† LED_COM is the common cathode of all LED 

 

 

                    CPLD Logic Design LAB Platform LP-2900    CPLD Logic Circuit Design and Practice 



9.4.2 7-Segment Display with Common Cathode 

 

Code A B C D E F G DP 

Device 7 Segment Display 

Pin Pin 23  Pin 26 Pin 27 Pin 28 Pin 29 Pin 30 Pin 31 Pin 32 

 

Code DE1 DE2 DE3 － － － － － 

Device 74138 － － － － － 

Pin Pin33  Pin36 Pin37 － － － － － 

† DE1, DE2 and DE3 are connected to 74138 which outputs Y0〜Y5 as C1〜C6. 

† C1〜C6 are the common cathodes of 6 7-segment display. 

 

9.4.3 BUZZER 

Code SP1 

Device Sp1 

Pin Pin 46 

 

 

                    CPLD Logic Design LAB Platform LP-2900    CPLD Logic Circuit Design and Practice 



9.4.4 Electronic Dice 

 

Code L13 L14 L15 L16 L17 L18 L19 

Device Red Dice 

Pin Pin 7 Pin 8 Pin 9 Pin 10 Pin 11 Pin 12 Pin 13 

 

Code L20 L21 L22 L23 L24 L25 L26 

Device Green Dice 

Pin Pin 14 Pin 17 Pin 18 Pin 19 Pin 20 Pin 21 Pin 22 

 

Code Dice_COM － － － － 

Device Common cathode of L13〜L26 － － － － 

Pin Pin 142 － － － － 

† L13〜L26 are anode inputs for each LED 

† Dice_COM is the common cathode of L13〜L26 
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9.4.5 LCD display 

 

Code EN RS RW D0 D1 D2 D3 D4 

Device LCD 

Pin Pin 130 Pin 122 Pin 128 Pin 131 Pin 132 Pin 133 Pin 135 Pin 136 

 

Code D5 D6 D7 － － － － － 

Device LCD － － － － － 

Pin Pin 137 Pin 138 Pin 140 － － － － － 

9.4.6 CLOCK 

 

Code L27 L28 L29 L30 L31 L32 L33 L34 

Device Yellow LED 

Pin Pin 23 Pin 26 Pin 27 Pin 28 Pin 29 Pin 30 Pin 31 Pin 32 

 

Code DE1 DE2 DE3 Code OSC UP DOWN 

Device 74138 Device OSC Button Button 

Pin Pin 33  Pin 36 Pin 37 

 

Pin Pin 55 Pin 121 Pin 125 

† DE1, DE2 and DE3 are connected with 74138 which output Y6 as common 

cathode of L27〜L34. 
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9.4.7 8 x 8 Dot Matrix LED Display 

!"Common Anodes 

Code Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 Row 7 Row 8 

Device 8 ×8 Dot Matrix 

Pin Pin 88 Pin 89 Pin 90 Pin 91 Pin 92 Pin 95 Pin 96 Pin 97 
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!"Red Cathodes 

Code CR1 CR2 CR3 CR4 CR5 CR6 CR7 CR8 

Device 8 ×8 Dot Matrix 

Pin Pin 98 Pin 99 Pin 100 Pin 101 Pin 102 Pin 109 Pin 110 Pin 111 

† CR1〜CR8 driven by HI 

!"Green Cathodes    

Code CG1 CG2 CG3 CG4 CG5 CG6 CG7 CG8 

Device 8 ×8 Dot Matrix 

Pin Pin 112 Pin 113 Pin 114 Pin 116 Pin 117 Pin 118 Pin 119 Pin 120 

† CG1〜CG8 driven by HI 

9.4.8 8051 Single Chip 

 

Code P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7 

Device 8051 

Pin Pin 131 Pin 132 Pin 133 Pin 135 Pin 136 Pin 137 Pin 138 Pin 140 

† P0.0〜P0.7 also connect with D0〜D7 of LCD 
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Code P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 

Device 8051 

Pin Pin 17 Pin 18 Pin 19 Pin 20 Pin 21 Pin 22 Pin 141 Pin 142 

† P1.0〜P1.7 also connect L21〜L26 and LED_COM and Dice_COM。 

 

Code P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7 

Device 8051 

Pin Pin 7 Pin 8 Pin 9 Pin 10 Pin 11 Pin 12 Pin 13 Pin 14 

† P2.0〜P2.7 also connect L1〜L8。 

   

Code P3.0 P3.1 P3.2 P3.3 P3.4 P3.5 P3.6 P3.7 

Device 8051 

Pin Pin 41 Pin 144 Pin 98 Pin 99 Pin 100 Pin 101 Pin 122 Pin 128 

† P3.2〜P3.5 also connect CR1~CR4 on 8 × 8 Dot Matrix 

† P3.6〜P3.7 also connect RS and RW on LCD 

9.4.9 DATA SWITCHES 

 

Code SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 

Device Push Button 

Pin Pin 47 Pin 48 Pin 49 Pin 51 Pin 59 Pin 60 Pin 62 Pin 63 
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Code SW9 SW10 SW11 SW12 SW13 SW14 SW15 SW16 

Device Dip Switch 

Pin Pin 64 Pin 65 Pin 67 Pin 68 Pin 69 Pin 70 Pin 72 Pin 73 

 

Code SW17 SW18 SW19 SW20 SW21 SW22 SW23 SW24 

Device Dip Switch 

Pin Pin 78 Pin 79 Pin 80 Pin 81 Pin 82 Pin 83 Pin 86 Pin 87 

9.4.10  PULSE 

 

Code PS1 PS2 PS3 PS4 

Device Push Button with LED 

Pin Pin 54 Pin 56 Pin 124 Pin 126 

 

 

 

9.4.11  KEYBOARD 
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Code DE1 DE2 DE3 RK1 RK2 RK3 

Device KEYBOARD 

Pin Pin 33 Pin 36 Pin 37 Pin 42 Pin 43 Pin 44 

† DE1, DE2 and DE3 are connected to 74138 which outputs Y0〜Y3 connect to  

C1〜C4 on the keyboard. 

9.4.12  A/D, D/A 

!"A/D →→→→ ADC0804 

Code DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7 

Device ADC0804 

Pin Pin 131 Pin 132 Pin 133 Pin 135 Pin 136 Pin 137 Pin 138 Pin 140 

† DB0〜DB7 also connect D0~D7 on LCD 

 

Code /CS /RD DE1 DE2 DE3 AD_INTR 

Device ADC0804 

Pin Pin 38 Pin 128 Pin 33 Pin 36 Pin 37 Pin 143 

† AD_WR connect to the output Y6 of 74138. 
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† DE1, DE2 and DE3 are connected to 74138 as inputs. 

† /RD also connect RW on LCD 

!"D/A-->AD7528 

Code DB0 DB1 DB2 DB3 DB4 DB5 DB6 DB7 

Device AD7528 

Pin Pin 131 Pin 132 Pin 133 Pin 135 Pin 136 Pin 137 Pin 138 Pin 140 

† DB0〜DB7 also connect D0~D7 on LCD 

 

Code /CS /WR /DACA － － － － － 

Device AD7528 － － － － － 

Pin Pin39 Pin128 Pin122 － － － － － 

† /WR also connect RW on LCD 

† /DACA connect RS on LCD 

9.5 Evaluations 

Please do the following evaluations according to the questions listed below: 

#" Do you know which Lab-Platform is introduced in this chapter? 

#" Do you know which CPLD chip is adopted in this Lab-Platform? 

#" Do you know the main functions of Lab-Platform?  Do you know how to setup? 

#" Do you know how to check the arrangement of Pins? 
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APPENDIX A 
 

 

PLD Suppliers  

and  

Main Products 

LEAP



A.1 PLD Suppliers and Main Products 
Supplier ATMEL 

Technology Flash or EPROM Erase by UV* Erase by UV* Erase by UV* Flash 

Family ATF1500 ATV5000 ATF750B ATF2500B ATF16v8ce 

Gates 1500 5000 750 2500  

Speed (Mhz) 125 50 95 100  

T pd (Max) 7.5 ns 25 ns 7.5 ns 7 ns 10 ns 

GLB*** 32 128 20 24 8 

Registers 32 128 20 48 8 

I/O Pins 32 52 20  16 

Package PLCC PLCC DIP DIP/PLCC DIP/PLCC 

Other Features 
Turbo, flash, 

Low Power 
Low Power Low Power Low Power 

“Zero” Stand by 

Power** 

 

Supplier ATMEL 

Technology Flash Flash SRAM SRAM SRAM 

Family ATF220v10ce AT6010 AT6005 AT6003 AT6002 

Gates  10000 5000 3000 2000 

Speed (Mhz)  250 250 250 250 

T pd (Max)  1.2 ns 1.2 ns 1.2 ns 1.2 ns 

GLB*** 10 6400 3136 1600 1024 

Registers 10 6400 3136 1600 1024 

I/O Pins 20 204 108 120 96 

Package DIP/PLCC PQFP PLCC/PGA PLCC/PQFP PLCC/PQFP 

Other Features 
“Zero” Stand by 

Power ** 
Turbo mode 

 Turbo mode, 

Cache Logic 

 Turbo mode, 

Cache Logic 

Turbo mode, 

Cache Logic 

*UV: Ultraviolet Ray; ** Typical “Zero” standby power is 10 µA; ***GLB (Generic Logic Block). 
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Supplier Cypress 

Technology Flash Flash EPROM Flash Anti-Fuse 

Family 16V8 22V10 7C340 7C370 PASIC380 

Gates     1–8 K 

Speed (MHz) 125 125  143 200 

Tpd (Max) 7.5 ns 7.5 ns 15 ns 8.5 ns  

GLB** 8 10 32-192 32-128 96–768 

Registers 8 10 32-192 32-128 96–768 

I/O Pins 10/8 12/8 80 134 44–180 

Package DIP/PLCC DIP/PLCC PGA/PLCC 
TQFR/PGA/ 

PLCC 

PLCC/PGA/ 

TQFP 

Other Features 
   ISP* and support 

VHDL 

High Speed with 

3.3V 

*ISP: In System Programming。 

 

 

Supplier ICT 

Technology     

Family PEEL16V8 PEEL20V8 PEEL22V10 PEEL18V8 

Gates     

Speed (MHz)     

Tpd (Max) 25, 15, 10, 7, 5 25, 15, 10, 7, 5 25, 15, 10, 7, 5 25, 15, 10, 7, 5 

GLB**     

Registers 8 8 10 8 

I/O Pins 8/8 12/8 12/10 10/8 

Package 
24 Pin 

DIP/SOIC/PLCC 

24 Pin 

DIP/SOIC 

24 Pin DIP/SOIC  

28 Pin PLCC 

20 Pin DIP/SOIC/ 

PLCC/TSSOP 

Other Features     
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Supplier ICT 

Technology  EEPROM EEPROM EEPROM 

Family PEEL22CG10 PEEL22C08 PA7024 PA7128 PA7140 

Gates   40  36 72 

Speed (MHz)   71.4 83.3 66 

Tpd (Max) 25,15, 10, 7, 5 25,15,10, 7, 5 15, 20, 25 15, 20 20, 25 

GLB**      

Flipflops 10 8 40 36 60 

I/O Pins 10/12 14/8 2/22 14/12 14/24 

 

Package 
24 Pins 

DIP/SOIC 

24 Pins 

DIP/SOIC/TSS

OP 

24 Pins 

DIP/SOIC  

28 Pins PLCC 

28 Pins 

DIP/SOIC/ 

PLCC 

40 Pins DIP 

44 Pins PLCC 

Other Features      

 

Supplier ALTERA 

Technology EEPROM EEPROM EPROM 
Flash/SRAM or 

EPROM/SRAM 

Family Classic MAX5000 MAX7000 Flash Logic 

Gates 150–900 60–3750 60–5000 800–3200 

Speed (MHz) 111.1 125 178.6 83.3 

Tpd (Max) 7.5 ns 10 ns 5 ns 10 ns 

GLB** 8–48 16–192 32–256 40–160 

Registers 8–48 16–192 32–256 
RAM 20480 Bits or 

40–160 

I/O Pins 64 84 164 172 

Package 
DIP/PLCC/PGA DIP/QFP/ 

PLCC/PGA 

PLCC/PGA/ PQFP 
PLCC/QFP 

Other Features 
  EPM7032V uses 

3.3V  

3.3V and 5V used 

together 
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Supplier ALTERA 

Technology EEPROM SRAM SRAM 

Family MAX9000 FLEX8000 FLEX10K 

Gates 6000–12000 2500–16000 10K–100K 

Speed (MHz) 125 125 70 

Tpd (Max) 12   

GLB** 320–560 208–1296 576–4992 

Flipflops 484–772 282–1500 720–5392 

I/O Pins 168–216 78–208 150–406 

Package PLCC/QFP/PGA PLCC/QFP/PGA PLCC/QFP/PGA 

Other Features  

Use single 5V ISP 

 

EPF8282V uses 3.3V 

Included EAB* can implement   

DSP, CP, MICRO CONTROL, 

RAM and FIFO. 

*EAB: Embedded Array Block. 

 

Supplier AMD 

Technology E2CMOS E2CMOS E2CMOS E2CMOS E2CMOS E2CMOS 

Family 
MACH1 

MACH110 

P+ MACH111 MACH1 

MACH120 

MACH1 

MACH130 

P+ 

MACH131 

MACH2 

MACH210 

Gates 900 900 1200 1800 1800 1800 

Speed (MHz) 77 143 77 66 133 133 

Tpd (Max) 12 5 12 15 7.5 7.5 

GLB** 32 32 48 64 64 64 

Flipflops 32 32 48 64 64 64 

I/O Pins 38 38 56 70 70 38 

Package 
44 Pins PLCC 44-Pins PLCC 

/TQFP 

68 Pins 

PLCC  

84 Pins 

PLCC 

84 Pins 

PLCC 

44 Pins PLCC 

Other Features       

Note: Delay time of AMD element is predictable. 
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Supplier AMD 

Technology E2CMOS E2CMOS E2CMOS E2CMOS E2CMOS E2CMOS 

Family 
MACH2 

MACH220 

P+ 

MACH211 

P+ 

MACH221 

MACH2 

MACH230 

P+ 

MACH231 

MACH2 

MACH215 

Gates 2400 1800 2400 3600 3600 1500 

Speed (Mhz) 77 133 133 66 133 77 

Tpd (Max) 12 7.5 7.5 15 7.5 12 

GLB** 96 64 96 128 128 64 

Flipflops 96 64 96 128 128 64 

I/O Pins 58 38 56 70 70 38 

Package 
68 Pins PLCC 44-Pins 

PLCC /TQFP 

68 Pins PLCC  84 Pins PLCC 84 Pins PLCC 44 Pins  

PLCC 

Other Features       

 

Supplier AMD 

Technology E2CMOS E2CMOS E2CMOS E2CMOS E2CMOS E2CMOS 

Family 
MACH3 

MACH355 

MACH4 

MACH435 

MACH4 

MACH445 

MACH4 

MACH465 

MACH5 V+ 

M5-128 

MACH5 V+ 

M5-192 

Gates 3500 5000 5000 10000 5000 7500 

Speed (MHz) 47.6 83.3 83.3 83.3 125 125 

Tpd (Max) 15 12 712 12 7.5 7.5 

GLB** 96 128 128 256 128 192 

Flipflops 96 192 192 384 128 192 

I/O Pins 102 70 102 146 68, 104, 120 Same as left 

column+160 

Package 
144 Pins   

PPQF 

84 Pins PLCC 100 Pins 

PQFP 

208 Pins 

PQFP 

PQFP/ TQFP 44 Pins PLCC 

Other Features       
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Supplier AMD 

Technology E2CMOS E2CMOS E2CMOS E2CMOS 

Family 
MACH5 V+ 

M5-256 

MACH5 V+ 

M5-320 

MACH5 V+ 

M5-384 

MACH5 V+ 

M5-512 

Gates 10000 12000 15000 20000 

Speed (MHz) 125 125 125 125 

Tpd (Max) 7.5 7.5 7.5 7.5 

GLB** 256 320 384 512 

Flipflops 256 320 384 512 

I/O Pins 68, 104, 120, 160 120, 160, 184, 192 120, 160, 184, 192 
120, 160, 184, 192, 

256 

Package PQFP/TQFP PQFP/BGA PQFP/BGA PQFP/BGA 

Other Features     

 

Supplier LATTICE 

Technology E2CMOS E2CMOS E2CMOS E2CMOS E2CMOS 

Family 1000 2000 3000 6000 PLSI & SPLSI 

Gates 8000 6000 14000 20000 1000~11000 

Speed (MHz) 125 154 100 70 50~150 

Tpd (Max) 7.5 5.5 10 15 5.5 

GLB** 192 128 320 192 32~256 

Flipflops 288 128 480 416 32~384 

I/O Pins 108 136 108 169 34~128 

 

Package 

PLCC, JLCC, 
PQFP, CPGA, 

TQFP 

PLCC, TQFP, 
PQFP, MQUAD 

 

MQUAD 

 

MQFP 

PLCC, MQPF, 
TQPF, CPGA, 

PQFP 

 

Other Features 

1.ISP   

2.Reconfigurable  

 

1.ISP   

2.Reconfigurable  

 

1.ISP   

2.Reconfigurable  

 

1.ISP   

2.Reconfigurable  

3. Built-in SRAM 

1.ISP   

2.Daisy chain 

3.Download 
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A.2  ALTERA’s CPLD Devices 
 

  Till now(1996)，Seven family series of CPLD are provided by ALTERA: 
 

 1. CLASSIC 

 2. MAX5000 

 3. MAX7000 

 4. FLASH LOGIC 

 5. FLEX8000 

 6. MAX9000 

 7. FLEX10K 
 

In the CLPD logic world, CPLD almost produced by duplicating unitary cell. At the 

same series, bit’s capacity size depends on the duplicated count. Thus once 

comprehensive of the smallest element, the whole series elements could roughly in 

control.  Nevertheless, it’s probably not enough for a designer merely knowing the 

smallest bit; the following items are required for user to know: 

 
 

1. Manufacture technique: It refers to how to deal with memorial contacts with 

either on or off way.  Presently, applicable techniques included EPROM, 

EEPROM, FLASH, SRAM and Anti-Fuse.  Different manufacture technique 

would have different process steps.  For example, EEPROM user can clean 

AMD originally design by electric method; but if configuration bit manufactured 

by SRAM, which attribute belonged to volatility memory, once turning off 

power, the content would no more exist.  Thus the user should do more steps to 

take care this feature, that means the user shall re-download configuration while 

starting up computer.  
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2.  Capacity: It’s no doubt that chip capacity is important.  Over small chip couldn’t 

layout all digital circuits into one chip. On the other hand, use chip with 

exceeding capacity would cause too many unused circuits and raise capitalized 

cost. 

3.  Fundamental structure: Include basic unit mentioned above and router source for 

connecting internal element.   

4. Specific function: Except structural specification mentioned above, some chip 

could change timing delay and electric specification by setting, and things like 

that could be as specific function.  
 

 Each series will be discussed with the following four items: 

!"Classic series 
 

 1. Manufacture Techniques: Classics family mainly adopt EPROM which divided 

into two packages: Weed-out windows and  no  weed-out windows.  It is an One 

Time Program (OTP) device if it used EPROM but no weed-out windows to 

clear data by UV radiation.  

 2. Capacity: Gate count from 150 to 900, but for macrocell it could be 8 to 16.   The 

characteristics of chip of Classic series are listed in Table A.1. 

 3. Fundamental structure: In this family, different chip leads to different structure. 

Figure A.1 is structure diagram shown big structure is composed by several 

smaller compositions.  

4. Specific function ：This family possess security bit for programming. 
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Table A.1  The device characteristics of Classic family 

           Chip 

Feature 

EP22V10 

EP22V10E 

EP610  

EP610T 
EP610I 

EP910  

EP910T 
EP910I 

EP1810 

EP1810T 

Available gates 400 600 600 900 1800 1800 

Usable gates 200 300 300 450 450 900 

Macrocells 10 16 16 24 24 48 

Maximum user I/O 

pins

22 20 20 36 36 64 

tPD (ns) 7.5 15(35)* 10 30 12 20 (45) 

fCNT (MHz) 111.1 83.3 (28.6)* 100 33.3 100 50 (22.2) 
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Figure A.1 Architecture of Classic family 
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!"MAX5000 family 
 

 1. Manufacture techniques：Same as Classic family.  

 2. Capacity: Gate count is from 600 to 3750, but for macrocell, it could be 16 to 

192. The device characteristics of this family are listed in Table A.2.  

 3. Fundamental structure：Figure A.2 is architecture of MAX5000 family.  In this 

family, gathering 16 basic elements is called Logic Array Block (LAB). All 

macrocell of same block will share all input lines and a P-Term block.  

 4. Specific function：Possess security bit for scheming as well.  

 

Table A.2 The device characteristics of MAX5000 family 

CHIP 
Feature 

EPM5032 EPM5064 EPM5128 EPM5130 EPM5192 

Available gates 1200 2500 5000 5000 7500 

Usable gates 600 1250 2500 2500 3750 

Macrocells 32 64 128 128 192 

LABs  1 4 8 8 12 

Expanders 64 128 256 256 384 

Routing GLOBAL PIA PIA PIA PIA 

Maximum user 

I/O pins 
24 36 60 68, 84 72 

TPD (ns)  10 15 15 15 15 

TASU (ns)  3 5 5 5 5 

TCO (ns)  6 8 8 8 8 

fCNT (MHz) 125 83.3 83.3 83.3 83.3 
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Figure A.2 Architecture of MAX5000 family 
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!"MAX7000 family 

 1. Manufacture techniques: MAX7000 family manufactured in EEPROM manner.  

 2. Capacity: Gate count is from 600 to 5,000, but imacrocells could be from 32 to 

256.  Table A.3 lists device characteristics of this family.  

 3. Fundamental structure: In MAX7000 family, it could subdivide to three 

subsystems: MAX7000, MAX7000E and MAX7000S. Figure A.3 to Figure A.5 

indicate the architecture of them.  Basically, their structure is similar, and the 

mainly difference is MAX7000E owned 5V of ISP (In System Programmability), 

having more four OE control lines than MAX7000, and capable to be an open 

collect output.  

 4. Specific Function: All device of this family possess security bits for 

programming, and every macrocell could be respectively controlled as turbo 

mode and non-turbo mode. Besides, of IO structure, MAX7000E and 

MAX7000S have slew-rate control of signal output.  

TableA.3  The characteristics of chips of  MAX7000 series 

CHIP 
Feature 

EPM703 EPM703 EPM706 EPM709 EPM712 EPM716 EPM719 EPM725

Available gates 1,200 1,200 2,500 3,600 5,000 6,400 7,500 10,000 

Usable gates 600 600 1,250 1,800 2,500 3,200 3,750 5,000 

Macrocells 32 32 64 96 128 160 192 256 

Maximum user 

I/O Pins 
36 36 68 76 100 104 124 164 

tPD (ns)  5 12 6 6 7.5 7.5 10 10 

tSU (ns)  4 10 5 5 6 6 7 7 

tFSU (ns)  – – – – 3 3 3 3 

tCO1 (ns)  3.5 7 4 4 4.5 4.5 5 5 

fCNT (MHz) 178.6 90.9 151.5 151.5 125 125 100 100 
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Figure A.3 Architecture of MAX7000 family 
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Figure A.4 Architecture of MAX7000E family 
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Figure A.5 Architecture of MAX7000S series 
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!"Flash Logic family 
 

 1. Manufacture techniques: In this family, each device simultaneously adopt two 

techniques, it could be SRAM and EPROM or SRAM and FLASH to control 

the same configuration bit. In other words, people download configuration data 

directly to SRAM while the circuit in developing phase. After developed, write 

the configuration data into nonvolatile memory EPROM or FLASH.  By this 

way, elasticity of developing phase and practice of developed time could be 

both considered.  

 2. Capacity: Gate count from 800 to 3,200, but for macrocells, it could be 40 to 

160.  Table A.4 lists device characteristics of this family, in which 740 and 780 

manufactured by SRAM and EPROM, but 880 and 8160 are made by SRAM 

and FLASH.  

 3. Fundamental structure:  Figure A.6 is the architecture of Flash Logic family. 

The most distinctive part of this family is every LAB could evolve into 2 kinds 

via setting.  One is P-Term of MAX7000 family, and another is 128 × 1 0 

SRAM memory.  This alternative option is based on a LAB, and everyone 

could plan out diverse types.  

 4. Specific function: Peculiar function of this family mainly is on I/O parts.  Every 

I/O related to LAB, which in control individually, could be 5V I/O or 3.3 V I/O. 

Beside, every I/O could work on open drain or pull high register independently.  

This family also includes security bit for programming. 
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Table A.4  The characteristics of chips of Flash logic family 

CHIP 
Feature 

EPX740 EPX780 EPX880 EPX8160 

Available gates 1,600 3,200 3,200 6,400 

Usable gates 800 1,600 1,600 3,200 

Total SRAM 

bits 
5,120 10,240 10,240 20,480 

Macrocells 40 80 80 160 

Maximum user 

I/O pins 

44-P PLCC (32) 68-P 

PLCC (52) 

84-P PLCC (62) 

132-P QFP (104) 

84-P PLCC (62) 

160-P QFP (104) 
208-P QFP (172) 

tPD (ns)  10 10 10 10 

tCO (ns)  6 6 6 6 

fCNT (MHz) 83.3 83.3 80 80 
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Figure A.6  Architecture of Flash logic family 
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!"FLEX8000 family 
 

 1. Manufacture techniques: FLEX8000 is manufactured by using SRAM technique.  

Due to FLEX8000 merely could be produced by volatility memorie that means if 

power turn off and all bits configuration data would vanish at the same time. 

Therefore, it’s necessary for each device shall be configurated again while 

power turn on.  We call this operation as “in circuit configuration” (ICR).  

 2. Capacity: Gate count is from 2,500 to 16,000 and LE element could be 208 to 

1,296.  Table A.5 lists every device characteristic in this family.  

 3. Fundamental structure: Figure A.7 is the fundamental structure of FLEX8000 

family.  It combined only with several blocks which shown totally different with 

previous family structure.  In fact, this family is no more adopt P-Term for 

logical configuration, but use memory for storing Luck Up Table (LUT) to 

implement logic function. By which, all 4 input logical configurations can 

present with 16-bit memory.  Owing to structure difference, this logical unit of 

this family renames as LE (Logical Element).   Structurally, LUT add two blocks, 

CARRY and CASCADE, on back for concatenating information between LE.  

In that case, for one thing it could save external signal input resource, and for 

another it could avoid delaying time. In wholly framework, FLEX8000 adopt 

connection bus of three-dimension, which includes horizontal and vertical 

connection among LE blocks as well as the internal logic block connection.  All 

I/O signals are output through bus, and every I/O embedded one register for 

signal storage. 

 

 4. Specific function: Every LE of this family can be controlled in turbo mode and 

non-turbo mode respectively.   Besides, IO structure has slew-rate control.  

 

                   PLD Suppliers and Main Products    CPLD Logic Circuit Design and Practice 



Table A.5  The characteristics of chips of  FLEX8000 family 

CHIP  

 

Feature 

EPF8282 

EPF8282V 

EPF8282A 

EPF8282AV 

 

EPF8452 

EPF8254A 

 

EPF8636A 

 

EPF8820 

EPF8820A 

 

EPF81188 

EPF81188A 

 

EPF81500 

EPF81500A 

Available 

gates 

5,000 8,000 12,000 16,000 24,000 32,000 

Usable gates 2,500 4,000 6,000 8,000 12,000 16,000 

Flipflops 282 452 636 820 1,188 1,500 

Logic element 208 336 504 672 1,008 1,296 

Maximum user 

I/O pins 
78 120 136 152 184 208 

JTAG BST Yes No Yes Yes No Yes 

 

Package 

 

84P PLCC 

100P TQFP 

84P PLCC 

160 PQFP 

160 PGA 100 

TQFP  

84P PLCC 

160P PQFP 

192P PGA 

208P RQFP 

160P PQFP 

192P PGA 

208P RQFP 

225P BGA 

 
208P PQFP 

232P PGA 

240P RQFP 

 
240P RQFP 

280P PGA 

304P RQFP 
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Figure A.7 Architecture of  FLEX 8000 family 
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 Since FLEX8000 family is helpful for learning, further introduction to the internal 

structure is needed.  FLEX 8000 configured by Logic Area Blocks (LAB), I/O element 

and interconnect FastTrack. Every LAB block consists of eight LE elements. Like 

Figure A.8, LE is the smallest logic element of FLEX8000 family.   Figure A.9 shows 

that each LE composed by one 4-input (LUT), one programmable register, one carry 

chain and one cascade chain.  LUT could produce circuit and then come into quad 

variable function quickly.  The programmable register can program as D-Type, T-Type, 

JK Type or SR Type, which input signals like clock, clear and preset are driven by 

exclusive input pin, general use I/O input pin or by any internal logic.  This LE 

provides compose capability of combinational logic and sequential logic circuit.  For 

combinational logic circuit, LUT can skip over directly from programmable register 

and then output from LE.  

Figure A.8 FLEX8000 Device Block Diagram 

 

FLEX8000 has two specific high-speed data links: carry-in chain and cascade chain for 

connecting adjacent without via local interconnection. Figure A.10 shows that 
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high-speed counter and adder can be produced by carry chain.  Carry chain can 

produce high fan-in with lower timing delay circuit, e.g. OR cascade application in 

Figure A.11 and an AND application in Figure A.12.  However, overuse carry chain 

and cascade chain would decrease applicable wire resource for other LE use. So, we 

suggest user to apply them when in high-speed design requirement.  

  

Figure A.9 FLEX8000 Logic Element  

 

Figure A.10 FLEX8000 Carry Chain Operation  
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 Figure A.11 FLEX8000 OR-cascade Chain Operation 

 

Figure A.12 FLEX8000 AND-cascade Chain Operation 

 

  There are four operating modes of LE element in FLEX8000 family. Those are 

Normal mode, Arithmetic Mode, Up/Down Count Mode and Clearable Count mode, 

shown in Figure A.13 ~ Figure A.16. Each mode has ten input signals, which are Clock, 

Clear, Preset, four signals come from local interconnect of LAB, one feedback from 

programmable register, Cascade-in and Carry-in. Different mode uses different LE 

resource. Normal mode has Cascade-in chain that suits for general circuit or decoder 

with mass inputs. D1, D2, D3 and D4 come from local interconnect of LAB block. D3 
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and Carry-in are input to 1-of-2 multiplexer, which output then send to 4-input LUT. 

The output of AND logic, output of LUT AND operates with Cascade-in from previous 

step, can be as 1-of-2 multiplexer input, as D input of programmable register, or as 

Cascade-out.   Therefore, the output of LE can be via Flip-flop or not.  

Figure A.13 FLEX8000 LE Normal Mode 

 

Figure A.14 FLEX8000 LE Arithmetic Mode 

 

Figure A.15 FLEX8000 LE Up/Down Count Mode 
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Figure A.16 FLEX8000 LE Clearable Counter Mode 

 

  Two 3-bit parallel input LUT of arithmetic mode is special suited to produce 

high-speed adder, high-speed accumulator and high-speed comparator.  Upper/down 

counter mode provides counting enable, synchronous up/down control and data load.  

No exception, Up/down counter mode also applies 3-bit parallel input LUT, one result 

in count value and another produces high-speed carry.  One 1-of-2 Multiplexer 

provides synchronous data load, and asynchronous data load can completed merely 

with Clear and Preset signals without using LUT resource.  Clearable counter mode is a 

little bit similar to up/down counter mode, in addition to synchronous clear control 

replace synchronous up/down control, 1-of-2 Multiplexer’s output AND with 

synchronous clear signal then output.  

   Figure A.17 shows that the Preset of programmable register that is controlled by 

d3 and LABCTRL1 and Figure A.18 shows that the Clear is controlled by d3, 

LABCTR1 and LABCTL2. 
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Figure A.17 Asynchronous preset of FLEX8000 LE  

Figure A.18  Asynchronous clear of FLEX8000 LE  

 

Operation mode of FLEX8000: For FLEX8000 adopted SRAM to save 

configuration data, which needed re-download configuration data when plug-in, and 

this process called configuration.  When configuration completed, FLEX8000 reset 

registers and enable I/O pin then works like logic circuit.  This reset process called 

initialization.  From configuration to initialization, this stage named command mode, 

and then enter general on-line work called user mode.  SRAM allow configuring 

FLEX8000 by downloading on-lined new configuration data.  For this real-time 

configuration can reinforce device enter configuration and initialization (namely 

command mode) processes just by dedicated pin, then back to user mode.  The whole 

process only took less than 100ms.  When device plug-in, it could be configured either 

in automatically or controlled by external circuit.  FLEX8000 can use embedded 

oscillator or external clock signal of device to do initialize.  Dedicate pins are used to 

prn

Vcc

d3

LABCTRL1

   prn
D    Q

  clrn

Vcc

d3

LABCTRL1

LABCTRL2
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control when device enter configuration and initializing (namely command mode) 

processes.  

 

Configuration schemes of FLEX8000: Like Table A.6, FLEX 8000 provided six 

kinds of configuration schemes.  Under active schemes, FLEX8000 dominated all 

configuration process and internal oscillator (typical value is 2~6 MHz) offer external 

synchronizing clock and control signal.  AS mode uses ALTERA configuration device 

(serial type) to save configuration data, and APU & APD mode adopts Parallel 

EPROM, such as 2732 or 2764, to save configuration data.  When FLEX8000 in 

passive mode, all configuration process controlled by external circuit and provided 

clock from outside.  What is called intelligent host referring to microprocessor unit 

something like controller. 

 

Table A.6 Data Source for Configuration  

Configuration Scheme Acronym Data Source 

Active Serial AS                       ALTERA configuration device 

Active parallel up APU                       Parallel configuration device 

Active parallel down APD Parallel configuration device  

Passive serial  PS Serial data path 

Passive parallel synchronous PPS Intelligent host 

Passive parallel asynchronous PPA Intelligent host 
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!"MAX9000 family 
 

 1. Manufacture techniques: Like MAX7000 family manufactured by EEPROM.  

2. Capacity: Gate count is from 6000 to 12000 and macrocell could be 320 to 560.  

Table A.7 is device characteristics of MAX9000 family.  

 

Table A.7  The characteristics of chips of  MAX9000  

CHIP 
 Feature 

EPM9320 EPM9400 EPM9480 EPM9560 

Available gates 12000 16000 20000 24000 

Usable gates 6000 8000 10000 12000 

Flipflops 484 580 676 772 

Macrocells 320 400 480 560 

Maximum user 

I/O pins 
168 184 200 216 

tPD1 (ns)  12 12 15 15 

tFSU (ns)  3 3 5 5 

tFCO (ns)  6 6 7 7 

FCNT (Mhz) 125 125 118 118 

 

 3. Fundamental structure: We can say MAX9000 family, its structure almost 

follows MAX7000 family, is the extension of MAX7000 family.   Figure A.19 is 

the architecture of MAX9000 family.  Since capacity of MAX9000 family larger 

than MAX7000 family, the internal bus structure becomes as three dimensions. 

All I/O have one register and all output from bus (same as FLEX8000).  

MAX9000 generally parallel to MAX7000 in macrocell, but MAX9000 design 

each LE with two outputs to promote utility rate of macrocells.  
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 4. Specific function: In this family, security bit embedded in every device.  Each 

macrocell could be controlled into turbo mode and non-turbo mode respectively. 

Each IO structure also has slew-rate control.  Besides, like MAX7000S family, 

this family provides 5V ISP.  
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Figure A.19 Architecture of MAX9000 family 
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!"FLEX10K family 
 

 1. Manufacture technique: FLEX10K is manufactured by SRAM (same as 

FLEX8000) and ICR action is needed as well.  

 2. Capacity: Typical gate count is from 10K to 100K and LE count is 576 to 4,992.  

The embedded RAM block size of FLEX10K is from 6,144 bits to 24,576 bites.  

Table A.8 is device characteristics of this family.  

 3. Fundamental structure: In wholly structure, FLEX10K basically is the extension 

of FLEX8000. Except for Embedded Array Block (EAB), its structure different 

from traditional programmable logic.  Briefly say, the detached RAM making 

connection with traditional logic block by using internal bus. By this way, 

general circuit could be completed in traditional LE. Besides, even a great 

quantity of memory and registers are demanded, FLEX10K still can finish work 

in Embedded Array Block (EAB) without wasting lot of LE and signal 

connection resource those are used in traditional logic block.  EAB has more 

function than memory.  At partial of arithmetic circuit, memory mapping is more 

workable than logic configuration. Multiplier is the good example.  However, 

hundreds of ns are required for logic configuration of multiplier to compute 

result, but memory mapping manner only requirs several tens of ns to access 

memory.  Figure A.20a and Figure A.20b are the architecture of FLEX10K 

family.  Most structure of FLEX10k similar to FLEXE8000, but each I/O pin of 

FLEX10K has individual OE control, open drain and slew-rate control in I/O 

structure.  

4. Specific function: Turbo-mode and non-turbo mode respectively controlled by 

every LE of this family.  Each IO structure also possesses input slew-rate 

control.  
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Table A.8  The characteristics of chips of  FLEX10K family 

CHIP 
Feature 

EPF10K10 EPF10K20 EPF10K30 EPF10K40 EPF10K50 EPF10K70 EPF10K100 

Typical gates 10,000 20,000 30,000 40,000 50,000 70,000 100,000 

Usable gates 7K~31K 15K~63K 22K~69K 29K~93K 36K~116K 46K~118K 62K~158K 

LEs 576 1152 1728 2304 2880 3744 4992 

RAM       

bits 
6,144 12,288 12,288 16,384 20,480 18,432 24,576 

Flipflops 720 1,344 1,968 2,576 3,184 4,096 5,392 

Maximum 

user I/O 

pins 

          

150 

          

198 

          

246 

          

278 

          

310 

          

358 

          

406 
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Figure A.20a Architecture of FLEX 10K family (1) 
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Figure A.20b  Architecture of  FLEX 10K family (2) 
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APPENDIX B 
 

 

The Built-in 

Resources of 

MAX+PLUS II 

 

LEAP



  MAX+PLUS II provides more built-in resources to engineers whom are 

familiar with standard discrete primitives can keep on using. There two categories, 

Primitives and Macrofunctions, built-in resources are provided. Buffer, Flip-

flop/Latch, Input/output and Basic Logic are four resource classes in Primitives. 

There are 20 categories in Macrofunctions, which include Adder, Frequency 

Divider, ALU , Latch, Application Specific Function, Multiplier, Buffer, 

Multiplexer, Comparator, Parity Generator/checker, Rate Multiplier, Counter, 

Register, Decoder, Shift Register, Digital Filter, Storage Register, EDAC, SSI and 

Encoder. 

MAX+PLUS II has provided furnish built-in resources of standard discrete 

primitives, for readers of this book (Graphic entry manner) who only need to key in 

the name of circuit symbol like as AND3, XOR, OR4, 74138, …. Reader can take 

built-in resources listed below for reference. 

B.1 Primitives  

B.1.1 Primitive Categories 

  There are four built-in primitive categories in MAX+PLUS II. Those include 

buffer, flip-flop and latch, input/output primitives and logic primitives.  

B.1.2 Description of Primitives 

  Primitives categorized as above and listed for description like following: 
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Buffer Primitives 

Primitive Function Prototype 

LCELL (MCELL) FUNCTION LCELL (in) 

RETURNS (out); 

SOFT FUNCTION SOFT (in) 

RETURNS (out); 

CARRY FUNCTION CARRY (in) 

RETURNS (out); 

CASCADE FUNCTION CASCADE (in) 

RETURNS (out); 

EXP FUNCTION EXP (in) 

RETURNS (out); 

GLOBAL (SCLK) FUNCTION GLOBAL (in) 

RETURNS (out); 

WIRE (GDFs only) OUT = input 

IN 

TRI FUNCTION TRI (in, oe) 

RETURNS (out); 

 

Flip-flop & Latch 

Primitives 

Primitive Function Prototype 

SRFF FUNCTION SRFF (S, R, CLK, CLRN, PRN) 

RETURNS (Q); 

SRFFE FUNCTION SRFFE (S, R, CLK, CLRN, PRN, ENA) 

RETURNS (Q); 

TFF FUNCTION TFF (T, CLK, CLRN, PRN) 

RETURNS (Q); 

TFFE FUNCTION TFFE (T, CLK, CLRN, PRN, ENA) 

RETURNS (Q); 
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DFF FUNCTION DFF (D, CLK, CLRN, PRN) 

RETURNS (Q); 

DFFE FUNCTION DFFE (D, CLK, CLRN, PRN, ENA) 

RETURNS (Q); 

JKFF FUNCTION JKFF (J, K, CLK, CLRN, PRN) 

RETURNS (Q); 

JKFFE FUNCTION JKFFE (J, K, CLK, CLRN, PRN, ENA) 

RETURNS (Q); 

LATCH FUNCTION LATCH (D, ENA) 

RETURNS (Q); 

 

Input & Output 

Primitives/Ports 

Primitive Description 

BIDIR or INOUT AHDL Syntax: io: BIDIR; 

VHDL Syntax: io: INOUT 

INPUT or IN AHDL Syntax: in1: INPUT; 

VHDL Syntax: in1: IN 

OUTPUT or OUT AHDL Syntax: out1: OUTPUT; 

VHDL Syntax: out1: OUT 

 

Logic Primitives (GDFs only) 

Primitive Description Name 

AND OUT = logical AND of inputs 

IN1, IN2,... IN12 = 2, 3, 4, 6, 8, 

or 12 inputs 

AND2, AND3, AND4, AND6, 

AND8, AND12 

NOR OUT = logical NOR of inputs 

IN1, IN2,... IN12 = 2, 3, 4, 6, 8, 

or 12 inputs 

NOR2, NOR3, NOR4, NOR6, 

NOR8, NOR12 

NOT OUT = inverse of input  

IN = 1 input 

NOT 
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OR OUT = logical OR of inputs 

IN1, IN2,... IN12 = 2, 3, 4, 6, 8, 

or 12 inputs 

OR2, OR3, OR4, OR6, OR8, 

OR12 

VCC Assigns a node or bus to VCC VCC 

GND Assigns a node or bus to GND GND 

XNOR OUT = logical exclusive 

NOR of inputs IN1 and IN2 

XNOR 

BAND OUT = logical BAND of inputs 

IN1, IN2,... IN12 = 2, 3, 4, 6, 8, 

or 12 inputs 

BAND2, BAND3, BAND4, 

BAND6, BAND8, BAND12 

BNAND OUT = logical BNAND of inputs 

IN1, IN2,... IN12 = 2, 3, 4, 6, 8, 

or 12 inputs 

BNAND2, BNAND3,  

BNAND4, BNAND6,  

BNAND8, BNAND12 

BNOR OUT = logical BNOR of inputs 

IN1, IN2,... IN12 = 2, 3, 4, 6, 8, 

or 12 inputs 

BNOR2, BNOR3, BNOR4, 

BNOR6, BNOR8, BNOR12 

BOR OUT = logical BOR of inputs 

IN1, IN2,... IN12 = 2, 3, 4, 6, 8, 

or 12 inputs 

BOR2, BOR3, BOR4,  

BOR6, BOR8, BOR12 

XOR OUT = logical exclusive 

OR of inputs IN1 and IN2 

XOR 

NAND OUT = logical NAND of inputs 

IN1, IN2,... IN12 = 2, 3, 4, 6, 8, 

or 12 inputs 

NAND2, NAND3, NAND4, 

NAND6, NAND8, NAND12 
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B.2 Macrofunctions 

B.2.1 Macrofunction Categories 

  Macrofunctions include Adder, Frequency Divider, ALU, Latch, 

Application_Specific function, Multiplier, Buffer, Multiplexer, Comparator, Parity 

Generator/checker, Rate Multiplier, Counter, Register, Decoder, Shift Register, 

Digital Filter, Storage Register, EDAC, SSI Function, Encoder. 

B.2.2 Description of Macrofunctions 

  According to above categories, Description of Macrofunctions are listed as 

below:  

 

Adders  

Macrofunction Description Function Prototype 

8FADD 8-Bit Full Adder FUNCTION 8FADD (cin, a[8..1], b[8..1]) 

RETURNS (cout, sum[8..1]); 

8FADDB  8-Bit Full Adder FUNCTION 8FADDB (cin, a[8..1], b[8..1]) 

RETURNS (cout, sum[8..1]); 

7480 Gated Full Adder FUNCTION 7480 (cn0, a1, a2, as, ac, b1, 

b2, bs, bc) 

RETURNS (cn1n, sum, sumn); 

7482  2-Bit Binary Full Adder FUNCTION 7482 (a[2..1], b[2..1], c0)  

RETURNS (sum[2..1], c2); 

7483 4-Bit Binary Full Adder 

with Fast Carry 

FUNCTION 7483 (a[4..1], b[4..1], c0) 

RETURNS (s[4..1], c4); 

74183 Dual Carry-Save Full FUNCTION 74183 (1cn0, 1b, 1a, 2cn0, 2a, 2b) 
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Adder RETURNS (1sum, 1cn1, 2sum, 2cn1); 

74283 4-Bit Full Adder with 

Fast Carry 

FUNCTION 74283 (a[4..1], b[4..1], cin) 

RETURNS (cout, sum[4..1]); 

74385 4-Bit Adder/Subtractor 

with Clear 

FUNCTION 74385 (clrn, 1s/an, 1a, 1b, 2s/an, 

2a, 2b, 3s/an, 3a, 3b, 4s/an, 4a, 4b, clk) 

RETURNS (1s, 2s, 3s, 4s); 

 

Truth Table of 8FADD (Full Adder)  

Inputs Outputs 

CIN A8 .. A1 B8 .. B1 SUM8 .. SUM1  

L 00000000 00000000 00000000  

H 00000000 00000000 00000001 (CIN + A + B = SUM) 
 . . . 

. . . 
. . . 

 

H 00001001 00011000 00100010 (1 + 9 + 24 = 34) 
   

. . . 
. . . 

. . . 
 

 

Truth Table of 8FADDB (Full Adder)  

Inputs Outputs 

CIN A8..A1 B8..B1 SUM8..SUM1  

0 00000000 00000000 00000000  

1 00000000 00000000 00000001 (CIN  + A + B = SUM) 
   

. . . 
. . . 

. . . 
   

1 00001001 00011000 00100010 (1 + 9 + 24 = 34) 
   

. . . 
. . . 

. . . 
   

 

Truth Table of 7480 (Full Adder)  

Inputs Outputs 

CN0 A* B** CN1N SUM SUMN 

L L L H L H 

L L H H H L 

L H L H H L 
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L H H L L H 

H L L H H L 

H L H L L H 

H H L L L H 

H H H L H L 

 * A = /AC + /AS + A1 & A2 ( Note : “/” is an inversion symbol). 

** B = /BC + /BS + B1 & B2。 

 

Truth Table of 7482 (Full Adder)  

Output 
 

Input 
When C0 = L When C0 = H 

A1 B1 A2 B2 SUM1 SUM2 C2 SUM1 SUM2 C2 

L L L L L L L H L L 

H L L L H L L L H L 

L H L L H L L L H L 

H H L L L H L H H L 

L L H L L H L H H L 

H L H L H H L L L H 

L H H L H H L L L H 

H H H L L L H H L H 

L L L H L H L H H L 

H L L H H H L L L H 

L H L H H H L L L H 

H H L H L L H H L H 

L L H H L L H H L H 

H L H H H L H L H H 

L H H H H L H L H H 

H H H H L H H H H H 

 

Truth Table of 7483 (Full Adder)  

Output 
 

Input 
When C0 = L, C2 = L When C0 = H, C2=H 

A1[A3] B1[3] A2[4] B2[4] S1[3] S2[4] C2[4] S1[3] S2[4] C2[4] 

L L L L L L L H L L 
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H L L L H L L L H L 

L H L L H L L L H L 

H H L L L H L H H L 

L L H L L H L H H L 

H L H L H H L L L H 

L H H L H H L L L H 

H H H L L L H H L H 

L L L H L H L H H L 

H L L H H H L L L H 

L H L H H H L L L H 

H H L H L L H H L H 

L L H H L L H H L H 

H L H H H L H L H H 

L H H H H L H L H H 

H H H H L H H H H H 

Note: The inputs A1, B1, B2 and C0 determined S1 and S2 outputs and internal carry C2. And then, 

the other inputs C2, A3, B3, A4 and B4 determined S3, S4 and C4 outputs. 

 

Truth Table of 74183 (Full Adder)  

Inputs Outputs 

CN0 B A SUM CN1 

L L L L L 

L L H H L 

L H L H L 

L H H L H 

H L L H L 

H L H L H 

H H L L H 

H H H H H 
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Truth Table of 74283 (Full Adder)  

Outputs  

Inputs When CPUT0 = L 

[When COUT2 =L] 

When COUT0 = H 

[When COUT2 = H] 
 
A1[A3] 

 
B1[B3] 

 
A2[A4] 

 
B2[B4] SUM1 

[SUM3] 

SUM2 

[SUM4] 

COUT2 

[COUT4] 

SUM1 

[SUM3] 

SUM2 

[SUM4] 

COUT2 

[COUT4] 

L L L L L L L H L L 

H L L L H L L L H L 

L H L L H L L L H L 

H H L L L H L H H L 

L L H L L H L H H L 

H L H L H H L L L H 

L H H L H H L L L H 

H H H L L L H H L H 

L L L H L H L H H L 

H L L H H H L L L H 

L H L H H H L L L H 

H H L H L L H H L H 

L L H H L L H H L H 

H L H H H L H L H H  

L H H H H L H L H H 

H H H H L H H H H H 

Note: The inputs A1, B1, A2, B2 and COUT0 determined SUM1 and SUM2 outputs and internal 

carry COUT2. And then, the other inputs COUT2, A3, B3, A4 and B4 determined SUM3, 

SUM4 and COUT4 (COUT) outputs. 
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Truth Table of 74385 (Adder)  

Inputs Data-in Carry 

Flip-flop  

CLRN 

 

S/AN 

 

A 

 

B 

 

CLK Before 

L > H 

After 

L > H 

 

Outputs 

S 

 

Function 

L L X X X L L L Clear 

L H X X X H H L Clear 

H L L L ↑ L L L Add 

H L L L ↑ H L H Add 

H L L H ↑ L L H Add 

H L L H ↑ H H L Add 

H L H L ↑ L L H Add 

H L H L ↑ H H L Add 

H L H H ↑ L H L Add 

H L H H ↑ H H H Add 

H H L L ↑ L L H Subtract 

H H L L ↑ H H L Subtract 

H H L H ↑ L L L Subtract 

H H L H ↑ H L H Subtract 

H H H L ↑ L H L Subtract 

H H H L ↑ H H H Subtract 

H H H H ↑ L L H Subtract 

H H H H ↑ H H L Subtract 

Note:↑ stands for rising edge of signal. 
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Frequency Dividers 

Macrofunction   Description Function Prototype 

FREQDIV Frequency Divider 

 

FUNCTION FREQDIV (clr, clk, g)  

RETURNS (dv2, dv4, dv8, dv16); 

7456  Frequency Divider 

 

FUNCTION 7456 (clr, clkb, clka) 

RETURNS (qc, qb, qa); 

7457  Frequency Divider 

 

FUNCTION 7457 (clr, clkb, clka) 

RETURNS (qc, qb, qa); 

 

 

Arithmetic Logic Units 

Macrofunction Description Function Prototype 

74181 Arithmetic Logic 

 Unit 

FUNCTION 74181 (s[3..0], m, cn, a3n, a2n, 

 a1n, a0n, b3n, b2n, b1n, b0n)  

RETURNS (gn, pn, f3n, f2n, f1n, f0n, aeqb, 

 cn4); 

74182 Look-Ahead Carry 

 Generator 

FUNCTION 74182 (pn3, pn2, pn1, pn0, gn3, 

 gn2, gn1, gn0, ci) 

RETURNS (pn, gn, cz, cy, cx); 

74381 Arithmetic Logic 

 Unit/Function 

 Generator 

FUNCTION 74381 (s[2..0], a[3..0], b[3..0], 

 cin) 

RETURNS (pn, gn, f[3..0]); 

74382 Arithmetic Logic 

 Unit/Function 

 Generator 

FUNCTION 74382 (s[2..0], a[3..0], b[3..0], 

 cin) 

RETURNS (ovr, cn4, f[3..0]); 
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Truth Table of 74181 (Arithmetic Logic Unit) (1) 

Seletion Active Low Data 

M = L; Arithmetic Operations  

S3 

 

S2 

 

S1 

 

S0 

M = H 

Logic 

Functions 

Cn = L 

(No Carry) 

Cn = H 

(With Carry) 

L L L L F = /A F = A minus 1 F = A  

L L L H F = /(AB) F = AB minus 1 F = AB 

L L H L F = /A + B F = A(/B) minus 1 F = A(/B) 

L L H H F = 1 F = minus 1 (2s Comp) F = ZERO 

L H L L F = /(A+B) F = A plus (A + /B) F = A plus ( A + /B) plus 1 

L H L H F = /B F = AB plus (A + /B) F = AB plus ( A + /B) plus 1 

L H H L F = /(A$B) F = A minus B minus 1 F = A minus B 

L H H H F = A + /B F = A + /B F = (A + /B) plus 1 

H L L L F = (/A)B F = A plus ( A + B ) F = A plus ( A + B ) plus 1  

H L L H F = A $ B F = A plus B F = A plus B plus 1 

H L H L F = B F = A(/B) plus (A + B) F = A(/B) plus ( A + B ) plus 1 

H L H H F = A + B F = ( A + B ) F = ( A + B ) plus 1 

H H L L F = 0 F = A plus A* F = A plus A plus 1 

H H L H F = A(/B) F = AB plus A F = AB plus A plus 1 

H H H L F = AB F = A(/B) plus A F = A(/B) plus A plus 1 

H H H H F = A F = A F = A plus 1 

Note: “/” is an inversion symbol. 
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Truth Table of 74181  (2) 

Seletion Active Low Data 

M = L; Arithmetic Operations  

S3 

 

S2 

 

S1 

 

S0 

M = H 

Logic 

Functions 

/Cn = H 

(No Carry) 

/Cn = L 

(With Carry) 

L L L L F = /A F = A  F = A  

L L L H F = /(A+B) F = A + B F = A plus 1 

L L H L F = (/A)B F = A + /B F = (A + /B) plus 1 

L L H H F = 0 F = minus 1 (2s Comp) F = ZERO 

L H L L F = /(AB) F = A plus A(/B) F = A plus A(/B) plus 1 

L H L H F = /B F = (A + B) plus A(/B) F = (A+B) plus A(/B) plus 1 

L H H L F = A $ B F = A minus B minus 1 F = A minus B 

L H H H F = A (/B) F = A(/B) minus 1 F = A(/B) 

H L L L F = /A + B F = A plus AB F = A plus AB plus 1  

H L L H F = /(A$B) F = A plus B F = A plus B plus 1 

H L H L F = B F = (A + /B) plus AB F = (A + /B) plus AB plus 1 

H L H H F = AB F = AB minus 1 F = AB 

H H L L F = 1 F = A plus A* F = A plus A plus 1 

H H L H F = A + /B F = (A + B) plus A F = (A + B) plus A plus 1 

H H H L F = AB F = (A + /B) plus A F = (A + /B) plus A plus 1 

H H H H F = A F = A minus 1 F = A  

* Each bit shift to next higher significant bit. 
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Truth Table of 74182 (Look-Ahead Carry Generator)  

Function Table of GN  

Inputs Output 

GN3  GN2 GN1 GN0 PN3 PN2 PN1 GN 

L X X X X X X L 

X L X X L X X L 

X X L X L L X L 

X X X L L L L L 

Other Combinations H 

 

Function Table of PN  

Inputs Output 

PN3 PN2 PN1 PN0 PN 

L L L L L 

Other Combinations H 

  

Function Table of CX  

Inputs Output 

GN0 PN0 C1 CX 

L X X H 

X L H H 

Other Combinations L 

 

 

Function Table of CY  

Inputs Output 

GN1 GN0 PN1 PN0 C1 CY 

L X X X X H 

X L L X X H 

X X L L H H 

Other Combinations L 
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Function Table of CZ  

Inputs Output 

GN2 GN1 GN0 PN2 PN2 PN0 C1 GN 

L X X X X X X H 

X L X L X X X H 

X X L L L X X H 

X X X L L L H H 

Other Combinations L 

 

Truth Table of 74381 (Arithmetic Logic Unit)  

Inputs 

Operation S2 S1 S0 

Outputs 

F[3..0] 

Clear L L L L 

B – A L L H B – A – Cn 

A – B L H L A – B – Cn 

A + B L H H A + B + Cn 

A $ B H L L A $ B 

A # B H L H A # B 

A & B H H L A & B 

Preset H H H H 

     Note: 74182 to cascade multiple 74381 by using GN and PN outputs. 

 

Truth Table of 74382 (Arithmetic Logic Unit)  

Inputs 

Operation S2 S1 S0 

Outputs 

F[3..0] 

Clear L L L L 

B – A L L H B – A – Cn 

A – B L H L A – B – Cn 

A + B L H H A + B + Cn 

A $ B H L L A $ B 

A # B H L H A # B 

A & B H H L A & B 

Preset H H H H 
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  For a 16 bits typical application, three 74381 cascades one 74382 and one 

74182 generates Look-ahead carry, OVR and CN4 carry. 

 

Latches 

Macrofunction Description Function Prototype 

EXPLATCH  

 

Latch Implemented 

 with Expanders 

FUNCTION EXPLATCH (d, ena)  

RETURNS (q); 

INPLTCH  Input Latch  

Implemented with 

 Expanders 

FUNCTION INPLTCH (d, g)  

RETURNS (q); 

NANDLTCH /SR NAND Latch with 

Expanders 

FUNCTION NANDLTCH (sn, rn)  

RETURNS (q, qn); 

NORLTCH 

 

SR NOR Latch with 

 Expanders 

FUNCTION NORLTCH (s, r)  

RETURNS (q, qn); 

7475 4-Bit Bistable Latch FUNCTION 7475 (1d, 2d, 3d, 4d, e12, 

 e34) 

RETURNS (1q, 1qn, 2q, 2qn, 3q, 3qn, 4q, 

 4qn); 

7477 4-Bit Bistable Latch FUNCTION 7477 (1d, 2d, 3d, 4d, e12, 

 e34)  

RETURNS (1q, 2q, 3q, 4q); 

74116 

 

Dual 4-Bit Latch with 

 Clear 

FUNCTION 74116 (1clrn, 2clrn, 1g1n, 

 1g2n, 2g1n, 2g2n, 1d[4..1], 2d[4..1])  

RETURNS( 1q[4..1], 2q[4..1]); 

74259 

 

8-Bit Addressable Latch 

 with Clear 

FUNCTION 74259 (clrn, gn, s[2..0], data) 

RETURNS (q[7..0]); 

74279 Quad /SR Latch FUNCTION 74279 (s11n, s12n, r1n, s2n, 

 r2n, s31n, s32n, r3n, s4n, r4n) 

RETURNS (q[4..1]); 

74373 Octal Transparent D- FUNCTION 74373 (oen, g, d[8..1]) 
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 Type Latch with Tri- 

 State Outputs 

RETURNS (q[8..1]); 

74373B 

 

Octal Transparent D- 

 Type Latch with Tri- 

 State Outputs 

FUNCTION 74373B (oen, g, d[8..1]) 

RETURNS (q[8..1]); 

74375 4-Bit Bistable Latch FUNCTION 74375 (1d, 2d, 3d, 4d, e12, 

 e34) 

RETURNS (1q, 1qn, 2q, 2qn, 3q, 3qn, 4q, 

 4qn); 

74549 8-Bit 2-Stage Pipelined 

 Latch 

FUNCTION 74549 (g, g1n, g2n, insel, 

 d[7..0], outsel, oen) 

RETURNS (y[7..0]); 

74604 Octal 2-Input Multi- 

 plexed Latch with Tri- 

 State Outputs 

FUNCTION 74604 (clk, sel, a[1..8], 

 b[1..8])  

RETURNS (y[1..8]); 

74841 10-Bit D-Type Latch 

 with Tri-State Outputs 

FUNCTION 74841 (oen, c, d[1..10]) 

RETURNS (q[1..10]); 

74841B 10-Bit D-Type Latch 

 with Tri-State Outputs 

FUNCTION 74841B (d[10..1], oen, c) 

RETURNS (q[10..1]); 

74842 10-Bit D-Type Latch 

 with Tri-State Outputs 

FUNCTION 74842 (oen, c, d[1..10]) 

RETURNS (q[1..10]); 

74842B 10-Bit D-Type 

 Inverting Latch with 

 Tri-State Outputs 

FUNCTION 74824B (dn[10..1], oen, c) 

RETURNS (q[10..1]); 

74843 9-Bit Bus Interface D- 

 Type Latch with Tri- 

 State Outputs 

FUNCTION 74843 (oen, clrn, pren, ena, 

 d[1..9]) 

RETURNS (q[1..9]); 

74844 9-Bit Bus Interface D-

Type Inverting Latch 

with Tri-State Outputs 

FUNCTION 74844 (oen, clrn, pren, ena, 

 dn[1..9]) 

RETURNS (q[1..9]); 

74845 8-Bit Bus Interface D- 

 Type Latch with Tri- 

FUNCTION 74845 (oen1, oen2, oen3, 

 clrn, pren, ena, d[1..8]) 
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 State Outputs RETURNS (q[1..8]); 

74846 8-Bit Bus Interface D- 

 Type Inverting Latch 

 with Tri-State Outputs 

FUNCTION 74846 (oen1, oen2, oen3, 

 clrn, pren, ena, d[1..8]) 

RETURNS (q[1..8]); 

74990 8-Bit Transparent Read- 

 Back Latch 

FUNCTION 74990 (oerb, c) 

RETURNS (d[1..8], q[1..8]); 

 

 Truth Table of EXPLATCH (Latch)     Truth Table of 7475 (Latch)  

Inputs Outputs Inputs 

ENA D 

Outputs 

Q D E Q QN 

L X Qo L H H H 

H L L L H H L 

H H H 

 

X L Qo* /Qo 

 

Truth Table of 74116 (Latch)  

Inputs Outputs 

Enable 
CLRN 

G1N G2N 
D Q 

L X X X L 

H L L L L 

H L L H H 

H X H X Qo 

H H X X Qo 

 

Truth Table of 74279 (Latch) 

Inputs 

SN* RN 

Outputs 

Q 

H H Qo 

L H H 

H L L 

L L H** 

 * For latches with double S inputs: H = both SN inputs high. L = one or both SN inputs low. 
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  ** This configuration is nonstable; that is, it may not persist when the SN and RN inputs return to 

their inactive (high) level. 

    

Truth Table of 74373 (Latch) 

Inputs Outputs 

0EN G D Q 

H X X Z 

L X X X 

L H L L 

L H H H 

L L X Qo 

 

 

Application-Specific Functions 

Macrofunction Description Function Prototype 

NTSC NTSC Video 

 Control Signal 

 Generator 

FUNCTION NTSC (clock, reset) 

RETURNS (csync, hd, vd, blank, burst, field); 

PLL 

 

Rising- and 

 Falling-Edge 

 Detector 

FUNCTION PLL (a, b, nset)  

RETURNS (nup, tri-up, ndown, tri-down); 

 

Multipliers 

Macrofunction Description Function Prototype 

MULT2 2-Bit Sign Magnitude 

 Multiplier 

FUNCTION MULT2 (a[2..0], b[2..0], g) 

RETURNS (y[4..0]); 

MULT24 2-Bit-by-4-Bit 

 Parallel Binary 

 Multiplier 

FUNCTION MULT24 (a[5..1], b[3..1], g)  

RETURNS (y[7..1]); 

MULT4 4-Bit Parallel Binary 

 Multiplier 

FUNCTION MULT4 (a[5..1], b[5..1], g)  

RETURNS (y[9..1]); 
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MULT4B 4-Bit Parallel Binary 

Multiplier 

FUNCTION MULT4B (a[5..1], b[5..1], g) 

RETURNS (y[9..1]); 

TMULT4  4-Bit-by-4-Bit 

 Parallel Binary 

 Multiplier 

FUNCTION TMULT4 (gan, gbn, a[5..1], 

 b[5..1]) 

RETURNS (y[9..1]); 

7497 Synchronous 6-Bit 

 Rate Multiplier 

FUNCTION 7497 (clk, clr, enn, strbn, 

 b[5..0] , uni/cas) 

RETURNS (y, zn, tcn); 

74261 2-Bit Parallel Binary 

 Multiplier 

FUNCTION 74261 (b[4..0], m[2..0], g) 

RETURNS (q4n, q[3..0]); 

74284 4-Bit-by-4-Bit 

 Parallel Binary 

 Multiplier (Upper 4 

 Bits of Result) 

FUNCTION 74284 (gan, gbn, a[4..1], 

 b[4..1]) 

RETURNS (y[8..5]); 

74285 4-Bit-by-4-Bit 

 Parallel Binary 

 Multiplier (Lower 4 

 Bits of Result) 

FUNCTION 74285 (gan, gbn, a[4..1], 

 b[4..1]) 

RETURNS (y[4..1]); 

    

    

    
   

Truth Table of MULT2 (Multiplier)  

Inputs Outputs 

A2* A1 A0 B2* B1 B0 G Y4* Y3 Y2 Y1 Y0 

X X X X X X L L L L L L 

L a1 a0 L b1 b0 H L 

L a1 a0 H b1 b0 H H 

H a1 a0 L b1 b0 H H 

H a1 a0 H b1 b0 H L 

 

A multiply by B 

* Can be considered as sign bit of Signed and Magnitude. 
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Truth Table of MULT24 (Multiplier)  

Inputs Outputs 

A5* A4 A3 A2 A1 B3* B2 B1 G Y7* Y6 Y5 Y4 Y3 Y2 Y1 

X X X X X X X X L L L L L L L L 

L a4 a3 a2 a1 L b2 b1 H L 

L a4 a3 a2 a1 H b2 b1 H H 

H a4 a3 a2 a1 L b2 b1 H H 

H a4 a3 a2 a1 H b2 b1 H L 

 

A 乘以 B 

* Can be considered as sign bit of Signed and Magnitude. 

 

 

Truth Table of 7497 (Multiplier)  

Inputs Outputs 

CLR ENN STRBN B5 B4 B3 B2 B1 B0 UNI/CAS Y ZN TCN 

H X H X X X X X X H L H L 

L L L B[5..0] H * ** *** 

L H X X X X X X X H Yo Zno H 

L L L X X X X X X L H   

 * Y has B[5..0] low pulses in 64 clock cycles. 

 ** ZN has B[5..0] high pulses in 64 clock cycles. 

 *** TCN pulses low every 64 clock cycles for cascading. 

 

Truth Table of 74284 (Multiplier)  

Inputs Outputs 

GAN GBN A[4..1] B[4..1] Y[8..5] 

1 1 X X 0 

1 0 X X 0 

0 1 X X 0 

0 0 A[4..1] B[4..1] Y[8..5] = A[4..1] ×[4..1] 
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Buffers 

Macrofunction Description Function Prototype 

BTRI Active-Low Tri- 

 State Buffer 

FUNCTION BTRI (oen, in) 

RETURNS (out); 

74240 Octal Inverting 

 Tri-State Buffer 

FUNCTION 74240 (1gn, 1a[1..4], 2gn, 

 2a[1..4]) 

RETURNS (1y[1..4], 2y[1..4]); 

74240B Octal Inverting 

 Tri-State Buffer 

 with 2 Sections 

FUNCTION 74240B (a[4..1], b[4..1], agn, bgn)  

RETURNS (ay[4..1], by[4..1]); 

74241 Octal Tri-State 

 Buffer 

FUNCTION 74241 (1gn, 1a[1..4], 2g, 2a[1..4]) 

RETURNS (1y[1..4], 2y[1..4]); 

74241B Octal Tri-State 

 Buffer with 2 

 Sections 

FUNCTION 74241B (a[4..1], b[4..1], agn, bg) 

RETURNS (ay[4..1], by[4..1]); 

74244 Octal Tri-State 

 Buffer 

FUNCTION 74244 (1gn, 1a[1..4], 2gn, 

 2a[1..4]) 

RETURNS (1y[1..4], 2y[1..4]); 

74244B Octal Tri-State 

 Buffer with 2 

 Sections 

FUNCTION 74244B (a[4..1], b[4..1], agn,bgn)  

RETURNS (ay[4..1], by[4..1]); 

74365 Hex Tri-State 

 Buffer 

FUNCTION 74365 (gn1, gn2, a[1..6]) 

RETURNS (y[1..6]); 

74366 Hex Inverting Tri- 

 State Buffer 

FUNCTION 74366 (gn1, gn2, a[1..6]) 

RETURNS (yn[1..6]); 

74367 Hex Tri-State 

 Buffer 

FUNCTION 74367 (1gn, 1a[1..4], 2gn, 

 2a[1..2]) 

RETURNS (1y[1..4], 2y[1..2]); 

74368 Hex Inverting Tri- 

 State Buffer 

FUNCTION 74368 (1gn, 1a[1..4], 2gn, 

 2a[1..2]) 

RETURNS (1yn[1..4], 2yn[1..2]); 
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74465 Octal Tri-State 

 Buffer 

FUNCTION 74465 (gn[1..2], a[1..8]) 

RETURNS (y[1..8]); 

74466 Octal Inverting 

 Tri-State Buffer 

FUNCTION 74466 (gn[1..2], a[1..8]) 

RETURNS (yn[1..8]); 

74467 Octal Tri-State 

 Buffer 

FUNCTION 74467 (1gn, 1a[1..4], 2gn, 

 2a[1..4]) 

RETURNS (1y[1..4], 2y[1..4]); 

74468 Octal Inverting 

 Tri-State Buffer 

FUNCTION 74468 (1gn, 1a[1..4], 2gn, 

 2a[1..4]) 

RETURNS (1yn[1..4], 2yn[1..4]); 

74540 Octal Inverting 

 Tri-State Buffer 

FUNCTION 74540 (gn[1..2], a[1..8]) 

RETURNS (yn[1..8]); 

74541 Octal Tri-State 

 Buffer 

FUNCTION 74541 (gn[1..2], a[1..8]) 

RETURNS (y[1..8]); 

 

 

 Truth Table of 74244 (Buffer)  Truth Table of 74466 (Buffer)  

Inputs Outputs Inputs Outputs 

GN A Y GN1 GN2 A YN 

H X Z H X X Z 

L L L X H X Z 

L H H L L L H 

 

 

L L H L 

 

Multiplexers 

Macrofunction Description Function Prototype 

21MUX 2-Line-to-1-Line 

Multiplexer 

FUNCTION 21MUX (s, a, b)  

RETURNS (y); 

161MUX 16-Line-to-1-Line 

Multiplexer 

FUNCTION 161MUX (gn, sel[3..0], 

 in[15..0])  

RETURNS (out); 
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2X8MUX 2-Line-to-1-Line 

 Multiplexer for 8- 

 Bit Buses 

FUNCTION 2X8MUX (sel, a[7..0], b[7..0]) 

RETURNS (y[7..0]); 

81MUX 8-Line-to-1-Line 

 Multiplexer 

FUNCTION 81mux (c, b, a, d[7..0], gn) 

RETURNS (y, wn); 

74151 8-Line-to-1-Line 

 Multiplexer 

FUNCTION 74151 (c, b, a, d[7..0], gn) 

RETURNS (y, wn); 

74151B 8-Line-to-1-Line 

 Multiplexer 

FUNCTION 74151B (c, b, a, d[7..0], gn) 

RETURNS (y, wn); 

74153 Dual 4-Line-to-1- 

 Line Multiplexer 

FUNCTION 74153 (b, a, 1gn, 1c[3..0], 2gn, 

 2c[3..0])  

RETURNS (1y, 2y); 

74157 Quad 2-Line-to-1- 

 Line Multiplexer 

FUNCTION 74157 (gn, sel, a[4..1], b[4..1]) 

RETURNS (y[4..1]); 

74158 Quad 2-Line-to-1- 

 Line Multiplexer 

 with Inverting 

 Outputs 

FUNCTION 74158 (gn, sel, 1a, 2a, 3a, 4a, 

 1b, 2b, 3b, 4b)  

RETURNS (1yn, 2yn, 3yn, 4yn); 

74251 8-Line-to-1-Line 

 Data Selector with 

 Tri-State Outputs 

FUNCTION 74251 (c, b, a, d[7..0], gn) 

RETURNS (y, wn); 

74253 Dual 4-Line-to-1-Line 

 Data Selectors with 

 Tri-State Outputs 

FUNCTION 74253 (b, a, 1gn, 1c[0..3], 2gn, 

 2c[0..3]) 

RETURNS (1y, 2y); 

74257 Quad 2-Line-to-1-Line 

 Multiplexers with 

 Tri-State Outputs 

FUNCTION 74257 (gn, sel, a[4..1], b[4..1]) 

RETURNS (y[4..1]); 

74258 Quad 2-Line-to-1- 

 Line Multiplexers 

 with In-verting Tri- 

 State Outputs 

FUNCTION 74258 (gn, sel, a[4..1], b[4..1]) 

RETURNS (yn[4..1]); 

74298 Quad 2-Input FUNCTION 74298 (wrsl, clkn, a1, b1, c1, 
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 Multiplexer with 

 Storage 

 d1, a2, b2, c2, d2) 

RETURNS (qa, qb, qc, qd); 

74352 Dual 4-Line-to-1- 

 Line Data Selector 

 /Multiplexer with 

 Inverting Outputs 

FUNCTION 74352 (b, a, 1gn, 1c[0..3], 2gn, 

 2c[0..3]) 

RETURNS (1yn, 2yn); 

74353 Dual 4-Line-to-1- 

 Line Data Selector 

 /Multiplexer with 

 Tri-State Inverting 

 Outputs 

FUNCTION 74353 (b, a, 1gn, 1c[0..3], 2gn, 

 2c[0..3]) 

RETURNS (1yn, 2yn); 

74354 8-Line-to-1-Line Data 

 Selector/Multiplexer/ 

 Register with Tri- 

 State Outputs 

FUNCTION 74354 (gn1, gn2, g3, s[2..0], 

 scn, dcn, d[7..0]) 

RETURNS (y, wn); 

74356 8-Line-to-1-Line Data 

 Selector/Multiplexer/ 

 Register with Tri- 

 State Outputs 

FUNCTION 74356 (gn1, gn2, g3, s[2..0], 

 scn, clk, d[7..0]) 

RETURNS (y, wn); 

74398 Quad 2-Input 

 Multiplexer with 

 Storage 

FUNCTION 74398 (sel, a1, b1, c1, d1, a2, 

 b2, c2, d2, clk) 

RETURNS (qa, qan, qb, qbn, qc, qcn, qd, qdn); 

74399 Quad 2-Input 

 Multiplexer with 

 Storage 

FUNCTION 74399 (sel, a1, b1, c1, d1, a2, 

 b2, c2, d2, clk) 

RETURNS (qa, qb, qc, qd); 

 

Truth Table of 2 × 8 MUX (Multiplexer)  

Inputs Outputs 

SEL A[7..0] B[7..0] Y[7..0] 

H a[7..0] b[7..0] a[7..0] 

L a[7..0] b[7..0] b[7..0] 
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Truth Table of 74151 (Multiplexer)  

Inputs 

Select Enable 
Outputs 

C B A GN Y WN 

X X X H L H 

L L L L D0 /D0 

L L H L D1 /D1 

L H L L D2 /D2 

L H H L D3 /D3 

H L L L D4 /D4 

H L H L D5 /D5 

H H L L D6 /D6 

H H H L D7 /D7 

 

Truth Table of 74298 (Multiplexer)  

Inputs Outputs 

WRSL CLKN QA QB QC QD 

L  A1 B1 C1 D1 

H  A2 B2 C2 D2 

X H QAo* QBo* QCo* QDo* 

* QAo..QDo equal to the level of QA to QD at the last falling edge of clock. 

 

Comparators 

Macrofunction Description Function Prototype 

8MCOMP Note 8-Bit 

 Magnitude 

 Comparator 

FUNCTION 8MCOMP (a[7..0], b[7..0]) 

RETURNS (altb, aeqb, agtb, aeb[7..0]); 

8MCOMPB 8-Bit Magnitude 

 Comparator 

FUNCTION 8MCOMPB (a[7..0], b[7..0]) 

RETURNS (altb, aeqb, agtb, aeb[7..0]); 

7485 Note 4-Bit 

 Magnitude 

 Comparator 

FUNCTION 7485 (a[3..0], b[3..0], agbi, albi, 

 aebi) 

RETURNS (agbo, albo, aebo); 
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74518 Note 8-Bit Identity 

 Comparator 

FUNCTION 74518 (p[7..0], q[7..0], gn) 

RETURNS (pq); 

74518B 8-Bit Identity 

 Comparator 

FUNCTION 74518B (p[7..0], q[7..0], gn) 

RETURNS (pq); 

74684 8-Bit Magnitude/ 

 Identity 

 Comparator 

FUNCTION 74684 (p[7..0], q[7..0]) 

RETURNS (equaln, p_gr_qn); 

74686 8-Bit Magnitude/ 

 Identity 

 Comparator 

FUNCTION 74686 (g1n, g2n, p[7..0], q[7..0]) 

RETURNS (equaln, p_gr_qn); 

74688 8-Bit Identity 

 Comparator 

FUNCTION 74688 (gn, p[7..0], q[7..0]) 

RETURNS (equaln); 

 

 

Truth Table of 7485 (Comparator)  

Comparing Inputs Cascading Inpits Outputs 

A3, B3 A2, B2 A1, B1 A0, B0 AGB1 ALB1 AEB1 AGB0 ALB0 AEB0 

A3 > B3 X X X X X X H L L 

A3 < B3 X X X X X X L H L 

A3 = B3 A2 > B2 X X X X X H L L 

A3 = B3 A2 < B2 X X X X X L H L 

A3 = B2 A2 = B2 A1 > B1 X X X X H L L 

A3 = B3 A2 = B2 A1 < B1 X X X X L H L 

A3 = B3 A2 = B2 A1 = B1 A0 > B0 X X X H L L 

A3 = B3 A2 = B2 A1 = B1 A0 < B0 X X X L H L 

A3 = B3 A2 = B2 A1 = B1 A0 = B0 H L L H L L 

A3 = B3 A2 = B2 A1 = B1 A0 = B0 L H L L H L 

A3 = B3 A2 = B2 A1 = B1 A0 = B0 L L H L L H 

A3 = B3 A2 = B2 A1 = B1 A0 = B0 X X H L L H 

A3 = B3 A2 = B2 A1 = B1 A0 = B0 H H L L L L 

A3 = B3 A2 = B2 A1 = B1 A0 = B0 L L L H H L 
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Truth Table of 74688 (Comparator)  

Inputs Outputs 

GN DATA EQUALN 

H X H 

L P = Q L 

L P <> Q H 

 

 

Parity Generators/Checkers 

Macrofunction Description Function Prototype 

74180 9-Bit Odd/Even 

 Parity Generator/ 

 Checker 

FUNCTION 74180 (a, b, c, d, e, f, g, h, evni, 

 oddi)  

RETURNS (evns, odds); 

74180B 9-Bit Odd/Even 

 Parity Generator/ 

 Checker 

FUNCTION 74180B (d[7..0], evni, oddi) 

RETURNS (evns, odds); 

74280 9-Bit Odd/Even 

 Parity Generator/ 

 Checker 

FUNCTION 74280 (a, b, c, d, e, f, g, h, i) 

RETURNS (even, odd); 

74280B 9-Bit Odd/Even 

 Parity Generator/ 

 Checker 

FUNCTION 74280B (d[8..0]) 

RETURNS (evns, odds); 

 

 

Truth Table of 74180 (Parity Generator/Checker)  

Inputs 

# of Hs at 
Outputs 

A through H ENVI ODDI EVNS ODDS 

Even H L H L 

Odd H L L H 

Even L H L H 
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Odd L H H L 

X H H L L 

X L L H H 

 

 

Truth Table of 74280 (Parity Generator/Checker)  

Outputs Number of Inputs A through I 

that are High EVEN ODD 

0 2 4 6 8 H L 

1 3 5 7 9 L H 

 

 

Converters 

Macrofunction Description Function  Prototype 

74184 BCD-to-Binary 

 Converte 

FUNCTION 74184 (e, d, c, b, a, gn) 

RETURNS (y[8..1]); 

74185 Binary-to-BCD 

 Converter 

FUNCTION 74185 (e, d, c, b, a, gn) 

RETURNS (y[8..1]); 

 

 

Truth Table of 74184 (Converter) (1) 

Inputs Outputs 
BCD 

E D C B A GN Y5 Y4 Y3 Y2 Y1 

0–1 L L L L L L L L L L L 

2–3 L L L L H L L L L L H 

4–5 L L L H L L L L L H L 

6–7 L L L H H L L L L H H 

8–9 L L H L L L L L H L L 

10–11 L H L L L L L L H L H 

12–13 L H L L H L L L H H L 

14–15 L H L H L L L L H H H 
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16–17 L H L H H L L H L L L 

18–19 L H H L L L L H L L H 

20–21 H L L L L L L H L H L 

22–23 H L L L H L L H L H H 

24–25 H L L H L L L H H L L 

26–27 H L L H H L L H H L H 

28–29 H L H L L L L H H H L 

30–31 H H L L L L L H H H H 

32–33 H H L L H L H L L L L 

34–35 H H L H L L H L L L H 

36–37 H H L H H L H L L H L 

38–39 H H H L L L H L L H H 

Any X X X X X H H H H H H 

Input conditions other than those shown produce high levels at outputs Y1 to Y5. 

Outputs Y6, Y7, and Y8 are not used for BCD-to-binary conversion. 

    

    

Truth Table of 74184 (2) 

Inputs Outputs 
BCD 

E* D C B A GN Y8 Y7 Y6 

0 L L L L L L H L H 

1 L L L L H L H L L 

2 L L L H L L L H H 

3 L L L H H L L H L 

4 L L H L L L L H H 

5 L L H L H L L H L 

6 L L H H L L L L H 

7 L L H H H L L L L 

8 L H L L L L L L H 

9 L H L L H L L L L 

0 H L L L L L L L L 

1 H L L L H L H L L 

2 H L L H L L H L L 

3 H L L H H L L H H 
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4 H L H L L L L H H 

5 H L H L H L L H L 

6 H L H H L L L H L 

7 H L H H H L L L H 

8 H H L L L L L L H 

9 H H L L H L L L L 

Any X X X X X H H H H 

* When these devices are used as complement converters, input E is used as a mode control. When 

this input is low, the BCD 9s complement is generated; when it is high, the BCD 10’s 

complement is generated. 

Input conditions other than those shown produce high levels at outputs Y6, Y7, and Y8. 

Outputs Y1 through Y5 are not used for BCD 9s or 10s complement conversion. 

    

    

Truth Table of 74185 (Converter)  

Inputs Outputs 
BCD 

E D C B A GN Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1 

0–1 L L L L L L H H L L L L L L 

2–3 L L L L H L H H L L L L L H 

4–5 L L L H L L H H L L L L H L 

6–7 L L L H H L H H L L L L H H 

8–9 L L H L L L H H L L L H L L 

10–11 L L H L H L H H L L H L L L 

12–13 L L H H L L H H L L H L L H 

14–15 L L H H H L H H L L H L H L 

16–17 L H L L L L H H L L H L H H 

18–19 L H L L H L H H L L H H L L 

20–21 L H L H L L H H L H L L L L 

22–23 L H L H H L H H L H L L L H 

24–25 L H H L L L H H L H L L H L 

26–27 L H H L H L H H L H L L H H 

28–29 L H H H L L H H L H L H L L 

30–31 L H H H H L H H L H H L L L 

32–33 H L L L L L H H L H H L L H 

34–35 H L L L H L H H L H H L H L 
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36–37 H L L H L L H H L H H L H H 

38–39 H L L H H L H H L H H H L L 

40–41 H L H L L L H H H L L L L L 

42–43 H L H L H L H H H L L L L H 

44–45 H L H H L L H H H L L L H L 

46–47 H L H H H L H H H L L L H H 

48–49 H H L L L L H H H L L H L L 

50–51 H H L L H L H H H L H L L L 

52–53 H H L H L L H H H L H L L H 

54–55 H H L H H L H H H L H L H L 

56–57 H H H L L L H H H L H L H H 

58–59 H H H L H L H H H L H H L L 

60–61 H H H H L L H H H H L L L L 

62–63 H H H H H L H H H H L L L H 

Any X X X X X H H H H H H H H H 

 

Rate 

Multipliers 

Macrofunction Description Function Prototype 

74167 Synchronous 

 Decade Rate 

 Multiplier 

FUNCTION 74167 (clk, clr, enn, strbn, b[3..0], 

 uni/cas, set9) 

RETURNS (y, zn, eno); 

    

Truth Table of 74167 (Rate Multiplier)  

Inputs 
Outputs  

CLR ENN STRBN B3 B2 B1 B0 
#Clock 

Pulses 

UNI/ 

CAS Y ZN EN0 

註 

解 

H X H X X X X X H L H H 1 

L L L L L L L 10 H L H 1 2 

L L L L L L H 10 H 1 1 1 2 

L L L L L H L 10 H 2 2 1 2 

L L L L L H H 10 H 3 3 1 2 

L L L L H L L 10 H 4 4 1 2 

L L L L H L H 10 H 5 5 1 2 
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L L L L H H L 10 H 6 6 1 2 

L L L L H H H 10 H 7 7 1 2 

L L L H L L L 10 H 8 8 1 2 

L L L H L L H 10 H 9 9 1 2 

L L L H L H L 10 H 8 8 1 2, 3 

L L L H L H H 10 H 9 9 1 2, 3 

L L L H H L L 10 H 8 8 1 2, 3 

L L L H H L H 10 H 9 9 1 2, 3 

L L L H H H L 10 H 8 8 1 2, 3 

L L L H H H H 10 H 9 9 1 2, 3 

L L L X X X X 10 L H 9 1 4 

Note:1. This is a simplified illustration of the clear function. The states of Clocks and the strobe 
can affect the logic level of Y and Z. A low UNI/CAS will cause output Y to remain high. 

 2. Each rate illustrated assumes a constant value at rate inputs; however, these illustrations in 
no way prohibit variable-rate inputs. 

 3. These input conditions exceed the range of the decimal rate inputs. 
4. UNI/CAS can be used to inhibit output Y. 
 
 

Counters 

Macrofunction Description Function Prototype 

GRAY4 Gray Code Counter FUNCTION GRAY4 (clk, ena)  

RETURNS (qd, qc, qb, qa); 

UNICNT Universal 4-Bit Up/ 

 Down Counter Left/ 

 Right Shift Register 

 with Asynchronous 

 Set and Load, Clear, 

 and Cascade 

FUNCTION UNICNT (clk, clr, set, load, 

 ctst, dnup, rtlt, cin, data, d, c, b, a)  

RETURNS (qd, qc, qb, qa, cout); 

16CUDSLR 16-Bit Binary Up/ 

 Down Counter Left/ 

 Right Shift Register 

 with Asynchronous 

 Set 

FUNCTION 16CUDSLR (clk, clrn, setn, 

 data, stct, dnup, ltrt)  

RETURNS (q[16..1]); 

16CUDSRB 16-Bit Binary Up/ FUNCTION 16CUDSRB (clk, clrn, setn, 
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 Down Counter with 

 Left/Right Shift 

 Register, Asyn- 

 chronous Clear, and 

 Asynchronous Set 

 data, stct, dnup, ltrt) 

RETURNS (q[16..1]); 

4COUNT 4-Bit Binary Up/ 

 Down Counter with 

 Synchronous Load 

 (LDN), Asyn- 

 chronous Clear, and 

 Asynchronous Load 

 (SETN) 

FUNCTION 4COUNT (clk, clrn, setn, ldn, 

 cin, dnup, d, c, b, a)  

RETURNS (qd, qc, qb, qa, cout); 

8COUNT 8-Bit Binary Up/ 

 Down Counter with 

 Synchronous Load 

 (LDN), Asyn- 

 chronous Clear, and 

 Asynchronous Load 

 (SETN) 

FUNCTION 8COUNT (clk, clrn, setn, ldn, 

 dnup, gn, h, g, f, e, d, c, b, a)  

RETURNS (qh, qg, qf, qe, qd, qc, qb, qa, 

 cout); 

7468 Dual Decade Counter FUNCTION 7468 (1clk1, 1clk2, 1clrn, 2clk, 

 2clrn) 

RETURNS (1qd, 1qc, 1qb, 1qa, 2qd, 2qc, 

 2qb, 2qa); 

7469 Dual Binary Counter FUNCTION 7469 (1clk1, 1clk2, 1clrn, 2clk, 

 2clrn) 

RETURNS (1qd, 1qc, 1qb, 1qa, 2qd, 2qc, 

 2qb, 2qa); 

7490 Decade or Binary 

 Counter with Clear 

 and Set-to-9 

FUNCTION 7490 (set9a, set9b, clra, clrb, 

 clka, clkb) 

RETURNS (qd, qc, qb, qa); 

7492 Divide-by-12 

 Counter 

FUNCTION 7492 (clra, clrb, clka, clkb) 

RETURNS (qd, qc, qb, qa); 

7493 4-Bit Binary Counter FUNCTION 7493 (clka, clkb, ro1, ro2) 
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 RETURNS (qd, qc, qb, qa); 

74143 4-Bit Counter/Latch, 

7-Segment Driver 

FUNCTION 74143 (clk, clrn, strbn, pcein, 

 scein, bin, rbin, dpi) 

RETURNS (qd, qc, qb, qa, max, a, b, c, d, e, 

 f, g, dpo, rbon); 

74160 4-Bit Decade 

 Counter with Syn- 

 chronous Load and 

 Asynchronous Clear 

FUNCTION 74160 (clk, ldn, clrn, enp, ent, 

 d, c, b, a)  

RETURNS (qd, qc, qb, qa, rco); 

74161 4-Bit Binary Up 

 Counter with Syn- 

 chronous Load and 

 Asynchronous Clear 

FUNCTION 74161 (clk, ldn, clrn, enp, ent, 

 d, c, b, a) 

RETURNS (qd, qc, qb, qa, rco); 

74162 4-Bit Decade Up 

 Counter with Syn- 

 chronous Load and 

 Synchronous Clear 

FUNCTION 74162 (clk, ldn, clrn, enp, ent, 

 d, c, b, a)  

RETURNS (qd, qc, qb, qa, rco); 

74163 4-Bit Binary Up 

 Counter with Syn- 

 chronous Load and 

 Synchronous Clear 

FUNCTION 74163 (clk, ldn, clrn, enp, ent, 

 d, c, b, a)  

RETURNS (qd, qc, qb, qa, rco); 

74168 Synchronous 4-Bit 

 Decade Up/Down 

 Counter 

FUNCTION 74168 (ldn, entn, enpn, u/dn, 

 clk, d[3..0]) 

RETURNS (q[3..0], tcn); 

74169 Synchronous 4-Bit 

 Binary Up/Down 

 Counter 

FUNCTION 74169 (ldn, entn, enpn, u/dn, 

 clk, d[3..0]) 

RETURNS (q[3..0], tcn); 

74176 Presettable Decade 

 Counter 

FUNCTION 74176 (clrn, ldn, clk1, clk2, d, 

 c, b, a) 

RETURNS (qd, qc, qb, qa); 

74177 Presettable Binary 

 Counter 

FUNCTION 74177 (clrn, ldn, clk1, clk2, d, 

 c, b, a) 

RETURNS (qd, qc, qb, qa); 
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74190 4-Bit Decade Up/ 

 Down Counter with 

 Asynchronous Load 

FUNCTION 74190 (clk, gn, ldn, dnup, d, c, 

 b, a)  

RETURNS (qd, qc, qb, qa, mxmn, rcon); 

74191 4-Bit Binary Up/ 

 Down Counter with 

 Asynchronous Load 

FUNCTION 74191 (clk, gn, ldn, dnup, d, c, 

 b, a)  

RETURNS (qd, qc, qb, qa, mxmn, rcon); 

 

74192 

4-Bit Decade Up/ 

 Down Counter with 

 Asynchronous Clear 

 Registers 

FUNCTION 74192 (clr, up, dn, ldn, d, c, b, 

 a)  

RETURNS (qd, qc, qb, qa, con, bon); 

74193 4-Bit Binary Up/ 

 Down Counter with 

 Asynchronous Clear 

FUNCTION 74193 (clr, up, dn, ldn, d, c, b, 

 a)  

RETURNS (qd, qc, qb, qa, con, bon); 

74196 Presettable Decade 

 Counter 

FUNCTION 74196 (clrn, ldn, clk1, clk2, d, 

 c, b, a) 

RETURNS (qd, qc, qb, qa); 

74197 Presettable Binary 

 Counter 

FUNCTION 74197 (clrn, ldn, clk1, clk2, d, 

 c, b, a) 

RETURNS (qd, qc, qb, qa); 

74290 Decade Counter with 

 Clear 

FUNCTION 74290 (clka, clkb, clra, clrb, 

 set9a, set9b) 

RETURNS (qd, qc, qb, qa); 

74292 Programmable 

Frequency Divider/ 

 Digital Timer 

FUNCTION 74292 (clk1, clk2, clrn, e, d, c, 

 b, a) 

RETURNS (q, tp1, tp2, tp3); 

74293 Binary Counter with 

 Clear 

FUNCTION 74293 (clka, clkb, clra, clrb) 

RETURNS (qd, qc, qb, qa); 

74294 Programmable 

Frequency Divider/ 

 Digital Timer 

FUNCTION 74294 (clk1, clk2, clrn, d, c, b, 

 a) 

RETURNS (q, tp); 

74390 Dual Decade Counter FUNCTION 74390 (1clr, 1clka, 1clkb, 2clr, 

 2clka, 2clkb) 

RETURNS (1qd, 1qc, 1qb, 1qa, 2qd, 2qc, 
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 2qb, 2qa); 

74393 Dual 4-Bit Up 

Counter with 

Asynchronous Clear 

FUNCTION 74393 (a1, clr1, a2, clr2) 

RETURNS (q1a, q1b, q1c, q1d, q2a, q2b, 

 q2c, q2d); 

74490 Dual 4-Bit Decade 

 Counter 

FUNCTION 74490 (1set9, 1clr, 1clk, 2set9, 

 2clr, 2clk) 

RETURNS (1qd, 1qc, 1qb, 1qa, 2qd, 2qc, 

 2qb, 2qa); 

74568 Decade Up/Down 

Counter with 

Synchronous Load 

and Clear and 

Asynchronous Clear 

FUNCTION 74569 (clk, entn, enpn, aclrn, 

 sclrn, u/dn, ldn, d[3..0], oen) 

RETURNS (q[3..0], rcon, ccon); 

74569 Binary Up/Down 

 Counter with 

Synchronous Load 

and Clear and 

Asynchronous Clear 

FUNCTION 74569 (clk, entn, enpn, aclrn, 

 sclrn, u/dn, ldn, d[3..0], oen) 

RETURNS (q[3..0], rcon, ccon); 

74590 8-Bit Binary Counter 

 with Tri-State Out- 

 put Registers 

FUNCTION 74590 (gn, cclrn, ccken, cclk, 

 rclk) 

RETURNS (qh, qg, qf, qe, qd, qc, qb, qa, 

 rcon); 

74592 8-Bit Binary Counter 

 with Input Registers 

FUNCTION 74592 (cclrn, cloadn, rclk, 

 ccken, cclk, h, g, f, e, d, c, b, a) 

RETURNS (rcon); 

74668 Synchronous Decade 

 Up/Down Counter 

FUNCTION 74668 (clk, entn, enpn, u/dn, 

 ldn, d[3..0]) 

RETURNS (q[3..0], tcn); 

74669 Synchronous 4-Bit 

Binary Up/Down 

Counter 

FUNCTION 74669 (clk, entn, enpn, u/dn, 

 ldn, d[3..0]) 

RETURNS (q[3..0], tcn); 

74690 Synchronous Decade FUNCTION 74690 (gn, cclrn, ldn, enp, ent, 
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Counter with Out put 

Registers, 

Multiplexed Tri-State 

Outputs, and 

Asynchronous Clear 

 rclrn, rclk, r/cn, cclk, d[3..0]) 

RETURNS (q[3..0], rco); 

74691 Synchronous Binary 

Counter with Output 

Registers, 

Multiplexed Tri-State 

Outputs, and 

Asynchronous Clear 

FUNCTION 74691 (gn, cclrn, ldn, enp, ent, 

 rclrn, rclk, r/cn, cclk, d[3..0]) 

RETURNS (q[3..0], rco); 

74693 Synchronous Binary 

 Counter with 

Output Registers, 

Multiplexed Tri-State 

Outputs, and 

Synchronous Clear 

FUNCTION 74693 (gn, cclrn, ldn, enp, ent, 

 rclrn, rclk, r/cn, cclk, d[3..0]) 

RETURNS (q[3..0], rco); 

74696 Synchronous Decade 

Up/Down Counter 

with Output 

Registers, 

Multiplexed Tri-State 

Outputs, and 

Asynchronous Clear 

FUNCTION 74696 (u/dn, r/cn, rclk, ldn, gn, 

 entn, enpn, d3, d2, d1, d0, cclrn, cclk) 

RETURNS (tcn, q3, q2, q1, q0); 

74697 Synchronous Binary 

Up/Down Counter 

with Output 

Registers, 

Multiplexed Tri-State 

Outputs, and 

Asynchronous Clear 

FUNCTION 74697 (u/dn, r/cn, rclk, ldn, gn, 

 entn, enpn, d3, d2, d1, d0, cclrn, cclk) 

RETURNS (tcn, q3, q2, q1, q0); 
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74698 Synchronous Decade 

Up/Down Counter 

with Output 

Registers, 

Multiplexed Tri-State 

Outputs, and 

Synchronous Clear 

FUNCTION 74698 (u/dn, r/cn, rclk, ldn, gn, 

 entn, enpn, d3, d2, d1, d0, cclrn, cclk) 

RETURNS (tcn, q3, q2, q1, q0); 

74699 Synchronous Binary 

Up/Down Counter 

with Output 

Registers, 

Multiplexed Tri-State 

Outputs, and 

Synchronous Clear 

FUNCTION 74699 (u/dn, r/cn, rclk, ldn, gn, 

 entn, enpn, d3, d2, d1, d0, cclrn, cclk) 

RETURNS (tcn, q3, q2, q1, q0); 

 

 
 

Truth Table of 4COUNT (Counter)  

Inputs Outputs 

CLK CLRN SETN LDN CIN DNUP D C B A QD QC QB QA COUT 

X L X X X X     L L L L X 

X H L X X X d c b a D c b a X 

↑ H H L X X d c B a D c b a X 

↑ H H H L X     X 

↑ H H H H H     L 

↑ H H H H L     

Hold 

Count Down 

Count Up L 

X X X X H H     L L L L H 

X X X X H L     H H H H H 
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Truth Table of 7490 (Counter)  

Inputs Outputs 

CLR* SET* CLK QD QC QB QA 

H L X L L L L 

L H X H L L H 

H H X Illegal 

L L  Count 

      *CLR = CLRA & CLRB. 

     **SET = SET9A & SET9B. 

 

Possible Counting Configurations: 

DECADE: QA connected to CLKB 

Count QD QC QB QA 

0 L L L L 

1 L L L H 

2 L L H L 

3 L L H H 

4 L H L L 

5 L H L H 

6 L H H L 

7 L H H H 

8 H L L L 

9 H L L H 

 

BI-QUINARY: QD connected to CLKA 

Count QD QC QB QA 

0 L L L L 

1 L L L H 

2 L L H L 

3 L L H H 

4 L H L L 

5 H L L L 

6 H L L H 
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7 H L H L 

8 H L H H 

9 H H L L 

 

  Binary: This mode can be an inefficient implementation of a binary counter 

and is not recommended by ALTERA. For a four-bit counter with similar features, use 

the 74161 or 4count macrofunction. 

 

 

Truth Table of 74161 (Counter)  

Inputs Outputs 

CLK LDN CLRN ENP ENT D C B A QD QC QB QA RC0 

X X L X X     L L L L L 

↑ L H X X d C b a D c b a * 

↑ H H X L     QD QC QB QA * 

↑ H H L X     QD QC QB QA * 

↑ H H H H     L L L L L 

↑ H H H H     L L L H L 

↑ H H H H     L L H L L 

↑ H H H H     L L H H L 

↑ H H H H     L H L L L 

↑ H H H H     L H L H L 

↑ H H H H     L H H L L 

↑ H H H H     L H H H L 

↑ H H H H     H L L L L 

↑ H H H H     H L L H L 

↑ H H H H     H L H L L 

↑ H H H H     H L H H L 

↑ H H H H     H H L L L 

↑ H H H H     H H L H L 

↑ H H H H     H H H L L 

X H H H H     H H H H H 

* RCO = QD & QC & QB & QA & ENT. 

                    The Built-in Resources of MAX+PLUS II    CPLD Logic Circuit Design and Practice 



 

Registers 

Macrofunction Description Function Prototype 

ENADFF Enabled D-Type 

 Flip-flop 

FUNCTION ENADFF (d, clk, clrn, prn, ena)  

RETURNS (q); 

XPDFFE D-Type Flip-flop Im- 

 plemented with Ex- 

 panders (or with 

 DFF Primitive for 

 FLEX 8000 Pro- 

 jects) 

FUNCTION EXPDFF (d, clk, clrn, prn) 

RETURNS (q, /q); 

7470 AND-Gated JK Flip- 

 flop with Preset and 

 Clear 

FUNCTION 7470 (prn, clrn, clk, j1, j2, jn, 

 k1, k2, kn)  

RETURNS (q, qn); 

7471 JK Flip-flop with 

 Preset 

FUNCTION 7471 (prn, clk, j1a, j1b, j2a, j2b, 

 k1a, k1b, k2a, k2b) 

RETURNS (q, qn); 

7472 AND-Gated JK Flip- 

 flop with Preset and 

 Clear 

FUNCTION 7472 (prn, clrn, clk, j1, j2, j3, 

 k1, k2, k3)  

RETURNS (q, qn); 

7473 Dual JK Flip-flop 

 with Clear 

FUNCTION 7473 (1clrn, 1clk, 1j, 1k, 2clrn, 

 2clk, 2j, 2k) 

RETURNS (1q, 1qn, 2q, 2qn); 

7474 Dual D-Type Flip- 

 flop with Asyn- 

 chronous Preset and 

 Asynchronous Clear 

FUNCTION 7474 (1prn, 1clrn, 1clk, 1d, 

 2prn, 2clrn, 2clk, 2d) 

RETURNS (1q, 1qn, 2q, 2qn); 

7476 Dual JK Flip-flop 

 with Asynchronous 

 Preset and Asyn- 

 chronous Clear 

FUNCTION 7476 (1prn, 1clrn, 1clk, 1j, 1k, 

 2prn, 2clrn, 2clk, 2j, 2k) 

RETURNS (1q, 1qn, 2q, 2qn); 
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7478 Dual JK Flip-flop 

 with Asynchronous 

 Preset, Common 

 Clear, and Common 

 Clock 

FUNCTION 7478 (clrn, 1prn, 1j, 1k, 2prn, 

 2j, 2k, clk) 

RETURNS (1q, 1qn, 2q, 2qn); 

74107 Dual JK Flip-flop 

 with Clear 

FUNCTION 74107 (1j, 1k, 1clrn, 1clk, 2j, 

2k, 2clrn, 2clk) 

RETURNS (1q, 1qn, 2q, 2qn); 

74109 Dual JK Flip-flop 

 with Preset and 

 Clear 

FUNCTION 74109 (1prn, 1j, 1kn, 1clrn, 

 1clk, 2prn, 2j, 2kn, 2clrn, 2clk) 

RETURNS (1q, 1qn, 2q, 2qn); 

74112 Dual JK Negative- 

 Edge-Triggered 

 Flip-flop with 

 Preset and Clear 

FUNCTION 74112 (1prn, 1j, 1k, 1clrn, 1clk, 

 2prn, 2j, 2k, 2clrn, 2clk) 

RETURNS (1q, 1qn, 2q, 2qn); 

74113 Dual JK Negative- 

 Edge-Triggered 

 Flip-flop with 

 Preset 

FUNCTION 74113 (1prn, 1j, 1k, 1clk, 2prn, 

 2j, 2k, 2clk) 

RETURNS (1q, 1qn, 2q, 2qn); 

74114 Dual JK Negative- 

 Edge-Triggered 

 Flip-flop with 

 Preset, Common 

 Clear, and Common 

 Clock 

FUNCTION 74114 (1prn, 1j, 1k, 1clk, 2prn, 

 2j, 2k, clrn, clk) 

RETURNS (1q, 1qn, 2q, 2qn); 

74171 Quad D-Type Flip- 

 flops with Clear 

FUNCTION 74171 (clrn, clk, d1, d2, d3, d4) 

RETURNS (q1, qn1, q2, qn2, q3, qn3, q4, 

 qn4); 

74172 Multi-Port Register 

 File with Tri-State 

 Outputs 

FUNCTION 74172 (1grn, 2grn, 1r0, 1r1, 1r2, 

 2w/r0, 2w/r1, 2w/r2, 1w0, 1w1, 1w2, 1da, 

 1db, 2da, 2db, 1gwn, 2gwn, clk) 

RETURNS (1qa, 1qb, 2qa, 2qb); 

74173 4-Bit D-Type Re- FUNCTION 74173 (clr, clk, mn, nn, g1n, 
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 gister  g2n, 1d, 2d, 3d, 4d) 

RETURNS (1q, 2q, 3q, 4q); 

74174 Hex D-Type Flipflop 

with Common Clear 

FUNCTION 74174 (clrn, clk, 1d, 2d, 3d, 4d, 

 5d, 6d)  

RETURNS (1q, 2q, 3q, 4q, 5q, 6q); 

74174B Hex D-Type Flipflop 

with Common Clear 

FUNCTION 74174B (clrn, clk, d[6..1]) 

RETURNS (q[6..1]); 

74175 Quad D-Type Flip 

flop with Common 

Clock and Clear 

FUNCTION 74175 (clrn, clk, 1d, 2d, 3d, 4d) 

RETURNS (1q, 1qn, 2q, 2qn, 3q, 3qn, 4q, 

 4qn); 

74273 Octal D-Type 

Flipflop with 

Asynchronous Clear 

FUNCTION 74273 (clrn, clk, d[8..1]) 

RETURNS (q[8..1]); 

74273B Octal D-Type Flip- 

 flop with Asyn- 

 chronous Clear 

FUNCTION 74273B (clrn, clk, d[8..1]) 

RETURNS (q[8..1]); 

74276 Quad J/K Flip-flop 

 Register with 

 Common Preset and 

 Clear 

FUNCTION 74276 (prn, clrn, 1j, 1kn, 1clk, 

 2j, 2kn, 2clk, 3j, 3kn, 3clk, 4j, 4kn, 4clk) 

RETURNS (1q, 1qn, 2q, 2qn, 3q, 3qn, 4q, 

 4qn); 

74374 Octal D-Type Flip- 

 flop with Tri-State 

 Outputs and Output 

 Enable 

FUNCTION 74374 (clk, oen, d[8..1]) 

RETURNS (q[8..1]); 

74374B Octal D-Type Flip-

flop with Tri-State 

Outputs and Output 

Enable 

FUNCTION 74374B (clk, oen, d[8..1]) 

RETURNS (q[8..1]); 

74376 Quad JK Flip-flop 

 with Common 

 Clock and Common 

 Clear 

FUNCTION 74376 (clk, clrn, 1j, 1kn, 2j, 

 2kn, 3j, 3kn, 4j, 4kn) 

RETURNS (1q, 2q, 3q, 4q); 
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74377 Octal D-Type Flip-

flop with Enable 

FUNCTION 74377 (en, clk, d[8..1]) 

RETURNS (q[8..1]); 

74377B Octal D-Type Flip-

flop with Enable 

FUNCTION 74377B (en, clk, d[8..1]) 

RETURNS (q[8..1]); 

74378 Hex D-Type Flip- 

 flop with Enable 

FUNCTION 74378 (en, clk, d[6..1]) 

RETURNS (q[6..1]); 

74379 Quad D-Type Flip- 

 flop with Enable 

FUNCTION 74379 (en, clk, d[4..1]) 

RETURNS (q[4..1], qn[4..1]); 

74396 Octal Storage 

 Register 

FUNCTION 74396 (strbn, clk, d1, d2, d3, 

 d4) 

RETURNS (1q1, 1q2, 1q3, 1q4, 2q1, 2q2, 

 2q3, 2q4); 

74548 8-Bit 2-Stage Pipe- 

 lined Register with 

 Tri-State Outputs 

FUNCTION 74548 (clk, clkenn1, clkenn2, 

 insel, d[7..0], outsel, oen) 

RETURNS (y[7..0]); 

74670 4-Bit by 4-Bit Re- 

 gister File with Tri- 

 State Outputs 

FUNCTION 74670 (wb, wa, gwn, rb, ra, grn, 

 d[1..4]) 

RETURNS (q[1..4]); 

74821 10-Bit Bus Interface 

 Flip-flop with Tri- 

 State Outputs 

FUNCTION 74821 (oen, clk, d[1..10]) 

RETURNS (q[1..10]); 

74821B 10-Bit D-Type Flip- 

 flop with Tri-State 

 Outputs 

FUNCTION 74821B (d[10..1], oen, clk) 

RETURNS (q[10..1]); 

74822 10-Bit Bus Interface 

 Flip-flop with Tri- 

 State Inverting 

 Outputs 

FUNCTION 74822 (oen, clk, d[1..10]) 

RETURNS (q[1..10]); 

74822B 10-Bit D-Type 

Inverting Flip-flop 

with Tri-State 

Inverting Outputs 

FUNCTION 74822B (dn[10..1], oen, clk) 

RETURNS (q[10..1]); 
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74823 9-Bit Bus Interface 

 Flip-flop with Tri- 

 State Outputs 

FUNCTION 74823 (oen, clrn, clkenn, clk, 

 d[1..9]) 

RETURNS (q[1..9]); 

74823B 9-Bit D-Type Flip-

flop with Tri-State 

Outputs 

FUNCTION 74823 (oen, clrn, clkenn, clk, 

d[1..9]) 

RETURNS (q[1..9]); 

74824 9-Bit Bus Interface 

 Flip-flop with Tri- 

 State Inverting 

 Outputs 

FUNCTION 74824 (oen, clrn, clkenn, clk, 

 dn[1..9]) 

RETURNS (q[1..9]); 

74824B 9-Bit D-Type Inver- 

 ting Flip-flop with 

 Tri-State Inverting 

 Outputs 

FUNCTION 74824B (dn[9..1], oen, clk, clrn, 

 clkenn) 

RETURNS (q[9..1]); 

74825 8-Bit Bus Interface 

 Flip-flop with Tri- 

 State Ouputs 

FUNCTION 74825 (oe1n, oe2n, oe3n, clrn, 

 clkenn, clk, d[1..8]) 

RETURNS (q[1..8]); 

74825B Octal D-Type Flip- 

 flop with Tri-State 

 Outputs 

FUNCTION 74825B (d[8..1], oe1n, oe2n, 

 oe3n, clk, clrn, clkenn) 

RETURNS (q[8..1]); 

74826 9-Bit Bus Interface 

 Flip-flop with Tri- 

 State Inverting Out- 

 puts 

FUNCTION 74826 (oe1n, oe2n, oe3n, clrn, 

 clkenn, clk, d[1..8]) 

RETURNS (q[1..8]); 

74826B Octal D-Type Inver- 

 ting Flip-flop with 

 Tri-State Inverting 

 Outputs 

FUNCTION 74826B (dn[8..1], oe1n, oe2n, 

 oe3n, clk, clrn, clkenn) 

RETURNS (q[8..1]); 
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Truth Table of ENADFF (Register)  

Inputs Outputs 

CLRN PRN ENA D CLK Q 

L H X X X L 

H L X X X H 

L L X X X Illegal 

H H L X X Qo 

H H H L ↑ L 

H H H H ↑ H 

H H X X L Qo 

 

    

Truth Table of 7474 (Register)  

Inputs Outputs 

PRN CLRN CLK D Q QN 

L H X X H L 

H L X X L H 

L L X X Illegal 

H H ↑ L L H 

H H ↑ H H L 

H H L X Qo* /Qo 

     *Qo = Level of Q before clock pulse  

    

Truth Table of 74374 (Register)  

Inputs Outputs 

OEN CLK D Q 

H X X Z 

L X X X 

L ↑ L L 

L ↑ H H 

L L X Qo 

 

                    The Built-in Resources of MAX+PLUS II    CPLD Logic Circuit Design and Practice 



Decoders  

Macrofunction Description Function Prototype 

16DMUX  4-Bit Binary-to-16- 

 Line Decoder 

FUNCTION 16DMUX (d, c, b, a) 

RETURNS (q[15..0]) 

16NDMUX 4-Bit Binary-to-16- 

 Line Decoder 

FUNCTION 16NDMUX (d, c, b, a) 

RETURNS (qn[15..0]); 

7442 1-Line-to-10-Line 

 BCD-to-Decimal 

 Decoder 

FUNCTION 7442 (d, c, b, a)  

RETURNS (o0n, o1n, o2n, o3n, o4n, o5n, 

 o6n, o7n, o8n, o9n); 

7443 Excess-3-to-Decimal 

Decoder 

FUNCTION 7443 (d, c, b, a)  

RETURNS (o0n, o1n, o2n, o3n, o4n, o5n, 

 o6n, o7n, o8n, o9n); 

7444 Excess-3-Gray-to- 
 Decimal Decoder 

FUNCTION 7444 (d, c, b, a)  
RETURNS (o0n, o1n, o2n, o3n, o4n, o5n, 
 o6n, o7n, o8n, o9n); 

7445 BCD-to-Decimal 
 Decoder 

FUNCTION 7445 (d, c, b, a) 
RETURNS (o0n, o1n, o2n, o3n, o4n, o5n, 
 o6n, o7n, o8n, o9n); 

7446 BCD-to-7-Segment 
 Decoder 

FUNCTION 7446 (ltn, rbin, d, c, b, a, bin) 
RETURNS (oa, ob, oc, od, oe, 'of', og, rbon); 

7447 BCD-to-7-Segment 
 Decoder 

FUNCTION 7447 (ltn, rbin, d, c, b, a, bin) 
RETURNS (oa, ob, oc, od, oe, 'of', og, rbon); 

7448 BCD-to-7-Segment 
 Decoder 

FUNCTION 7448 (ltn, rbin, d, c, b, a, bin)  
RETURNS (oa, ob, oc, od, oe, 'of', og, rbon); 

7449 BCD-to-7-Segment 
 Decoder 

FUNCTION 7449 (d, c, b, a, bin)  
RETURNS (oa, ob, oc, od, oe, 'of', og); 

74137 3-Line-to-8-Line De- 
 coder with Address 
 Latches 

FUNCTION 74137 (gln, g1, g2n, c, b, a) 
RETURNS (y[0..7]); 

74138 3-Line-to-8-Line 
 Decoder 

FUNCTION 74138 (g1, g2an, g2bn, c, b, a) 
RETURNS (y0n, y1n, y2n, y3n, y4n, y5n, 
 y6n, y7n); 
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74139 Dual 2-Line-to-4- 
 Line Decoder 

FUNCTION 74139 (g1n, b1, a1, g2n, b2, a2) 
RETURNS (y10n, y11n, y12n, y13n, y20n, 
 y21n, y22n, y23n); 

74145 BCD-to-Decimal 
Decoder 

FUNCTION 74145 (d, c, b, a) 

RETURNS (o0n, o1n, o2n, o3n, o4n, o5n, 
o6n, o7n, o8n, o9n); 

74154 4-Line-to-16-Line 
 Line Decoder 

FUNCTION 74154 (g1n, g2n, d, c, b, a) 
RETURNS (o0n, o1n, o2n, o3n, o4n, o5n, 
 o6n, o7n, o8n, o9n, o10n, o11n, o12n, o13n, 
 o14n, o15n); 

74155 Dual 2-Line-to-4- 
 Line 
Decoder/Demulti- 
 plexer 

FUNCTION 74155 (2cn, 1c, selb, sela, 2gn, 
 1gn)  

RETURNS (2y0n, 2y1n, 2y2n, 2y3n, 1y0n, 
 1y1n, 1y2n, 1y3n); 

74156 Dual 2-Line-to-4- 
 Line Decoder/ 
 Demultiplexer 

FUNCTION 74156 (2cn, 1c, selb, sela, 2gn, 
 1gn)  
RETURNS (2y0n, 2y1n, 2y2n, 2y3n, 1y0n, 
 1y1n, 1y2n, 1y3n); 

74246 BCD-to-7-Segment 
 Decoder 

FUNCTION 74246 (ltn, rbin, bin, d, c, b, a) 
RETURNS (oa, ob, oc, od, oe,f’, og, rbon); 

74247 BCD-to-7-Segment 
 Decoder 

FUNCTION 74247 (ltn, rbin, bin, d, c, b, a) 
RETURNS (oa, ob, oc, od, oe,f’, og, rbon); 

74248 BCD-to-7-Segment 
 Decoder 

FUNCTION 74248 (ltn, rbin, bin, d, c, b, a) 
RETURNS (oa, ob, oc, od, oe, f’, og, rbon); 

74445 BCD-to-Decimal 
 Decoder 

FUNCTION 74445 (d, c, b, a) 
RETURNS (o0n, o1n, o2n, o3n, o4n, o5n, 
 o6n, o7n, o8n, o9n); 
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Truth Table of 16DMUX (Decoder)  

Inputs Outputs 

D C B A Q15 Q14 Q13 … Q3 Q2 Q1 Q0 

L L L L L L L … L L L H 

L L L H L L L … L L H L 

L L H L L L L … L H L L 

L L H H L L L … H L L L 

L H L L L L L … L L L L 

L H L H L L L … L L L L 

L H H L L L L … L L L L 

L H H H L L L … L L L L 

H L L L L L L … L L L L 

H L L H L L L … L L L L 

H L H L L L L … L L L L 

H L H H L L L … L L L L 

H H L L L L L … L L L L 

H H L H L L H … L L L L 

H H H L L H L … L L L L 

H H H H H L L … L L L L 

Truth table of 74138 (Decoder)  

Inputs 

Enable Select 
Outputs 

G1 G2* C B A Y0N Y1N Y2N Y3N Y4N Y5N Y6N Y7N 

X H X X X H H H H H H H H 

L X X X X H H H H H H H H 

H L L L L L H H H H H H H 

H L L L H H L H H H H H H 

H L L H L H H L H H H H H 

H L L H H H H H L H H H H 

H L H L L H H H H L H H H 

H L H L H H H H H H L H H 

H L H H L H H H H H H L H 

H L H H H H H H H H H H L 

* G2 = G2AN + G2BN.    
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Truth Table of 74246 (Decoder)  

Inputs Outputs 

LTN RBIN BIN D C B A OA OB OC OD OE OF OG RBON 

H H H L L L L On On On On On On Off H 

H L H L L L L Off Off Off Off Off Off Off L 

H X H L L L H On On On Off Off Off Off H 

H X H L L H L On On Off On On Off On H 

H X H L L H H Off On On On Off Off On H 

H X H L H L L On On On Off Off On On H 

H X H L H L H On Off On On Off On On H 

H X H L H H L On Off On On On On On H 

H X H L H H H On On On Off Off Off Off H 

H X H H L L L On On On On On On On H 

H X H H L L H Off On On On Off On On H 

H X H H L H L Off Off Off On On Off On H 

H X H H L H H Off Off On On Off Off On H 

H X H H H L L On On Off Off Off On On H 

H X H H H L H Off Off Off On Off On On H 

H X H H H H L Off Off Off On On On On H 

H X H H H H H Off Off Off Off Off Off Off H 

L X H X X X X On On On On On On On H 

H X L X X X X Off Off Off Off Off Off Off H 

 

Shift Registers 

Macrofunction Description Function Prototype 

BARRELST 8-Bit Barrel Shifter FUNCTION BARRELST (s[2..0], ldst, a, b, 

 c, d, e, f, g, h, clk)  

RETURNS (qa, qb, qc, qd, qe, qf, qg, qh); 

BARRLSTB 8-Bit Barrel Shifter FUNCTION BARRLSTB (s[2..0], ldst, 

 d[7..0], clk) 

RETURNS (q[7..0]); 

7491 Serial-In Serial-Out 

 Shift Register 

FUNCTION 7491 (clk, a, b) 

RETURNS (qh, qhn); 
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7494 4-Bit Shift Register 

with Asynchronous 

Preset and 

Asynchronous Clear 

FUNCTION 7494 (p1a, p2a, p1b, p2b, p1c, 

 p2c, p1d, p2d, pe1, pe2, clr, clk, ser)  

RETURNS (out); 

7495 4-Bit Parallel-Access 

 Shift Register 

FUNCTION 7495 (mode, clkl, clkr, ser, 

 d[0..3])  

RETURNS (q[0..3]); 

7496 5-Bit Shift Register FUNCTION 7496 (clrn, pe, a, b, c, d, e, clk, 

 ser)  

RETURNS (qa, qb, qc, qd, qe); 

7499 4-Bit Shift Register 

 with /JK Serial In- 

 puts and Parallel 

 Outputs 

FUNCTION 7499 (mode, clk2, clk1, j, kn, a, 

 b, c, d)  

RETURNS (qa, qb, qc, qd, qdn); 

74164 Serial-In Parallel-Out 

 Shift Register 

FUNCTION 74164 (clk, clrn, a, b) 

RETURNS (qa, qb, qc, qd, qe, qf, qg, qh); 

74164B Serial-In Parallel-Out 

 Shift Register 

FUNCTION 74164B (clk, clrn, a, b) 

RETURNS (q[7..0]); 

74165 Parallel Load 8-Bit 

 Shift Register 

FUNCTION 74165 (clk, clkih, stld, ser, a, b, 

 c, d, e, f, g, h) 

RETURNS (qh, qhn); 

74165B Parallel Load 8-Bit 

Shift Register 

FUNCTION 74165B (clk, clkih, stld, ser, 

 d[7..0])  

RETURNS (q7, q7n); 

74166 8-Bit Shift Register 

 with Clock Inhibit 

FUNCTION 74166 (clrn, stld, clkih, clk, ser, 

 a, b, c, d, e, f, g, h) 

RETURNS (qh); 

74178 4-Bit Shift Register FUNCTION 74178 (st, ld, ser, clk, a, b, c, d) 

RETURNS (qa, qb, qc, qd); 

74179 4-Bit Shift Register 

 with Clear 

FUNCTION 74179 (clrn, st, ld, clk, ser, a, b, 

 c, d)  

RETURNS (qa, qb, qc, qd, qdn); 
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74194 4-Bit Bidirectional 

 Shift Register with 

 Parallel Load 

FUNCTION 74194 (clrn, s1, s0, clk, slsi, 

 srsi, d, c, b, a) 

RETURNS (qd, qc, qb, qa); 

74195 4-Bit Parallel-Access 

 Shift Register 

FUNCTION 74195 (clrn, st/ldn, clk, j, kn, 

 d[0..3]) 

RETURNS (q[0..3], q3n); 

74198 8-Bit Bidirectional 

 Shift Register 

FUNCTION 74198 (clrn, s1, s0, clk, slsi, 

 srsi, a, b, c, d, e, f, g, h) 

RETURNS (qa, qb, qc, qd, qe, qf, qg, qh); 

74199 8-Bit Parallel-Access 
 Shift Register 

FUNCTION 74199 (clrn, st/ldn, clkih, clk, j, 
 kn, d[0..7]) 
RETURNS (q[0..7]); 

74295 4-Bit Right-Shift 
 Left-Shift Register 
 with Tri-State Out- 
 puts 

FUNCTION 74295 (oe, ld/shn, clk, ser, 
 d[3..0]) 
RETURNS (q[3..0]); 

74299 8-Bit Universal Shift/ 
 Storage Register 

FUNCTION 74299 (clrn, s1, s0, g1n, g2n, 
 clk, sr, sl) 
RETURNS (a/qa, b/qb, c/qc, d/qd, e/qe, f/qf, 
 g/qg, h/qh, qa2, qh2); 

74350 4-Bit Shift Register 
 with Tri-State Out- 
 puts 

FUNCTION 74350 (oen, s0, s1, d-[3..1], 
 d[0..3]) 
RETURNS (y[0..3]); 

74395 4-Bit Cascadable 

 Shift Register with 

 Tri-State Outputs 

FUNCTION 74395 (clrn, ld/shn, clk, ser, 

 d[1..4], oen) 

RETURNS (q[1..4], q4b); 

74589 8-Bit Shift Register 
 with Input Latches 
 and Tri-State Out- 
 put 

FUNCTION 74589 (oen, srclk, ser, srldn, 
 rclk, d[0..7]) 
RETURNS (qhn); 

74594 8-Bit Shift Register 
 with Output Latches 

FUNCTION 74594 (srclrn, rclrn, srclk, rclk, 
 ser) 
RETURNS (qa, qb, qc, qd, qe, qf, qg, qh, 
 qhn); 
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74595 8-Bit Shift Register 

 with Output Latches 

 and Tri-State 

 Outputs 

FUNCTION 74595 (gn, srclrn, srclk, rclk, 

 ser) 

RETURNS (qa, qb, qc, qd, qe, qf, qg, qh, 

 qhn); 

74597 8-Bit Shift Register 

 with Input Register 

FUNCTION 74597 (srclrn, srldn, rclk, 

 d[7..0], srclk, ser) 

RETURNS (qhn); 

74671 4-Bit Universal Shift 

 Register/Latch with 

 Direct-Overriding 

 Clear and Tri-State 

 Outputs 

FUNCTION 74671 (gn, r/sn, srclrn, s1, s0, 

 srclk, serl, serr, a, b, c, d, rclk) 

RETURNS (qa, qb, qc, qd, casc); 

74672 4-Bit Universal Shift 

 Register/Latch with 

 Synchronous Clear 

 and Tri-State Out- 

 puts 

FUNCTION 74672 (gn, r/sn, srclrn, s1, s0, 

 srclk, serl, serr, a, b, c, d, rclk) 

RETURNS (qa, qb, qc, qd, casc); 

74673 16-Bit Shift Register FUNCTION 74673 (csn, r/wn, srclk, stclrn, 

 mode, ser) 

RETURNS (y[0..15], q15); 

74674 16-Bit Shift Register FUNCTION 74674 (csn, r/wn, clk, mode, 

 ser, p[15..0]) 

RETURNS (q15); 
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Truth Table of BARRELST (Shift Register)  

Inputs Outputs 

S2 S1 S0 LDST A..H CLK QA QB..QG QH 

X X X X X L Qao Qbo..Qgo QHo 

X X X H a..h ↑ a b..g h 

L L L L X ↑ QAn QBn..QGn QHn 

L L H L X ↑ QBn QCn..QHn QAn 

L H L L X ↑ Qcn QDn..QAn QBn 

L H H L X ↑ Qdn QEn..QBn QCn 

H L L L X ↑ QEn QFn..QCn QDn 

H L H L X ↑ Qfn QGn..QDn QEn 

H H L L X ↑ QGn QHn..QEn QFn 

H H H L X ↑ Qhn Qan..QFn QGn 

 

 

Truth Table of 74164 (Shift Register)  

Inputs Outputs* 

CLK CLRN A B QA QB..QH 

X L X X L QBo..QHo 

L H X X Qao QAn..QGn 

L > H H H H H QAn..QGn 

L > H H L X L QAn..QGn 

L > H H X L L QAn..QGn 

* QAn, QGn = level of QA or QG before the most recent  transition of the Clock; indicates a one-

bit shift. 
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Truth Table of 74165 (Shift Register)  

Inputs Outputs 

Parallel Internal Output 
CLK CLK1H STLD SER 

A..H QA QB QH QHN 

X X L X a..h a B h /h 

L L H X X QAo Qbo Qho /QGn 

↑ L H H X H QAn* QGn*  

↑ L H L X L Qan QGn /QGn 

X H H X X QAo QBo QHo /QHo 

* QAn, QGn = level of QA or QG before the most recent ↑ transition of the Clock. 

 

 

 

Digital Filters 

Macrofunction Description Function Prototype 

74297 Digital Phase- 

 Locked Loop 

 Filter 

FUNCTION 74297 (kclk, d/upn, enctr, d, 

 c, b, a, idclk, phase_a1, phase_b, 

 phase_a2) 

RETURNS (idout, ecpd, xorpd); 

 

 

Truth Table of 74297 (Digital Filter)  

K Counter Function Table 

Inputs 

D C B A 

Outputs 

Modulo (K) 

L L L L Inhibited 

L L L H 2^3 

L L H L 2^4 

L L H H 2^5 

L H L L 2^6 

L H L H 2^7 

L H H L 2^8 

                    The Built-in Resources of MAX+PLUS II    CPLD Logic Circuit Design and Practice 



L H H H 2^9 

H L L L 2^10 

H L L H 2^11 

H L H L 2^12 

H L H H 2^13 

H H L L 2^14 

H H L H 2^15 

H H H L 2^16 

H H H H 2^17 

 

 

 

XOR Phase Detector 

Inputs 

Phase_A1 Phase_B 

Outputs 

XORPD 

L L L 

L H H 

H L H 

H H L 

 

 

 

Edge-Controlled Phase Detector 

Inputs 

Phase_A2 Phase_B 

Outputs 

ECPD 

H or L ↓ H 

↓ H or L L 

H or L ↑ No Change 

↑ H or L No Change 
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Storage Registers 

Macrofunction Description Function Prototype 

7498 4-Bit Data 

 Selector/Storage 

 Register 

FUNCTION 7498 (clkn, wrdsl, a1, b1, c1, d1, 

 a2, b2, c2, d2)  

RETURNS (qa, qb, qc, qd); 

74278 4-Bit Cascadable 

 Priority Register 

FUNCTION 74278 (p0, g, d[4..1]) 

RETURNS (y[4..1], p1); 

    

    

Truth Table of 7498 (Storage Register)  

Inputs Outputs 

CLKN WRDSL A1 B1 C1 D1 A2 B2 C2 D2 QA QB QC QD 

↓ L a1 b1 c1 d1 X X X X A1 b1 c1 d1 

↓ H X X X X a2 b2 c2 d2 A2 b2 c2 d2 

 

 

 

Truth Table of 74278 (Storage Register)  

Inputs Internal Latch Nodes Outputs 

P0 G D1 D2 D3 D4 /Q1 /Q2 /Q3 /Q4 Y1 Y2 Y3 Y4 P1 

L H H X X X L X X X H L L L H 

L H L H X X H L X X L H L L H 

L H L L H X H H L X L L H L H 

L H L L L H H H H L L L L H H 

L H L L L L H H H H L L L L L 

L L X X X X 
Same function of /Q as 

 on first 5 lines 

H L X X X X 

 

Latched when G goes low 

L L L H 

H H 
Internal /Q levels are same function of D inputs as on  

 the first 5 lines. 
L L L H 
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EDAC  

Macrofunction Description Function Prototype 

74630 16-Bit Parallel 
 Error Detection 
 and Correction 
 Circuit 

FUNCTION 74630 (s1, s0, db[15..0], cb[5..0]) 
RETURNS (dbo[15..0], cbo[5..0], sef, def); 

74636 8-Bit Parallel 
 Error Detection 
 and Correction 
 Circuit 

FUNCTION 74636 (s1, s0, db[7..0], cb[4..0]) 
RETURNS (dbo[7..0], cbo[4..0], sef, def); 

    

Truth Table of 74636 (EDAC)  

Control Error Flags Memory 

Cycle S1 S2 
EDAC Function Data I/O Check Word I/O 

SEF DEF 

Write L L Generate Check Word Inp Data Output Check Word L L 

Read L H Read Data & Check Word Inp Data Input Check Word L L 

Read H H Flag Errors Latch D Latch Check Write Enabled 

Read H L 
Correct Data & Synd 

 Bits 
Cor Data Syndrome Bits Enabled 

Error Function Table 

Total Number of Errors Error Flags 

Data Word Check Word SEF DEF 
Data Correction 

0 0 L L Not Applicable 

1 0 H L Correction 

0 1 H L Correction 

1 1 H H Interrupt 

2 0 H H Interrupt 

0 2 H H Interrupt 

 

Check-Word Bits are derived from parity bits as follows 

Check Word 8-Bit Data Word* 

CB0 DB0, DB1, DB3, DB4 
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CB1 DB0, DB2, DB3, DB5, DB6 

CB2 DB1, DB2, DB4, DB5, DB7 

CB3 DB0, DB1, DB2, DB6, DB7 

CB4 DB3, DB4, DB5, DB6, DB7 

* The five check bits are parity bits derived from the data bits listed. 

    

 

Error Syndrome Table 

Syndrome Error Code 
Error Location 

CB0 CB1 CB2 CB3 CB4 

DB0 L L H L H 

DB1 L H L L H 

DB2 H L L L H 

DB3 L L H H L 

DB4 L H L H L 

DB5 H L L H L 

DB6 H L H L L 

DB7 H H L L L 

CB0 L H H H H 

CB1 H L H H H 

CB2 H H L H H 

CB3 H H H L H 

CB4 H H H H L 

No Error H H H H H 

 

SSI Functions 

Macrofunction Description Function Prototype 

CBUF Complementary 

 Buffer 

FUNCTION CBUF (1)  

RETURNS (2, 3); 

INHB Inhibit Gate FUNCTION INHB (2, 3)  

RETURNS (1); 

7400 NAND2 Gate FUNCTION 7400 (2, 3)  
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RETURNS (1); 

7402 NOR2 Gate FUNCTION 7402 (2, 3)  

RETURNS (1); 

7404 NOT Gate FUNCTION 7404 (2)  

RETURNS (1); 

7408 AND2 Gate FUNCTION 7408 (2, 3)  

RETURNS (1); 

7410 NAND3 Gate FUNCTION 7410 (2, 3, 4)  

RETURNS (1); 

7411 AND3 Gate FUNCTION 7411 (2, 3, 4)  

RETURNS (1); 

7420 NAND4 Gate FUNCTION 7420 (2, 3, 4, 5)  

RETURNS (1); 

7421 AND4 Gate FUNCTION 7421 (2, 3, 4, 5)  

RETURNS (1); 

7423 Dual 4-Input NOR 
 Gate with Strobe 

FUNCTION 7423 (1a, 1b, 1c, 1d, 1g, 2a, 2b, 
 2c, 2d, 2g) 
RETURNS (1y, 2y); 

7425 Dual 4-Input NOR 
 Gate With Strobe 

FUNCTION 7425 (1a, 1b, 1c, 1d, 1g, 2a, 2b, 
 2c, 2d, 2g) 
RETURNS (1y, 2y); 

7427 NOR3 Gate FUNCTION 7427 (2, 3, 4)  
RETURNS (1); 

7428 Quad 2-Input 

 Positive NOR 

 Buffer 

FUNCTION 7428 (a1, b1, a2, b2, a3, b3, a4, 

 b4) 

RETURNS (y1, y2, y3, y4); 

7430 NAND8 Gate FUNCTION 7430 (2, 3, 4, 5, 6, 7, 8, 9)  

RETURNS (1); 

7432 OR2 Gate FUNCTION 7432 (2, 3)  

RETURNS (1); 

7437 Quad 2-Input 

 Positive NAND 

FUNCTION 7437 (1a, 1b, 2a, 2b, 3a, 3b, 4a, 

 4b) 
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 Buffer RETURNS (1y, 2y, 3y, 4y); 

7440 Dual 4-Input 

 Positive NAND 

 Buffer 

FUNCTION 7440 (1a, 1b, 1c, 1d, 2a, 2b, 2c, 

 2d) 

RETURNS (1y, 2y); 

7450 Dual 2-Wide 2- 
 Input AND-OR- 
 INVERT Gate 

FUNCTION 7450 (1x, 1xn, 1a, 1b, 1c, 1d, 2a, 
 2b, 2c, 2d) 
RETURNS (1yn, 2yn); 

7451 Dual AND-OR- 

 INVERT Gate 

FUNCTION 7451 (1a, 1b, 1c, 1d, 1e, 1f, 2a, 2b, 

 2c, 2d) 

RETURNS (1yn, 2yn); 

7452 AND-OR Gate FUNCTION 7452 (x, a, b, c, d, e, f, g, h, i) 

RETURNS (y); 

7453 Expandable 4- 

 Wide AND-OR- 

 INVERT Gate 

FUNCTION 7453 (xn, x, a, b, c, d, e, f, g, h) 

RETURNS (yn); 

7454 4-Wide AND-OR- 

 INVERT Gate 

FUNCTION 7454 (a, b, c, d, e, f, g, h, i, j) 

RETURNS (yn); 

7455 2-Wide, 4-Input 

 AND-OR- 

 INVERT Gate 

FUNCTION (a, b, c, d, e, f, g, h) 

RETURNS (yn); 

7464 4-2-3-2 Input 

 AND-OR- 

 INVERT Gate 

FUNCTION 7464 (a, b, c, d, e, f, g, h, i, j, k) 

RETURNS (y); 

7486 XOR Gate FUNCTION 7486 (2, 3) 

RETURNS (1); 

74133 13-Input NAND 

 Gate 

FUNCTION 74133 (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 

 12, 13, 14) 

RETURNS (1); 

74134 12-Input NAND 

 Gate with Tri- 

 State Output 

FUNCTION 74134 (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 

 12, 13, oen) 

RETURNS (1); 

74135 Quad XOR/XNOR FUNCTION 74135 (1a, 2b, 12c, 2a, 2b, 3a, 3b, 
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 Gates  34c, 4a, 4b) 

RETURNS (1y, 2y, 3y, 4y); 

74260 Dual 5-Input 

 Positive NOR 

 Gates 

FUNCTION 74260 (a[0..4], b[0..4]) 

RETURNS (ayn, byn); 

74386 Quad XOR Gate FUNCTION 74386 (a[1..4], b[1..4]) 

RETURNS (y[1..4]); 
 

Encoders 

Macrofunction Description Function Prototype 

74147 10-Line-to-4-Line 

 BCD Encoder 

FUNCTION 74147 (1n, 2n, 3n, 4n, 5n, 6n, 

 7n, 8n, 9n)  

RETURNS (dn, cn, bn, an); 

74148 8-Line-to-3-Line 

 Octal Encoder 

FUNCTION 74148 (ein, 0n, 1n, 2n, 3n, 4n, 

 5n, 6n, 7n)  

RETURNS (a2n, a1n, a0n, gsn, eon); 

74348 8-Line-to-3-Line Pri- 

 ority Encoder with 

 Tri-State Outputs 

FUNCTION 74348 (ei, d[0..7]) 

RETURNS (eo, gs, a[2..0]); 

 

Truth Table of 74148 (Encoder)  

Inputs Outputs 

EIN 0N 1N 2N 3N 4N 5N 6N 7N A2N A1N A0N GSN E0N 

H X X X X X X X X H H H H H 

L H H H H H H H H H H H H L 

L X X X X X X X L L L L L H 

L X X X X X X L H L L H L H 

L X X X X X L H H L H L L H 

L X X X X L H H H L H H L H 

L X X X L H H H H H L L L H 

L X X L H H H H H H L H L H 

L X L H H H H H H H H L L H 

L L H H H H H H H H H H L H 
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Truth Table of 74348 (Priority Encoder)  

Inputs Outputs 

E1 D0 D1 D2 D3 D4 D5 D6 D7 E0 GS A2 A1 A0 

H X X X X X X X X H H Z Z Z 

L H H H H H H H H H L Z Z Z 

L X X X X X X X L L H L L L 

L X X X X X X L H L H L L H 

L X X X X X L H H L H L H L 

L X X X X L H H H L H L H H 

L X X X L H H H H L H H L L 

L X X L H H H H H L H H L H 

L X L H H H H H H L H H H L 

L L H H H H H H H L H H H H 

 

 

True/Complement I/O 

 Elements 

Macrofunction Description Function  Prototype 

7487 4-Bit True/ 

 Complement I/O 

 Element 

FUNCTION 7487 (a[4..1], b, c) 

RETURNS (y[4..1]); 

74265 Quad Comple- 

 mentary Output 

 Elements 

FUNCTION 74265 (1a, 2a, 2b, 3a, 3b, 4a) 

RETURNS (1w, 1yn, 2w, 2yn, 3w, 3yn, 4w, 

 4yn); 
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Truth Table of7487 (True/Complement I/O Element)  

Inputs Outputs 

B C Y1 Y2 Y3 Y4 

L L /A1 /A2 /A3 /A4 

L H A1 A2 A3 A4 

H L H H H H 

H H L L L L 

 

Truth Table of 74265 (True/Complement I/O Element)  

Inputs Outputs Inputs Outputs 

1A (4A) 1W(4W) 1YN(4YN) 2A(3A) 2B(3B) 2W(3W) 2YN(3YN) 

L L H L X L H 

H H L X L L H 

   H H H L 
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